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Abstract

We study contraction consistent social choice functions (s.c.f.) in a setting

where voters have single-peaked preferences over a tree. This is relevant in

settings where alternatives are locations spread out on a tree and a location

needs to be selected for provision of a public good. An s.c.f. is contraction

consistent if its outcome at any profile does not change when the profile is

restricted to any subset consisting of the outcome. We show that q-threshold

rules on trees are the only s.c.f.s which satisfy contraction consistency, unanim-

ity and anonymity. These s.c.f.s specify, for each alternative, thresholds which

are decreasing (increasing) on every path from a given node. These s.c.f.s then

select from the range, the unique alternative which is the smallest (greatest)

alternative in any restricted vote profile that receives more additive votes than

the threshold assigned to it. These s.c.f.s are generalizations of min, max, and

median s.c.f.s when restricted to paths.
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1 Introduction

In many voting situations, candidates or alternatives may drop out or become un-

available due to certain unforeseen circumstances. In such cases, the aggregation rule

must specify what the outcome would be for every such contingency. In this paper

we focus on a consistency condition which is crucial under such conditions. Contrac-

tion consistency states that the outcome of a social choice function (s.c.f.) at any

preference profile should be the same when restricted to any subset containing that

outcome. This can also be interpreted as the social choice variant of Sen (1969) and

Chernoff (1954)’s contraction consistency or α condition defined for individual choice

functions. In this paper we study contraction consistent social choice functions when

the preferences are single-peaked over a tree.1

Alternatives are often distributed over a tree in many settings. For example,

(1) When alternatives are locations in a city with many ‘branches’ and a public

good needs to be provided at one of these locations.

(2) Alternatives may be researchers or professionals connected by relevance (like a

tree) and one of them is to be selected for an award.

Single-peakedness is a natural assumption to make in these settings. It requires that

individuals have a ‘peak’ or a most preferred policy and that alternatives closer to

the peak are strictly preferred over the ones further away. In the first example,

the individuals would always prefer to have the allocated good at a location closest

to their own location and in the second example, individuals would prefer that an

individual closest to their area of interest be awarded. Single-peaked preferences

on a line were first introduced by Black et al. (1958), Hotelling (1929) and Downs

(1957) and continue to be used in political economy as well as social choice settings.2

Single-peakedness on a tree was first introduced by Demange (1982), and this notion

of single-peakedness was generalized by Nehring and Puppe (2007) and Nehring and

Puppe (2010).

There are a few works which study this type of consistency of social choice functions

in the unrestricted domain. Blair et al. (1976) provide different impossibility theo-

rems using Chernoff’s conditions aka contraction consistency along with other axioms

like independence of irrelevant alternatives and path independence. Bandyopadhyay

(1984) finds that instead of contraction consistency it is expansion consistency which

is problematic for the existence of non-dictatorial social choice rules. We provide an

1A formal definition is provided in the model section. Intuitively, a preference is single-peaked
over a tree, if (i) there exists a peak of the preference x which is strictly preferred over every other
alternative and (ii) alternatives further away from the peak in any ‘direction’ are strictly worse-off.

2See Arrow et al. (2010) and Austen-Smith and Banks (2005) for further exposition on social
choice models with single-peaked preferences.
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example to illustrate our main axiom.

a

b

c ed

Figure 1: Single-peaked preference on T

Example 1 Suppose the set of alternatives is X = {a, b, c, d, e} with tree T as il-

lustrated in Figure 1 and let the set of voters be N = {1, 2, 3}. Suppose the voter

preferences are as follows:

≻1 ≻2 ≻3

a c d

c a e

b d c

d b b

e e a

Note that preferences are single-peaked preferences on the given tree since alternatives

further ‘away’ from the tree are strictly worse-off. Let this profile of preferences

be denoted by π and suppose the outcome is f(π) = d. Contraction consistency

requires that restricting the profile to any set of alternatives S which contain d should

not change the outcome. For example, f(π{a,b,d}) = f(π{a,b,c,d}) = d and so on.

Suppose the aggregation rule only cares about the top-ranked alternatives (we will

show that contraction consistent and unanimous rules will satisfy this property). In

that case, we can write only the top-ranked alternatives as inputs for aggregation, i.e.,

f(π) = f(a, c, d) = d. By contraction consistency, f(π{a,b,d}) = f(a, a, d) = d. Note

that since c is no longer available, voter 2’s top ranked alternative in the restricted

profile to the set {a, b, d} is a. Further observations can be made on similar restrictions

of the profile.

