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Abstract

We study constitutional consistency of social choice functions (s.c.f.)
in a setting where voters have single-peaked preferences over a tree.
This is relevant in settings where alternatives are locations spread out
on a tree and a location needs to be selected for provision of a public
good. An s.c.f. is constitutionally consistent if its outcome at any
profile does not change when the profile is restricted to any subset
consisting the outcome. We show that q-threshold rules on trees are
the only s.c.f.s which satisfy constitutional consistency, unanimity and
anonymity. These s.c.f.s specify, for each alternative, thresholds which
are decreasing (increasing) on every path from a given node. These
s.c.f.s then select from the range, the unique alternative which is the
smallest (greatest) alternative in any restricted vote profile that re-
ceives more additive votes than the threshold assigned to it. These
s.c.f.s are generalizations of min, max, and median s.c.f.s when re-
stricted to paths.
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1 Introduction

In many voting situations, candidates or alternatives may drop out or be-
come unavailable due to certain unforeseen circumstances. In such cases,
the aggregation rule must specify what the outcome would be for every such
contingency. In this paper we focus on a consistency condition which is
crucial under such conditions. Constitutional consistency states that the
outcome of a social choice function (s.c.f.) at any preference profile should
be the same when restricted to any subset containing that outcome. This can
also be interpreted as the social choice variant of Sen (1969) and Chernoff
(1954)’s contraction consistency or α condition defined for individual choice
functions. In this paper we study constitutionally consistent social choice
functions when the preferences are single-peaked over a tree.1

Alternatives are often distributed over a tree in many settings. For exam-
ple,

(1) When alternatives are locations in a city with many ‘branches’ and a
public good needs to be provided at one of these locations.

(2) Alternatives may be researchers or professionals connected by relevance
(like a tree) and one of them is to be selected for an award.

Single-peakedness is a natural assumption to make in these settings. It re-
quires that individuals have a ‘peak’ or a most preferred policy and that
alternatives closer to the peak are strictly preferred over the ones further
away. In the first example, the individuals would always prefer to have the
allocated good at a location closest to their own location and in the second
example, individuals would prefer that an individual closest to their area of
interest be awarded. Single-peaked preferences on a line were first introduced
by Black et al. (1958), Hotelling (1929) and Downs (1957) and continue to
be used in political economy as well as social choice settings.2

There are a few works which study this type of consistency of social choice
functions in the unrestricted domain. Blair et al. (1976) provide different im-
possibility theorems using Chernoff’s conditions aka contraction consistency
along with other axioms like independence of irrelevant alternatives and path
independence. Bandyopadhyay (1984) finds that instead of contraction con-

1A formal definition is provided in the model section. Intuitively, a preference is single-
peaked over a tree, if (i) there exists a peak of the preference x which is strictly preferred
over every other alternative and (ii) alternatives further away from the peak in any ‘di-
rection’ are strictly worse-off.

2See Arrow et al. (2010) and Austen-Smith and Banks (2005) for further exposition on
social choice models with single-peaked preferences.
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sistency it is expansion consistency which is problematic for the existence of
non-dictatorial social choice rules.

An axiom that is very similar to ours is self-selectivity as introduced by Ko-
ray (2000) and further extended to single-peaked domains by Bhattacharya
(2019).3 A social choice function is self-selective if it chooses itself when
subjected to a ‘vote’ against other voting rules. The latter notion and our
notion seem different at the outset but they are essentially the same. Both
the notions are ‘consequentialist’ in the sense that they only care about the
alternative being chosen. Therefore, when the set of available voting rules
changes, it is equivalent to a contraction of the set of alternatives over which
the profile is constructed. Lainé et al. (2016) study a similar notion of sta-
bility for scoring rules and social welfare functions, and show that there are
no hyper-stable scoring rules. Barberà and Jackson (2004) study a version
of self-stability of voting rules over two alternatives, and find that majority
rules are the only self-stable rules.

We characterize q-threshold rules on trees which are defined as follows. Pick
any terminal node or alternative r on the tree. Assign monotone decreasing
(or increasing) thresholds to each alternative on every path [r, y] for any other
terminal node y. These rules then pick the unique alternative x∗ which when
restricted to any path consisting of x∗ is such that it is the smallest (greatest)
alternative from the range of the profile that receives more cumulative votes
at the top (votes received by all the alternatives which are closer to (or
further away from) r) than the threshold assigned to them.4 The thresholds
are defined for each alternative and depend on the path they are defined
over.

Another condition that needs to be satisfied for the above rule to be consistent
with itself is as follows. Suppose x is an alternative which has a degree greater

than or equal to 3, and q
[r,y′]
x and q

[r,y′′]
x are the two thresholds of x in two

extremal paths [r, y′] and [r, y′′]. The condition requires that q
[r,y′]
x + q

[r,y′′]
x <

n+ 2. This condition ensures that the rule is well-defined.

q-threshold rules can be seen as generalized quota rules defined for trees but
with variable thresholds which apply to cumulative votes for alternatives at
the top. These rules can be defined with respect to any terminal node r
and by assigning decreasing or increasing thresholds to alternatives on every

3Koray and Unel (2003) extends the analysis to the tops-only domain and Koray and
Slinko (2008) characterizes self-selective rules when the inefficient ones are excluded.