An axiom that is similar to ours is self-selectivity as introduced by Koray (2000) and

further extended to single-peaked domains by Bhattacharya (2019).3 A social choice

function is self-selective if it chooses itself when subjected to a ‘vote’ against other

voting rules. Both the notions are ‘consequentialist’ in the sense that they only care

about the alternative being chosen. Therefore, when the set of available voting rules

changes, it is equivalent to a contraction of the set of alternatives over which the profile

3Koray and Unel (2003) extends the analysis to the tops-only domain and Koray and Slinko
(2008) characterizes self-selective rules when the inefficient ones are excluded.
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is constructed. Lainé et al. (2016) study a similar notion of stability for scoring rules

and social welfare functions, and show that there are no hyper-stable scoring rules.

Barberà and Jackson (2004) study a version of self-stability of voting rules over two

alternatives, and find that majority rules are the only self-stable rules. Our notion of

consistency is closer to the literature on self-selectivity than the earlier literature on

contraction consistency since the nature of preferences plays an important role in the

characterization results.

We characterize q-threshold rules on trees which are defined as follows. Pick any

terminal node or alternative r on the tree. Assign monotone decreasing thresholds

to each alternative on every path [r, y] for any other terminal node y. These rules

for every preference profile π pick the unique alternative x∗(π) which when restricted

to any path consisting of x∗(π) is such that it is the smallest alternative from the

range of the profile that receives more cumulative votes at the top (votes received by

all the alternatives which are closer to r) than the threshold assigned to them.4 The

thresholds are defined for each alternative and depend on the path they are defined

over.

Another condition that needs to be satisfied for the above rule to be consistent with

itself is as follows. Suppose x is an alternative which has a degree greater than or

equal to 3, and q
[r,y′]
x and q

[r,y′′]
x are the two thresholds of x in two extremal paths

[r, y′] and [r, y′′]. The condition requires that q
[r,y′]
x + q

[r,y′′]
x < n + 2. This condition

ensures that the rule satisfies contraction consistency.

q-threshold rules can be seen as generalized quota rules defined for trees but with

variable thresholds which apply to cumulative votes for alternatives at the top. These

rules can be defined with respect to any terminal node r and by assigning decreasing

or increasing thresholds to alternatives on every extremal path from r.5

We prove our main result in steps. We first show that if a social choice function

is contraction consistent and unanimous then it is tops-only (Proposition 1). Con-

traction consistency then implies that any such rule which is unanimous will only

choose from the range of the profile. Finally, we use the fact that the two versions of

contraction consistency are the same under the tops-only property. The main proof

overcomes significant challenges since the rules must be consistent across different

extremal paths in the tree. Once that is resolved, we show that q-threshold rules over

trees are the only contraction consistent, anonymous and unanimous social choice

functions over trees.

4The range of the profile is the set containing alternatives which lie on the path between at least
one pair of alternatives at the top of the profile. Alternatively these rules can be defined with respect
to monotone increasing thresholds and adding the cumulative votes of alternative further away from
r.

5A path [a, b] is extremal if both a and b are terminal nodes.
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There are some differences between our notion of consistency and the ones in the

literature. First, our definition of contraction consistency is applied on restriction

of preference profiles, while the literature mostly defines self-selection using an in-

duced profile over different aggregation rules and then use neutrality to check for the

self-selectivity. Second, the standard notion of contraction consistency applied in the

classical social choice literature (Bandyopadhyay (1984), Blair et al. (1976)) apply the

condition to the social decision function without describing the preferences of indi-

viduals over the contracted set. In our notion, we implicitly assume that individuals

are truthful and do not change their preferences over the feasible set of alternatives.

Moreover, the structure of preferences is crucial for obtaining the characterization of

q-threshold rules.

An important contribution of the paper is that it provides a characterization of a

large class of social choice functions in a relatively general domain which has shown

promise for existence results in the literature. The fact that the domain is partially

ordered helps in obtaining such results. Another important insight of our paper is

that rules which are contraction consistent and unanimous are also tops-only.

The paper is organised as follows. In Section 2 we introduce the notation and describe

the model. Section 3 lists the Axioms and Section 4 provides the results. This is

followed by some concluding remarks. The proofs of all the results are provided in

the Appendix. The bibliography is provided at the end.

2 The Model

In this section we describe the model and provide all the definitions. There is a finite

set of voters N = {1, 2, . . . , n} and a finite set of alternatives X with |X| = m.

Let P(X) denote the set of all non-empty subsets of X. We assume that all the

alternatives are placed on an undirected tree, T ≡ T (X,E), where the set of nodes is

the set of alternatives X and E is the set of edges. We will assume the tree T (X,E)

to be fixed for the remaining part of the paper. We will use the terms ‘alternatives’

and ‘nodes’ interchangeably.