4The range of the profile is the set containing alternatives which lie on the path between
at least one pair of alternatives at the top of the profile.
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extremal path from r.5

We prove our main result in steps. We first show that if a social choice
function is constitutionally consistent and unanimous then it is tops-only
(Proposition 1). Constitutional consistency then implies that any constitu-
tionally consistent and unanimous social choice function will only choose
from the range of the profile. Finally, we use the results in Bhattacharya
(2019) and the fact that the two versions of constitutional consistency are
the same under the tops-only property. The main proof overcomes significant
challenges since the rules must be consistent across different extremal paths
in the tree. Once that is resolved, we show that q-threshold rules over trees
are the only constitutionally consistent, anonymous and unanimous social
choice functions over trees.

There are some differences between our notion of consistency and the ones
in the literature. First, our definition of constitutional consistency is ap-
plied on restriction of preference profiles, while the literature mostly defines
self-selection using an induced profile over different aggregation rules and
then use neutrality to check for the self-selectivity. Second, the standard
notion of contraction consistency applied in the classical social choice lit-
erature (Bandyopadhyay (1984), Blair et al. (1976)) apply the condition to
the social decision function without describing the preferences of individuals
over the contracted set. In our notion, we implicitly assume that individu-
als are truthful and do not change their preferences over the feasible set of
alternatives.

An important contribution of the paper is that it provides a characterization
of a large class of social choice functions in a relatively general domain which
has shown promise for existence results in the literature. This fact that the
domain is partially ordered helps in obtaining such results. Further research
on generalized single-peaked domains is required while studying similar prop-
erties of social choice functions.

The paper is organised as follows. In Section 2 we introduce the notation
and describe the model. Section 3 lists the Axioms and Section 4 provides
the results. This is followed by some concluding remarks. The proofs of all
the results are provided in the Appendix. The bibliography is provided at
the end.

5A path [a, b] is extremal if both a and b are terminal nodes.
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2 The Model

In this section we describe the model and provide all the definitions. There
is a finite set of voters N = {1, 2, . . . , n} and a finite set of alternatives X
with |X| = m. Let P(X) denote the set of all non-empty subsets of X. We
assume that all the alternatives are placed on a tree, T ≡ T (X,E), where
the set of nodes is the set of alternatives X and E is the set of edges. We
will assume the tree T (X,E) to be fixed for the remaining part of the paper.
We will use the terms ‘alternatives’ and ‘nodes’ interchangeably.

An path [x, y] from node x to node y in X, x ̸= y is a sequence of dis-
tinct nodes (x0, x1, ..., xk) such that x0 = x, xk = y and {xq, xq+1} ∈ E for
all q ∈ {0, 1, ..., k − 1}. For simplicity of notation, we also denote [x, y] as
the set of alternatives (including x and y) in the path [x, y] for any distinct
x, y ∈ X. A path [a, b] is extremal if both a and b are end nodes. Let E
denote the set of all extremal paths in T . An alternative x is adjacent to x+

if [x, x+] = {x, x+}.

Single-peaked preferences over trees: Each voter i ∈ N has a single-
peaked preference on T which is defined as follows. A strict preference or-
dering, ≻i, is single-peaked on the tree T if there exists a ‘peak’ xi ∈ X such
that for all x, y ∈ X, x ̸= y,6

x ∈ [xi, y] ⇒ x ≻i y.

Note that in the above definition if x = xi then for any y ̸= xi we have
xi ≻i y. This definition reduces to the standard definition of single-peaked
preferences if the tree T is a ‘line’.

Therefore, alternatives closer to the peaks are strictly preferred over the
alternatives further away. However, the definition does not impose any re-
striction on two alternatives which are on either side of the peak or, in other
words, when neither is in the path between the peak and the other alterna-
tive. For example, in Figure 1 voter i with peak a can have either b ≻i d or
d ≻i b.

We consider the whole set of strict single-peaked preference orderings on
trees. For example, suppose X = {a, b, c, d, e} and the tree is T as shown in
Figure 1. Then, the set of all strict single-peaked preferences on the given

6A strict binary relation ≻ is an ordering if it is: (i) Complete: For all x, y ∈ X, x ̸= y
either x ≻ y or y ≻ x (ii) Transitive: If for all x, y, z ∈ X x ≻ y and y ≻ z implies x ≻ z,
and (iii) Irreflexive: ¬[x ≻ x] for all x ∈ X.
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tree with peak a include the strict preferences acbde, acdbe, and acdeb where
alternatives are in the decreasing order of strict preference.7

a

b

c ed

Figure 1: Single-peaked preference on T

Let S(T ) be the set of all single-peaked preference orderings on T . A pref-
erence profile π = (≻1, . . . ,≻n) ∈ S(T )n is a collection of n preferences with
peaks or ‘tops’, τ(π) = (τ1(π), ..., τn(π)). Let τi(π) denote the top of voter
i in the profile π. We denote by πS as the restriction of the profile π to a
subset S ∈ P(X). For any S ∈ P(X) let S(TS)

n be the set of all profiles
which are restrictions of profiles in S(T )n to the set S. We will write S(T )
instead of S(TX) for simplicity.

Social choice function (s.c.f.): A social choice function (s.c.f.) is a map-
ping f :

⋃
S∈P(X) S(TS)

n → X such that for any profile πS ∈ S(TS)
n for

any S ∈ P(X) we have f(πS) ∈ S. Therefore, an s.c.f. operates on every
restriction of a single-peaked profile on T to any subset S of X and produces
an alternative in S.

In this paper, we will only focus on tops-only s.c.f.s since our main axiom,
constitutional consistency, along with unanimity will imply this property.
We provide some examples of such s.c.f.s in this setting.

Dictatorial s.c.f. An s.c.f. f i :
⋃

S∈P(X) S(TS)
n → X, for a given voter

i ∈ N is dictatorial if f i(πS) = τi(πS) for all πS ∈ S(TS)
n for any S ∈ P(X).

We introduce some definitions for our next rule.

Range of a profile: For any profile πS ∈ S(TS)
n, the range of the profile is

the set of all alternatives that lie on the path between a pair of top-ranked
alternatives in τ(πS), i.e.,

Range(πS) = {x ∈ S : x ∈ [τi(πS), τj(πS)] for some i, j ∈ N}.
7Single-peaked preferences on trees defined in Schummer and Vohra (2002) are based on

a notion of ‘distance’ and, therefore, the preferences in their model are uniquely identified
by the ‘peaks’ of the individuals.
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In Figure 1, for a three-voter profile π ∈ S(T )3 with τ(π) = (a, b, d), Range(π) =
{a, b, c, d}. We introduce some notation to define our next rule which is de-
fined on extremal paths.

Thresholds on [r, y]: For an extremal path [r, y] ∈ E, we define thresholds
q[r,y] : X → N which will be monotone decreasing on [r, y], i.e., [x ∈ [r, x′]] ⇒
[q

[r,y]
x ≥ q

[r,y]
x′ ] for all x, x′ ∈ [r, y]. In other words, the thresholds are said to be

monotone decreasing with respect to [r, y] if alternatives further away from
r have a weakly lower threshold.

For r ∈ X, and for any given y ∈ X such that [r, y] ∈ E we define a complete
strict ordering <r on [r, y]: x <r x′ if and only if x ∈ [r, x′] for all distinct
x, x′ ∈ [r, y]. For any x, x′ ∈ [r, y] we say that x ≤r x′ if either x = x′ or
x <r x

′. Therefore, x <r x
′ if and only if x is strictly ‘closer’ to r than x′. Let

nx the number of voters who have x at their top, and let S(T[r,y]) denote the
set of all single-peaked preferences defined over [r, y] according to ≤r. Note
that if π ∈ S(T ) is a profile of single-peaked preferences defined over X, then
π[r,y] is a profile of single-peaked preferences defined over [r, y] according to
the order ≤r.

q-threshold rule on a path [r, y]: An s.c.f. f q
[r,y] : S(T[r,y])

n → [r, y] is

a q-threshold rule on the path [r, y] ∈ E if there exist monotone decreasing
thresholds q[r,y] : [r, y] → N such that for all π ∈ S(T[r,y])

n,

f q
[r,y](π) = argmin

x∈Range(π)

∑
l≤rx

nl ≥ q[r,y]x .

Therefore, q-threshold rules on path [r, y] choose the smallest alternative in
the range of π (which is a profile in S(T[r,y])

n) according to <r for which the
sum of top votes received by alternatives before it according to <r is greater
than the threshold assigned to it.

Alternatively, these rules can be defined with respect to monotone increasing
thresholds q[r,y] : [r, y] → N such that for all π ∈ S(T[r,y])

n,

f q
[r,y](π) = argmax

x∈Range(π)

∑
l≥rx

nl ≥ q[r,y]x .

7



Bhattacharya (2019) shows that for single-peaked domain (over a line) these
rules are the only voting rules which satisfy unanimity, anonymity and consti-
tutional consistency. The following class of rules is a sub-class of q-threshold
rules which includes min and max rules.

Positional rules on a path [r, y]: The above defined q-threshold rules

can be defined as positional rules if q
[r,y]
x = k for all x ∈ [r, y] for a given

k ∈ {1, ..., n}. For example, q-threshold rules can be defined as min and max

rules for q
[r,y]
x = 1 and q

[r,y]
x = n for all x ∈ [r, y] respectively. They can be de-

fined as median rules by taking q
[r,y]
x = n

2
if n is even, and q

[r,y]
x = n+1

2
(which

picks the left-median) if n is odd for all x ∈ [r, y].We now provide the axioms.

3 Axioms

Constitutional consistency. An s.c.f. f is constitutionally consistent if
for all π ∈ S(T )n and for any S ′ ∈ P(X),

[f(π) ∈ S ′] =⇒ [f(π) = f(πS′)].

Constitutional consistency requires that the s.c.f produce the same outcome
at π as the one it produces at any restriction of the profile to any subset
S ′ containing f(π). This axiom is a version of Sen (1977)’s ‘contraction
consistency’ applied to social choice functions.