An path [x, y] from node x to node y in X, x ̸= y is a sequence of distinct nodes

(x0, x1, ..., xk) such that x0 = x, xk = y and {xq, xq+1} ∈ E for all q ∈ {0, 1, ..., k−1}.
For simplicity of notation, we also denote [x, y] as the set of alternatives (including

x and y) in the path [x, y] for any distinct x, y ∈ X. The degree of a node is the

number of other nodes it is connected to. Let deg(x) denote the degree of the alter-

native (or node) x ∈ X in T . A node x ∈ X is an end node if deg(x) = 1. A path

[a, b] is extremal if both a and b are end nodes. Let E denote the set of all extremal

paths in T . An alternative x is adjacent to x+ if [x, x+] = {x, x+} i.e. there are no
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other distinct alternatives on the path [x, x+] other than x and x+. We now define

single-peakedness over a tree based on Demange (1982).

Single-peaked preferences over trees: Each voter i ∈ N has a single-peaked

preference on T which is defined as follows. A strict preference ordering, ≻i, is single-

peaked on the tree T if there exists a ‘peak’ xi ∈ X such that for all x, y ∈ X, x ̸=
y,6

x ∈ [xi, y] ⇒ x ≻i y.

Note that in the above definition if x = xi then for any y ̸= xi we have xi ≻i y. This

definition reduces to the standard definition of single-peaked preferences if the tree

T is a ‘line’.

Therefore, alternatives closer to the peaks are strictly preferred over the alternatives

further away. However, the definition does not impose any restriction on two alter-

natives which are on either side of the peak or, in other words, when neither is in the

path between the peak and the other alternative. For example, in Figure 1 voter i

with peak a can have either b ≻i d or d ≻i b.

We consider the whole set of strict single-peaked preference orderings on trees. For

example, suppose X = {a, b, c, d, e} and the tree is T as shown in Figure 1. Then,

the set of all strict single-peaked preferences on the given tree with peak a include

the strict preferences acbde, acdbe, and acdeb where alternatives are in the decreasing

order of strict preference.7

Let S(T ) be the set of all single-peaked preference orderings on T . A preference pro-

file π = (≻1, . . . ,≻n) ∈ S(T )n is a collection of n preferences with peaks or ‘tops’,

τ(π) = (τ1(π), ..., τn(π)). Let τi(π) denote the top of voter i in the profile π. We de-

note by πS as the restriction of the profile π to a subset S ∈ P(X). For any S ∈ P(X)

let S(TS)
n be the set of all profiles which are restrictions of profiles in S(T )n to the

set S. We will write S(T ) instead of S(TX) for simplicity.

Social choice function (s.c.f.): A social choice function (s.c.f.) is a mapping

f :
⋃

S∈P(X) S(TS)
n → X such that for any profile πS ∈ S(TS)

n for any S ∈ P(X) we

have f(πS) ∈ S. Therefore, an s.c.f. operates on every restriction of a single-peaked

profile on T to any subset S of X and produces an alternative in S.

6A strict binary relation ≻ is an ordering if it is: (i) Complete: For all x, y ∈ X, x ̸= y either
x ≻ y or y ≻ x (ii) Transitive: If for all x, y, z ∈ X x ≻ y and y ≻ z implies x ≻ z, and (iii)
Irreflexive: ¬[x ≻ x] for all x ∈ X.

7Single-peaked preferences on trees defined in Schummer and Vohra (2002) are based on a notion
of ‘distance’ and, therefore, the preferences in their model are uniquely identified by the ‘peaks’ of
the individuals.
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In this paper, we will only focus on tops-only s.c.f.s since our main axiom, contraction

consistency, along with unanimity will imply this property. We define the tops-only

property below.

Tops-only. An s.c.f. f satisfies tops-only if for all π, π′ ∈ S(TS)
n such that τ(π) =

τ(π′),

f(π) = f(π′).

For simplicity, we will write f(τ(π)) in place of f(π) for tops-only rules. This is a

useful property in our model since to arrive at the restriction of a profile π ∈ S(T )n

to a subset S ∈ P(X) of alternatives, we only need to consider the changes in the

top-ranked alternatives of all the voters. For example, for X = {a, b, c, d, e} and 5

voters with the given tree T as in Fig. 1, if π is such that τ(π) = (a, b, c, e, e), then

τ(π[a,e]) = (a, c, c, e, e). To see this, note that voter 2’s peak from the full set of

alternatives is b so by single-peakedness over T , she will prefer c to all the other al-

ternatives in [a, e]. Therefore, her top-ranked alternative from [a, b] is c. Every other

voter’s top-ranked alternative is available in [a, e] so τ(π[a,b]) = (a, c, c, e, e). We will

use this property throughout the rest of the paper to compute restrictions of a given

profile to different subsets including paths in the tree T . We provide some examples

of such s.c.f.s in this setting.