It is easy to check the dictator rule f i is constitutionally consistent. Consider
the following arguments: for any profile π ∈ S(T )n, we have τi(π) = τi(πS)
for all S ∈ P(X) if τi(π) ∈ S. Therefore, f i(π) = τi(π) = f i(πS) = τi(πS).
We require some standard axioms in addition to the above axiom for our
main result.

Anonymity. An s.c.f. f satisfies anonymity if for all bijections σ : N → N
and for all π ∈ S(TS)

n,
f(π) = f(πσ)

where πσ = (πσ(1), ..., πσ(n)) is the profile of permuted preferences. Anonymity
states that permuting the preferences of voters does not change the outcome.

Unanimity. An s.c.f. f satisfies unanimity if for all π ∈ S(TS)
n such that

τi(π) = a for all i ∈ N , then
f(π) = a.
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Unanimity requires that when every voter has the same peak then the out-
come must be the peak. We define the tops-only property below.

Tops-only. An s.c.f. f satisfies tops-only if for all π, π′ ∈ S(TS)
n such that

τ(π) = τ(π′),

f(π) = f(π′).

Our first result shows that any s.c.f. that is constitutionally consistent and
unanimous must be tops-only.

4 Results

Proposition 1 If an s.c.f. f :
⋃

S∈P(X) S(TS)
n → X is constitutionally

consistent and unanimous then it is tops-only.

Proof. See Appendix.

Therefore, the outcome of an s.c.f. which is consistent and unanimous de-
pends only on the peaks of voters. An implication of this is that f(π) ∈
Range(π) for all π ∈ S(TS)

n for any S ∈ P(X). In the next Proposition, we
apply the results of Bhattacharya (2019) to our setting.

Proposition 2 Consider any [a, b] ∈ E. Let f[a,b] be an s.c.f. on [a, b] which
is constitutionally consistent, unanimous and anonymous. Then it is a q-
threshold rule on [a, b].

By Proposition 1 we know that f[a,b] will be a tops-only rule. This implies
that we can apply the results of Bhattacharya (2019) to this s.c.f. and it

must be a q-threshold rule with monotone decreasing thresholds q
[a,b]
x on the

path [a, b] for any x ∈ X. Note that the following ordering over the set
of alternatives [a, b] can be used: x ≤a y if and only if x ∈ [a, y]. When
extending the rule to multiple paths, we only need to define q-threshold rules
from a given terminal node (say r).

Next we define a q-threshold rule on T . Let f |S for any S ⊆ X be the re-
striction of f to the set S.8 For any terminal node, r ∈ X, let Er denote
the set of all extremal paths with r as an end-point. Let deg(x) denote the
degree of the alternative (or node) x ∈ X in T .

8A function fD defined on a set D ⊆ X is said to be restriction of f (defined on X) to
D if f(x) = fD(x) for all x ∈ D.
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Definition 1 (q-threshold rule on T ) An s.c.f. f q
r :

⋃
S∈P(X) S(TS)

n →
X is a q-threshold rule on T with respect to r ∈ X if there exists a strict
single-peaked ordering <r on T and thresholds q : X × Er → N which are
(i) monotone decreasing on any extremal path [r, y] ∈ Er and (ii) for all

x ∈ T such that deg(x) ≥ 3, q
[r,y]
x + q

[r,y′]
x < n + 2 for all distinct paths

[r, y], [r, y′] ∈ Er such that x ∈ [r, y] ∩ [r, y′]. Moreover, for all π ∈ S(T )n,

f q
r (π) = x∗ = argmin

x∈Range(π[r,y])

∑
l≤rx

nl ≥ q[r,y]x ,

for all [r, y] ∈ Er such that x ∈ [r, y].

Therefore, an s.c.f. is a q-threshold rule on T (E) for a given r ∈ X satisfies
the following properties: (i) the restriction of the rule to any extremal path
[r, y] in E is a q-threshold rule on [r, y], (ii) for any alternative which has
degree greater than or equal to 3, the sum of its thresholds on two distinct
extremal paths must be strictly less than n + 2 and (iii) the outcome at
any profile is the unique alternative, x∗, which is the outcome of the rule
over restrictions of the profile to any extremal path [r, y] which consists of
x∗. Alternatively, these rules can also be defined using monotone increasing
thresholds on extremal paths from r. Our main result characterizes this rule
using the axioms mentioned in Section 3.

We show that this is a well-defined rule. Firstly, note that f q
r (π) ∈ Range(π).

We first prove this for the case when Range(π) ⊆ [r, y] ∈ E. Since [r, y] is just
a line, we can define min(π) and max(π) according to <r. Suppose, on the
contrary, that f q

r (π) /∈ Range(π) and assume w.l.o.g. that f q
r (π) >r max(π).

By the definition of arg-min in part (i) of the above definition, f q
r (π) cannot

lie outside the range since max(π) is an alternative that obtains as many
cumulative votes as f(π). But since max(π) <r f q

r (π), the latter cannot
be the smallest alternative according to <r that meets the above condition.
This is a contradiction. Therefore, f q

r (π) ≤r max(π). Similar arguments
can be made to show that f q

r (π) ≥r min(π). Therefore, f q
r (π) ∈ Range(π) if

Range(π) ⊆ [r, y] ∈ E.