Dictatorial s.c.f. An s.c.f. f i :
⋃

S∈P(X) S(TS)
n → X, for a given voter i ∈ N is

dictatorial if f i(π) = τi(π) for all π ∈ S(TS)
n for any S ∈ P(X).

For example, suppose X = {a, b, c, d, e} and N = {1, 2, ..., 5} with the tree T as given

in Fig. 1. Then, for the dictatorial rule f 1, we have f 1(τ1(π), τ2(π), ..., τ5(π)) = τ1(π)

for all π ∈ S(TS)
n. For example, if τ(π) = (a, b, c, e, e), then f 1(π) = a.

Positional rules: An s.c.f. fk
[r,y] :

⋃
S∈P(X) S(TS)

n → X, for a given k ∈ R for a

given [r, y] ∈ E is a positional rule if fk
[r,y](π) = τ ∗k (π[r,y]) for all π ∈ S(TS)

n for any

S ∈ P(X) where τ ∗k is the alternative in the k−th voter’s top-ranked alternative when

arranged from r to y for (k ∈ {1, 2, ..., n}) when the profile π is restricted to the path

[r, y]. Min, max and median rules or a mixture of these rules can be defined using

any path [r, y] ∈ E.

For example, suppose X = {a, b, c, d, e} and N = {1, 2, ..., 5} with the tree T as given

in Fig. 1. Then, for the positional rule f 2
[a,e], we have f 2

[a,b](τ1(π), τ2(π), ..., τ5(π)) =

τ ∗2 (π[a,b]) for all π ∈ S(TS)
n. For example, if τ(π) = (a, b, c, e, e), then τ(π[a,b]) =
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(a, b, c, b, b) and f 2
[a,b](π) = b.

We introduce some definitions for our next rule which is a generalized version of these

rules.

Range of a profile: For any profile πS ∈ S(TS)
n, the range of the profile is the set

of all alternatives that lie on the path between a pair of top-ranked alternatives in

τ(πS), i.e.,

Range(πS) = {x ∈ S : x ∈ [τi(πS), τj(πS)] for some i, j ∈ N}.

For simplicity, we denote Range(π) as the range of the full profile π ∈ S(T )n. In Fig-

ure 1, for a three-voter profile π ∈ S(T )3 with τ(π) = (a, b, d), Range(π) = {a, b, c, d}.
We introduce some notation to define our next rule.

Thresholds on [r, y]: For an extremal path [r, y] ∈ E, we define thresholds q[r,y] : X →
N which will be monotone decreasing on [r, y], i.e., [x ∈ [r, x′]] ⇒ [q

[r,y]
x ≥ q

[r,y]
x′ ] for all

x, x′ ∈ [r, y]. In other words, the thresholds are said to be monotone decreasing with

respect to [r, y] if alternatives further away from r have a weakly lower threshold. For

example, for the tree illustrated in Fig. 1, on the path [a, e] the thresholds, q
[a,e]
a = n,

q
[a,e]
c = n− 1, q

[a,e]
d = n− 3, q

[a,e]
e = n− 3 is a set of monotone decreasing thresholds

for any n number of voters n ≥ 4. A similar set of thresholds can be defined for the

path [a, b].

For any extremal path [r, y] ∈ E we define a complete strict ordering <r on [r, y]

as follows: x <r x′ if and only if x ∈ [r, x′] for all distinct x, x′ ∈ [r, y]. In other

words, x < x′ if and only if x is strictly ‘closer’ to r in the path [r, y]. For any

x, x′ ∈ [r, y] we say that x ≤r x
′ if either x = x′ or x <r x

′. We define a single-peaked

strict pre-ordering with peak <r as a transitive binary relation which is single-peaked

on every extremal path [r, y] ∈ Er. For example, for the given tree T in Fig. 1,

the following single-peaked pre-ordering <a can be defined: (i) on the path [a, b]:

a <a c <a b, and (ii) on the path [a, e]: a <a c <a d <a e. Note that the pre-ordering

need not compare alternatives in a path [r, y] with those in [r, y′] for some distinct

[r, y], [r, y′] ∈ Er.

Let nx the number of voters who have x at their top, and let S(T[r,y]) denote the set

of all single-peaked preferences defined over [r, y] according to <r. Next we define a

q-threshold rule on T . For any terminal node, r ∈ X, let Er denote the set of all

extremal paths with r as an terminal node.
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Definition 1 (q-threshold rule on T ) An s.c.f. f q
r :

⋃
S∈P(X) S(TS)

n → X is a

q-threshold rule on T with respect to r ∈ X if there exists an single-peaked strict

pre-ordering with peak <r
8 and thresholds q : X × Er → N which are (i) monotone

decreasing according to <r on any extremal path [r, y] ∈ Er and (ii) for all x ∈ T

such that deg(x) ≥ 3, for all distinct extremal paths [r, y], [r, y′] ∈ Er such that x ∈
[r, y] ∩ [r, y′], we have q

[r,y]
x + q

[r,y′]
x < n + 2. Moreover, for all π ∈ S(TS)

n for any

S ∈ P(X),

f q
r (π) = f q

r (π[r,y]) = x∗(π) = argmin
x∈Range(π[r,y])

(∑
l≤rx

nl ≥ q[r,y]x

)
,

for all [r, y] ∈ Er such that x ∈ [r, y].

Therefore, a q-threshold rule with respect to a terminal node r define monotone

decreasing thresholds on every extremal path [r, y] which satisfy the property that for

any alternative or node which lies in the intersection of two distinct extremal paths

[r, y] and [r, y′] should have the sum of its thresholds in these paths to be strictly than

n+2. The rule then picks that alternative which is the smallest alternative according

to <r which has more aggregate votes (votes of alternatives at the top which precede

it) when the profile is restricted to any [r, y]. Note that by defining the single-peaked

pre-ordering <r on the whole tree we are defining an ordering on every extremal path

[r, y] ∈ Er with respect to which the set of threshold q
[r,y]
x are monotone decreasing

for any x ∈ [r, y]. We provide an example to illustrate the rule.

Example 2 Consider the set of alternatives X = {a, b, c, d, e}, set of voters N =

{1, 2, ..., 5} and the undirected tree T as illustrated in Fig. 1. We will define a q-

threshold rule f q
a using a ∈ X. Consider the following set of monotone decreasing

thresholds on every extremal path in Ea:

(i) For the extremal path [a, e] ∈ Ea: q
[a,e]
a = 5, q

[a,e]
c = 4 q

[a,e]
d = 2 and q

[a,e]
e = 2.

(ii) For the extremal path [a, b] ∈ Ea: q
[a,b]
a = 5, q

[a,b]
c = 2 and q

[a,b]
b = 2,

Note that the property q
[a,b]
c +q

[a,e]
c = 6 < n+2 = 5+2 = 7 is satisfied for c ∈ [a, b]∩[a, e]

and deg(c) = 3. This guarantees the existence of an alternative x∗(π) as mentioned in

the definition of the rule. Since the rule only takes into account the range of the profile,

we only specify the top-ranked alternatives of voters in a profile. Let π be such that

τ(π) = (a, b, c, e, e) be the top-ranked alternatives of the five voters respectively. We

8A single-peaked strict pre-ordering with peak a is a transitive binary relation which is single-
peaked on every extremal path [a, y] ∈ Ea.
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first show the existence of an alternative x∗(π) (we show that x∗(π) = c) as mentioned

in the definition of the rule. To find x∗(π) we restrict the profile to every extremal

path which consists of a, i.e., Ea = {[a, b], [a, e]}. Since the rule only considers the

top-ranked alternatives we write f q
a(π) as f q

a(τ(π)). The following properties of f q
a

can be used to find x∗(π):

(i) Since d is the first alternative according to <a in [a, e] which has more ‘cumu-

lative’ votes (3), i.e., the top-votes for alternatives which precede it (weakly)

according to <a in the path [a, e], i.e., a and c) than its threshold, q
[a,e]
d = 2, we

have,

f q
a(π[a,e]) = f q

a(a, c, c, e, e) = argmin
x∈Range(π[a,e])

(∑
l≤rx

nl ≥ q[a,e]x

)
= d.

Note that here we used the fact that the restriction of the profile π to the path

[a, e] is such that τ(π[a,e]) = (a, b, c, e, e). Note that the restriction of the profile π

to [a, e], i.e., π[a,e] = (a, c, c, e, e) since the only alternative that is not available

in [a, e] is b. Therefore, when b is removed we can infer that voter 2’s next

preferred alternative will be c by single-peakedness on T . We use this reasoning

throughout to compute restrictions of various profiles.