We now prove the above claim more generally. Suppose for a given profile
π ∈ S(T )n, Range(π) is not a subset of the set of alternatives in an extremal
path from r and f q

r (π) /∈ Range(π). Then there must exist an extremal
path [r, ȳ] such that f q

r (π) ∈ [r, ȳ] but f q
r (π) /∈ [min(π[r,ȳ]),max(π[r,ȳ])]. By

property (iii) of the rule, the restriction of the profile to [r, ȳ] will not change
the outcome. Therefore, f q

r |[r,ȳ](π[r,ȳ]) /∈ [min(π[r,ȳ]),max(π[r,ȳ])]. But this
is a contradiction to the fact that f q

r |[r,ȳ] is also a q-threshold rule on path
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[r, ȳ].

By the definition, the outcome of any q-threshold rule is the unique alterna-
tive (say, x∗) in the range of the profile π ∈ S(T )n which is also the outcome
of the s.c.f. f(π[r,y]) for all such profiles which are restrictions of the profile π
to any extremal path [r, y] ∈ Er given that x ∈ [r, y]. To argue this we show
that such an alternative exists and is unique.

Claim 1 Suppose f q
r is q-threshold rule on T (E). For every profile π ∈

S(T )n there exists a unique alternative x∗ ∈ Range(π), such that f q
r (π) =

f q
r |[r,y](π[r,y]) = x∗ for all [r, y] ∈ Er such that x∗ ∈ [r, y].

Proof. We prove by contradiction. Suppose there exist two alternatives x′

and x′′ such that x′ ∈ [r, y′] and x′′ ∈ [r, y′′] which satisfy the condition in
Claim 1. If [r, y′] = [r, y′′] then we arrive at a contradiction immediately
due to the definition of q-threshold rules. Suppose [r, y′] ̸= [r, y′′], then there
exists an alternative x ∈ [r, y′]∩ [r, y′′]. Pick the one furthest away from r; if
no other alternative is available then pick r. Let this alternative be denoted
as x̃. Note that x̃ ∈ [r, x′] and x̃ ∈ [r, x′′] by construction.

Suppose the profile is restricted to S = {x̃, x′, x′′}. Let e be the number of
peaks at x̃, let c be the number of peaks at x′ and let d be the number of
peaks at x′′ in the restricted profile πS. Note that S ⊂ ([r, y′]∩ [r, y′′]) which
implies that when π is restricted further to S ′ = {x̃, x′} the peaks at x′′ will
be transferred to x̃. Similarly, when π is further restricted to S ′′ = {x̃, x′′},
the peaks at x′ will be transferred to x̃.

By our assumption and the definition of q-threshold rule on [r, y′] and [r, y′′],
f(π{x̃,x′}) = x′ and f(π{x̃,x′′}) = x′′. The following conditions hold due to the
above assumptions,

q
[r,y′]
x̃ > e+ d and q

[r,y′′]
x̃ > e+ c (1)

Adding the above two inequalities, we get q
[r,y′]
x̃ + q

[r,y′′]
x̃ > 2e+d+ c. By part

(iii) of the definition of q-threshold rule on T , and the fact that e+d+c = n,
we get,

n+ 2 > q
[r,y′]
x̃ + q

[r,y′′]
x̃ > n+ e.

Note that the above inequalities can hold only if e = 0. This implies that
c+d = n. The above observations imply that the following three expressions
must hold,

n+ 2 > q
[r,y′]
x̃ + q

[r,y′′]
x̃ > n, q

[r,y′]
x̃ > d, q

[r,y′′]
x̃ > c.
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It is easy to verify that the above conditions cannot be met if c+d = n.

Theorem 1 An s.c.f. f :
⋃

S∈P(X) S(TS)
n → X is constitutionally consis-

tent, unanimous and anonymous if and only if it is a q-threshold rule on
T .

Proof. See Appendix.

Theorem 1 provides a characterization of constitutionally consistent vot-
ing rules. The proof of the result relies on Proposition 1 and the fact that
the restriction of these s.c.f.s are q-threshold rules on any path [a, b] ∈ E.
However, our characterization does not require the full strength of this im-
plication. We fix a terminal node r ∈ X and define q-threshold rules on any
path [r, y] ∈ Er. By Proposition 1 any s.c.f which is unanimous and consti-
tutionally consistent must be tops-only. This implies that any restriction of
the rule to a path [r, y] must pick an alternative in the range of the restricted
profile. To ensure that restrictions of the rule to different extremal paths
in Er do not contradict each other, another property, called intersectional-
ity is required. It states that if the outcome of a profile π ∈ S(T )n when
restricted to an extremal path [r, y] ∈ Er does not lie in [r, y] ∩ [r, y′] for
another extremal path [r, y′] ∈ Er, then the outcome of π when restricted to
[r, y′] must lie in [r, y] ∩ [r, y′]. An implication of this property is that the
sum of thresholds of an alternative which has degree greater than or equal
to three on two distinct extremal paths [r, y] and [r, y′] in Er must be less
than or equal to n+ 1. This completes the characterization of the rule on T
using the rules defined on every extremal path [r, y] in Er.