(ii) On path [a, b], c is the first alternative in [a, c] which has more ‘cumulative’

votes (4), i.e., the top-votes for alternatives which precede c (weakly) according

to <a in the path [a, b], i.e., a and c) than its threshold, q
[a,b]
c = 4, we have,

f q
a(π[a,b]) = f q

a(a, b, c, c, c) = argmin
x∈Range(π[a,b])

(∑
l≤rx

nl ≥ q[a,b]x

)
= c.

Note that here we used the fact that the restriction of the profile π to the path

[a, b] is such that π[a,b] = (a, c, c, b, b). Also note that even though b has more

cumulative votes than its threshold, since it succeeds c in the ordering <a it is

not the smallest such alternative according to <a.

We can now identify x∗(π) = d for the given q-threshold rule, f(π) = d. Note that

even though f q
a(π[a,b]) = c, it is not the outcome of the rule when the profile π is

restricted to the path [a, e] where c is still available. Therefore, the only alternative

which is the outcome of the rule over the restriction of the profile to any extremal path

which contains it is d.9 The condition q
[r,y]
x + q

[r,y′]
x guarantees that the term involving

the argmin on the right-hand side of the definition of q-threshold rule is well-defined

and unique.

9Recall that d is not in [a, b] so the condition continues to hold.
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Therefore, an s.c.f. is a q-threshold rule on T (E) for a given r ∈ X consists of

monotone decreasing thresholds on each extremal path [r, y] ∈ Er which defines

a unique alternative x∗(π) for every π ∈ S(T )n which is the smallest alternative

(according to <r) in any extremal path [r, y] which receives more cumulative votes

than its assigned threshold q
[r,y]
x . The existence of such an alternative for every profile

is guaranteed by the property that for any two distinct extremal paths [r, y] and [r, y′],

q
[r,y]
x + q

[r,y′]
x < n + 2 for all x ∈ [r, y] ∩ [r, y′]. Alternatively, these rules can also be

defined using monotone increasing thresholds on extremal paths from r. We now

show that the outcome of a q-threshold rule at any profile belongs to the range of the

profile.

Claim 1 Suppose f q
r is a q-threshold rule. For every π ∈ S(TS)

n, then f q
r (π) ∈

Range(π) for all π ∈ S(TS) for all S ∈ P(X).

Proof. We first prove this for the case when Range(π) ⊆ [r, y] for some [r, y] ∈ Er.

Since [r, y] is just a line, we define min(π) and max(π) according to <r as follows:

min(π) = x ∈ Range(π) such that x ≤r y for all y ∈ Range(π). Similarly, max(π)

can be defined. Note that in this case, Range(π) = [min(π),max(π)]. Suppose for

contradiction that f q
r (π) /∈ Range(π) and assume w.l.o.g. that f q

r (π) >r max(π). By

the definition of arg-min in part (i) of the above definition, f q
r (π) cannot lie outside

the range since max(π) is an alternative that obtains as many cumulative votes as

f q
r (π). But since max(π) <r f q

r (π), the latter cannot be the smallest alternative

according to <r that meets the above condition. This is a contradiction. Therefore,

f q
r (π) ≤r max(π). Similar arguments can be made to show that f q

r (π) ≥r min(π).

Therefore, f q
r (π) ∈ Range(π) if Range(π) ⊆ [r, y] ∈ Er.

We now prove the above claim more generally. Suppose for a given profile π ∈ S(T )n,
Range(π) ̸⊆ [r, y] for any [r, y] ∈ Er, i.e., the range of π is not a subset of any extremal

path [r, y]. For contradiction, suppose f q
r (π) /∈ Range(π). Then there must exist an

extremal path [r, ȳ] such that f q
r (π) ∈ [r, ȳ] but f q

r (π) /∈ [min(π[r,ȳ]),max(π[r,ȳ])]. By

the definition of q-threshold rule, the restriction of the profile to [r, ȳ] will not change

the outcome. Therefore, f q
r (π[r,ȳ]) /∈ [min(π[r,ȳ]),max(π[r,ȳ])] = Range(π[r,ȳ]). But this

is a contradiction to the above observation and the definition of q-threshold rule that

f q
r (π[r,ȳ]) ∈ Range(π[r,ȳ]) when f q

r (π) ∈ [r, ȳ].

By the definition, the outcome of any q-threshold rule is the unique alternative (say,

x∗(π)) in the range of the profile π ∈ S(T )n which is also the outcome of the s.c.f.

f(π[r,y]) for all such profiles which are restrictions of the profile π to any extremal

path [r, y] ∈ Er given that x ∈ [r, y]. To argue this we show that such an alternative

exists and is unique.
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r

y′′

x̃ y′

x′′(π)

x′(π)

Figure 2: Illustration for Claim 2

Claim 2 Suppose f q
r is q-threshold rule on T . For every profile π ∈ S(T )n there

exists a unique alternative x∗(π) ∈ Range(π), such that f q
r (π) = f q

r (π[r,y]) = x∗(π)

for all [r, y] ∈ Er such that x∗(π) ∈ [r, y].

Proof. We prove by contradiction. Suppose for a profile π ∈ S(T )n there exist

two distinct alternatives x′(π) and x′′(π) which satisfy the property of x∗(π) men-

tioned in the definition of q-threshold rule. Let x′(π) ∈ [r, y′] and x′′(π) ∈ [r, y′′]. If

[r, y′] = [r, y′′] then we arrive at a contradiction immediately due to the definition of

q-threshold rules, i.e., f q
r (π[r,y′]) = x′(π) = f q

r (π[r,y′′]) = x′′(π). Suppose [r, y′] ̸= [r, y′′],

then [r, y′]∩ [r, y′′] ̸= ∅. Pick the alternative in [r, y′]∩ [r, y′′] which furthest away from

r; if no other alternative is available then pick r. Let this alternative be denoted as

x̃. Note that x̃ ∈ [r, x′(π)] ⊆ [r, y′] and x̃ ∈ [r, x′′(π)] ⊆ [r, y′′] by construction. Also

note that both x′(π), x′′(π) /∈ [r, y′] ∩ [r, y′′], otherwise we get a contradiction that

f q
r (π[r,y′]) = x′(π) = f q

r (π[r,y′′]) = x′′(π). Similar arguments show that neither of them

can be in [r, y′] ∩ [r, y′′]. This is illustrated in Fig. 2.

Suppose the profile is restricted to S = {x̃, x′(π), x′′(π)}. Note that τi(πS) ∈ {x̃, x′(π), x′′(π)}
for all i ∈ N . Let e = #{i ∈ N : τi(πS) = x̃}, c = #{i ∈ N : τi(πS) = x′(π)}
and d = #{i ∈ N : τi(πS) = x′′(π)}. By single-peakedness over T when π is re-

stricted further to S ′ = {x̃, x′(π)} the peaks at x′′(π) will be transferred to x̃ i.e.

[τi(πS) = x′′(π)] =⇒ [τi(πS′) = x̃]. Similarly, by single-peakedness over T when

π is restricted to S ′′ = {x̃, x′′(π)}, the peaks at x′(π) will be transferred to x̃ i.e.

[τi(πS) = x′(π)] =⇒ [τi(πS′′) = x̃].

By our assumption and the definition of q-threshold rule on [r, y′] and [r, y′′], f(π{x̃,x′(π)}) =

x′(π) and f(π{x̃,x′′(π)}) = x′′(π). The following conditions hold due to the above as-

sumptions,

q
[r,y′]
x̃ > e+ d and q

[r,y′′]
x̃ > e+ c.

Adding the above two inequalities, we get q
[r,y′]
x̃ + q

[r,y′′]
x̃ > 2e+ d+ c. By part (iii) of

the definition of q-threshold rule on T , and the fact that e+ d+ c = n, we get,
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n+ 2 > q
[r,y′]
x̃ + q

[r,y′′]
x̃ > n+ e.

Note that the above inequalities can hold only if e = 0. This implies that c+ d = n.

The above observations imply that the following three expressions must hold,

n+ 2 > q
[r,y′]
x̃ + q

[r,y′′]
x̃ > n, q

[r,y′]
x̃ > d, q

[r,y′′]
x̃ > c.

It is easy to verify that the above conditions cannot be met if c + d = n. This is a

contradiction. Therefore, there is a unique x∗(π) which satisfies the condition in the

definition of q-threshold rule.

3 Axioms

Contraction consistency. An s.c.f. f is contraction consistent if for all π ∈ S(T )n

and for any S ′ ∈ P(X),

[f(π) ∈ S ′] =⇒ [f(π) = f(πS′)].

Contraction consistency requires that the s.c.f produce the same outcome at π as the

one it produces at any restriction of the profile to any subset S ′ containing f(π). This

axiom is a version of Sen (1977)’s ‘contraction consistency’ applied to social choice

functions.

It is easy to check the dictator rule f i is contraction consistent. Consider the following

arguments: for any profile π ∈ S(T )n, we have τi(π) = τi(πS) for all S ∈ P(X) if

τi(π) ∈ S. Therefore, f i(π) = τi(π) = f i(πS) = τi(πS). We require some standard

axioms in addition to the above axiom for our main result.