5 Conclusion

This paper characterizes the class of constitutionally consistent social choice
functions in the single-peaked domain over trees. The s.c.f.s we characterize,
q-threshold rules on trees, can be seen as generalized versions of positional
rules such as the min, max and median s.c.f.s when restricted to a line.

6 Appendix

Proof of Proposition 1 We argue that we only need to prove the claim for
all π ∈ S(T )n. By constitutional consistency, f(πS) for any πS ∈ S(TS) for
some S ∈ P(X) will be invariant to changes in the ‘tops’ of restricted profiles.
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We first show that f(π) ∈ Range(π) for any π ∈ S(T )n. Suppose for contra-
diction that f(π) /∈ Range(π). Take an alternative x∗ ∈ X which is closest
to f(π) in T and also in the range of π, i.e., x∗ ∈ Range(π) ∩ [τk(π), f(π)]
for some voter k ∈ N such that there is no other x′ ∈ [x∗, f(π)] ∩Range(π).
By single-peakedness over a tree, since x∗ ∈ [τi(π), f(π)], we have x

∗ ≻i f(π)
for all i ∈ N . By unanimity, for S = {x∗, f(π)} we have f(πS) = x∗. By
constitutional consistency, we have f(π) = f(πS). This is a contradiction
since f(π) ̸= x∗. Therefore, f(π) ∈ Range(π) for all π ∈ S(T )n.

f(π) f(π)+ f(π′)

Figure 2: Proving tops-onlyness

We now prove the tops-only property. Let π = (≻i)i∈N and π′ = (≻′
i)i∈N

such that τ(π) = τ(π′). We show that f(π) = f(π′). Suppose for contradic-
tion that f(π) ̸= f(π′). Let f(π)+ be the alternative adjacent to f(π) and
lies in the path [f(π), f(π′)] (shown in Figure 2).

We construct a profile π̂ ∈ S(T )n by changing voter preferences in π such
that,

π̂{f(π),f(π)+} = π{f(π),f(π)+} and π̂{f(π),f(π′)} = π′
{f(π),f(π′)}. (∗)

There are three types of voters in π and π′ whose preferences we change
sequentially as follows.

Case 1: Consider a voter i ∈ N , such that f(π) ∈ [τi(π), f(π)
+] or f(π) ∈

[τi(π
′), f(π)+] (since τ(π) = τ(π′)). By single-peakedness, voter i prefers

f(π) to f(π)+. Since τ(π) = τ(π′), these voters have the same top in π′

as well. Therefore, by single-peakedness, f(π) ∈ [τi(π
′), f(π)+] implies that

f(π) ≻′
i f(π

′). We bring f(π) to the top of the preferences of these voters. All
the alternatives x ∈ [τi(π), f(π)] can be moved below the peak but above the
alternatives to the left of x as we move further away from f(π). Therefore,
for any voter i ∈ N , we make the following changes:

(i) If f(π) ∈ [τi(π), f(π)
+] then τi(π̂) = f(π).

(ii) For all x, y ∈ X, x ̸= y if x ∈ [τi(π̂), y], then x ≻̂i y.

All the other alternatives are adjusted accordingly as per the definition of
single-peakedness as we move away from the peak, τi(π̂) = f(π). This ensures
that for these voters the conditions in Equation (∗) are met.
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Case 2: Consider any voter i ∈ N such that τi(π) = τi(π
′) ∈ [f(π)+, f(π′)].

By single-peakedness, f(π)+ ≻i f(π) which is consistent with the first part
of ∗. We bring f(π)+ to the top of the preference. However, their preferences
may not satisfy the second condition with respect to the preference profile π′.
To account for this, we make the following changes, for any voter i ∈ N ,

(i) If τi(π) ∈ [f(π)+, f(π′)] then τi(π) = f(π)+. Moreover, if f(π) ≻′
i

f(π′) then f(π)≻̂if(π
′), otherwise, if f(π′) ≻′

i f(π) then f(π′)≻̂if(π).

(ii) For all x ̸= y if x ∈ [τi(π̂), y], then x ≻̂i y.

Condition (i) above ensures that both parts of the Equation (∗) are satisfied
with respect to the given alternatives, while condition (ii) ensures that the
new preference, ≻̂i, is single-peaked with respect to all the alternatives.

Case 3: Consider any voter i ∈ N such that f(π′) ∈ [f(π)+, τi(π)]. All
these voters will have the same preferences over the pairs {f(π), f(π)+} and
{f(π), f(π′)} due to single-peakedness. Therefore, for these voters both the
conditions in Equation (∗) are satisfied and no further change is required.
Similar to Case 1, we change the preferences as follows:

(i) If f(π′) ∈ [τi(π)), f(π)
+] then τi(π̂) = f(π′).

(ii) For all x, y ∈ X, x ̸= y if x ∈ [τi(π̂), y] then x ≻̂i y.

Therefore, the other alternatives are adjusted accordingly as per the defini-
tion of single-peakedness as we move away from the peak, τi(π̂) = f(π). This
ensures that the conditions in Equation (∗) are met for these voters.

Case 4: Consider any voter i ∈ N for which none of the above conditions are
satisfied. This implies that τi(π) /∈ [f(π)+, f(π′)], f(π)+ ∈ [f(π), τi(π)] and
f(π′) /∈ [τi(π), f(π)

+]. In other words, these voters have peaks which lie in
one of the ‘branches’ of the tree T emanating from alternatives which lie in
the path [f(π)+, f(π′)] excluding f(π)+ and f(π′). These voters satisfy the
first part of Equation (∗) but may not satisfy the second part.

(i) If τi(π) /∈ [f(π)+, f(π′)], f(π)+ ∈ [f(π), τi(π)] and f(π′) /∈ [τi(π), f(π)
+]

then let [τi(π̂) = f(π)+]. Moreover, if f(π) ≻′
i f(π

′) then f(π)≻̂if(π)
′,

otherwise, if f(π′) ≻′
i f(π) then f(π′)≻̂if(π).

(ii) Moreover, for all x ̸= y if x ∈ [τi(π̂), y] then x ≻̂i y.

The changes above ensure that π̂ satisfies the conditions in Equation (∗) with
respect to both pairs of alternatives and is single-peaked.

Step 2: In Step 1, we constructed another profile π̂ ∈ S(T )n from π and π′

which satisfies Equation (∗). Due to the above arguments, f(π̂) ∈ Range(π̂),
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which implies that f(π̂) ∈ {f(π), f(π)+}. If f(π̂) = f(π)+, then by constitu-
tional consistency, we have f(π̂) = f(π̂{f(π),f(π)+}) = f(π{f(π),f(π)+}) = f(π),
where the second inequality is due to Equation (∗) in our construction and
the last inequality is an implication of constitutional consistency. But this is
a contradiction since f(π) ̸= f(π)+. Therefore, f(π̂) = f(π).

By constitutional consistency and the above observation,

f(π̂) = f(π̂{f(π),f(π′)}) = f(π{f(π),f(π′)}) = f(π′).

The above two equations imply that f(π) = f(π′). This is a contradiction.
Therefore, f(π) = f(π′). ■

Proof of Theorem 1 We prove necessity of the axioms first. It is easy
to check that q-threshold rules on T are anonymous and unanimous. By
applying the results of Bhattacharya (2019), we know that q-threshold rules
are constitutionally consistent on any extremal path [r, y]. We prove this
property for any profile π ∈ S(T )n. By property (iii) of q-threshold rule,
there exists an x∗ ∈ X for every given profile such that f q

r |[a,b](π[a,b]) = x∗. If
x∗ ∈ Range(π) then f q

r (π) = x∗.

We prove sufficiency first. Suppose f is an s.c.f. on T which is constitutionally
consistent, unanimous and anonymity. We show that f is a q-threshold rule
on T . We fix an alternative on a terminal node, say r. By the results in
Bhattacharya (2019), on any path [r, y] ∈ Er for some y ∈ X \ {r} the
restriction of the s.c.f. f on path [r, y] (denoted f |[r,y]) is constitutionally
consistent, unanimous and anonymous if and only if it is a q-threshold rule on
[r, y]. Let us denote this s.c.f. as f q

[r,y]. By the above arguments, f |[r,y] = f q
[r,y]

for all y ∈ X \ {r} such that [r, y] ∈ Er.

An important property needs to be satisfied to ensure that the rules are
consistent across different paths. We will call this property intersectionality,
which is defined below.

Definition 2 Suppose f[a,b] and f[a,d] are two q-threshold rules on two ex-
tremal paths [a, b] and [a, d] respectively. They are said to be intersectional
if for any π ∈ S(T )n,[

f[a,b](π[a,b]) = x′ /∈
(
[a, b] ∩ [a, d]

)]
⇒

[
f[a,d](π[a,d]) ∈

(
[a, b] ∩ [a, d]

)]
.

Intersectionality states that at least one of the outcomes of the two s.c.f.s
defined on their respective extremal paths must lie in the intersection of the
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two paths when the profile π is restricted to the relevant path.

Take any π ∈ S(T )n. We show that the every pair of restrictions of the
rule f to extremal paths in Er are intersectional. Suppose [a, b] and [a, d]
are two distinct extremal paths. If τ(π[a,b]) = τ(π[a,d]), then by definition of
restriction of a rule and by tops-only property, f |[a,b](π[a,b]) = f |[a,d](π[a,d]).
In this case, our claim follows directly.

a

d

c b

x′′

x′

Figure 3: Illustration for Proof of Theorem 1 part (ii)

Suppose τ(π[a,b]) ̸= τ(π[a,d]) and f |[a,b](π[a,b]) = x′ /∈ [a, b] ∩ [a, d], and assume
for contradiction that f |[a,d](π[a,d]) = x′′ /∈ [a, b] ∩ [a, d]. By the tops-only
property, we know that f |[a,d](π[a,d]) ∈ Range(π[a,d]). Therefore, it must be
that x′ ∈ [c, b] (as illustrated in Figure 3) where c is the last alternative away
from a which is both in [a, b] and [a, d].

Now consider π{x′,x′′}. Note thatRange(π{x′,x′′}) = [x′, x′′] and f |[d,b](π{x′,x′′}) ∈
Range(π{x′,x′′}) = [x′, x′′]. Suppose f |[d,b](π{x′,x′′}) = x̃. Then either x̃ ∈ [a, b]
or x̃ ∈ [a, d]. We show that x̃ ∈ {x′, x′′}. Suppose for contradiction that
x̃ ∈ [a, d] \ {x′, x′′}. By constitutional consistency, f |[a,d](π[a,d]) = x′′ im-
plies that f |[a,d](π{x̃,x′′}) = x′′. This is a contradiction since x̃ ̸= x′′. Similar
contradiction is obtained if x̃ ∈ [a, b] Therefore, f |[d,b](π{x′,x′′}) ∈ {x′, x′′}.
Suppose f |[d,b](π{x′,x′′}) = x′ without loss of generality.

We construct the following profile π′ = (≻′
i)i∈N ∈ S(T )n to obtain a con-

tradiction to our initial assumption. Let τi(π
′) = τi(π[a,b])) for all i ∈ N .

Also,

x′ ≻i x
′′ =⇒ x′ ≻′

i x
′′ and x′′ ≻i x

′ =⇒ x′′ ≻′
i x

′.

We argue that the above can be done without affecting the earlier step where
we ensured that τi(π

′) = τi(π[a,b])) due to the following observations:

(a) Any voter who preferred x′ over x′′ in π must be such that either x′ ∈
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[x′′, τi(π)], in which case τi(π[a,b]) ∈ [x′, b], or has a peak τi(π) such that
x′ /∈ [τi(π), x

′′] in which case τi(π[a,b]) ∈ [a, x′). In either case, for these voters
their tops will be unaffected in the previous step.

(b) Any voter who preferred x′′ over x′ in π must be such that either x′′ ∈
[τi(π), x

′] in which case τi(π[a,b]) = c or x′′ /∈ [τi(π), x
′]. In either case, for

these voters τi(π[a,b]) ∈ [a, b]. Therefore, for these voters too their tops will
be unaffected in the previous step.

In all the cases, there is no constraint while constructing π′ when ensuring
that preferences of each voter over x′ and x′′ are the same as they were in π.
Therefore, by our construction, π{x′,x′′} = π′

{x′,x′′}.

Similarly, we construct another profile π′′ such that τi(π
′′) = τi(π[a,d]) for all

i ∈ N . We also ensure that,

x′ ≻i x
′′ =⇒ x′ ≻′′

i x
′′ and x′′ ≻i x

′ =⇒ x′′ ≻′′
i x

′.

By tops-onlyness, we have f |[a,b](π[a,b]) = f(π′) = x′ and f |[a,d](π[a,d]) =
f(π′′) = x′′. By constitutional consistency, we have f(π) = f |[b,d](π′

{x′,x′′}) =

x′ and f(π′′) = f |[b,d](π′
{x′,x′′}) = x′′. This is a contradiction.

(iii) We show that intersectionality implies the following: for all x ∈ T such

that deg(x) ≥ 3, q
[r,y]
x + q

[r,y′]
x < n + 2 for all extremal paths [r, y], [r, y′] ∈

Er.

We first prove for even number of voters. Suppose for contradiction that
the above condition is violated. Then, there exists a node x which has
degree greater than or equal to 3 which belongs to two distinct extremal

paths [r, y] and [r, y′] in Er, and q
[r,y]
x + q

[r,y′]
x ≥ n + 2 as shown in Figure 6

below. This implies that there exists an integer k ∈ {1, 2, ..., n} such that

q
[r,y]
x + q

[r,y′]
x − (k + 1) = n.

Consider the following profile with two types of preferences with the top three
alternatives as follows:

π =



x(y′)
x

x(y)
...


q
[r,y]
x −1 

x(y)
x

x(y′)
...


q
[r,y′]
x −k


where x(y) and x(y′) are the alternatives adjacent to x away from r in the
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r

y′

x y

x(y′)

x(y)

Figure 4

path [r, y] and [r, y′] respectively and the preferences over other alternatives
can be defined in any way consistent with single-peakedness. By definition
of q-threshold rules on the path [r, y] and [r, y′] we have,

f q
[r,y](π{x,x(y)}) = f q

[r,y](x
q
[r,y]−1
x , x(y)q

[r,y′]
x −k) = x(y)

f q
[r,y](π{x,x(y′)}) = f q

[r,y′](x
q
[r,y′]−k
x , x(y′)q

[r,y]−1
x ) = x(y′)

The two equations are due to the fact that x does not have enough votes
at the top to beat the other alternative since its threshold is strictly greater
than its top votes. This is a contradiction to intersectionality. Therefore,

q
[r,y]
x + q

[r,y′]
x < n + 2 for any two paths [r, y], [r, y′] ∈ Er such that x ∈

[r, y] ∩ [r, y′]. ■
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