Anonymity. An s.c.f. f satisfies anonymity if for all bijections σ : N → N and for

all π ∈ S(TS)
n,

f(π) = f(πσ) for all S ∈ P(X),

where πσ = (πσ(1), ..., πσ(n)) is the profile of permuted preferences. Anonymity states

that permuting the preferences of voters does not change the outcome.

Unanimity. An s.c.f. f satisfies unanimity if for all π ∈ S(TS)
n such that τi(π) =
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a ∈ X for all i ∈ N , then

f(π) = a for all S ∈ P(X).

Unanimity requires that when every voter has the same peak then the outcome must

be the peak. Our first result shows that any s.c.f. that is contraction consistent and

unanimous must be tops-only.

4 Results

Proposition 1 If an s.c.f. f :
⋃

S∈P(X) S(TS)
n → X is contraction consistent and

unanimous then it is tops-only.

Proof. See Appendix.

Therefore, the outcome of an s.c.f. which is consistent and unanimous depends only

on the peaks of voters. An implication of this is that f(π) ∈ Range(π) for all

π ∈ S(TS)
n for any S ∈ P(X). Suppose for contradiction that it is not the case

and that for some π ∈ S(T )n, f(π) /∈ Range(π). This implies that for some î ∈ N ,

τî ∈ [a, b] ∈ E and τî(π) ∈ [a, f(π)]. Consider S = {τi, f(π)}. By single-peakedness

over T , we get f(πS) = f(τî(π), ..., τî(π)) since τî(π) ≻i f(π) for all i ∈ N . By unanim-

ity, f(πS) = τî(π). By contraction consistency, f(π) = f(πS) = τî(π) ∈ Range(π).

This is a contradiction. Therefore, it must be the case that f(π) ∈ Range(π) for all

π ∈ S(TS)
n for all S ∈ P(X).

Theorem 1 An s.c.f. f :
⋃

S∈P(X) S(TS)
n → X is contraction consistent, unanimous

and anonymous if and only if it is a q-threshold rule on T .

Proof. See Appendix.

Theorem 1 provides a characterization of contraction consistent voting rules. The

proof of the result relies on Proposition 1. A property of tops-only rules that is used

frequently in the proof is that when a profile over X is restricted to a subset of X,

this acts as a ‘new’ profile over X with a smaller set of top-ranked alternatives. More-

over, the same set of top-ranked preferences can be generated by different profiles.

These two properties give the main axiom- contraction consistency, a lot of bite when

characterizing q-threshold rules. We provide a basic outline of the formal proof.

We first show that these s.c.f.s are q-threshold rules on any path [r, y] ∈ E. We

fix a terminal node r ∈ X and define q-threshold rules on any path [r, y] ∈ Er.

By Proposition 1 any s.c.f which is unanimous and contraction consistent must be
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tops-only. This implies that any restriction of the rule to a path [r, y] must pick an

alternative in the range of the restricted profile. To ensure that restrictions of the

rule to different extremal paths in Er do not contradict each other, another property,

called intersectionality is required. It states that if the outcome of a profile π ∈ S(T )n

when restricted to an extremal path [r, y] ∈ Er does not lie in [r, y]∩ [r, y′] for another

extremal path [r, y′] ∈ Er, then the outcome of π when restricted to [r, y′] must lie

in [r, y] ∩ [r, y′]. An implication of this property is that the sum of thresholds of an

alternative which has degree greater than or equal to three on two distinct extremal

paths [r, y] and [r, y′] in Er must be less than or equal to n + 1. This completes the

characterization of the rule on T using the rules defined on every extremal path [r, y]

in Er.

5 Conclusion

This paper characterizes the class of contraction consistent social choice functions in

the single-peaked domain over trees. The s.c.f.s we characterize, q-threshold rules on

trees, can be seen as generalized versions of positional rules such as the min, max and

median s.c.f.s when restricted to a line.

6 Appendix

Proof of Proposition 1 We argue that we only need to prove the claim for all

π ∈ S(T )n. By contraction consistency, f(πS) for any πS ∈ S(TS) for some S ∈ P(X)

will be invariant to changes in the ‘tops’ of restricted profiles. We first show that

f(π) ∈ Range(π) for any π ∈ S(T )n. Suppose for contradiction that f(π) /∈
Range(π). Take an alternative x∗(π) ∈ X which is closest to f(π) in T and also

in the range of π, i.e., x∗(π) ∈ Range(π) ∩ [τk(π), f(π)] for some voter k ∈ N such

that there is no other x′ ∈ [x∗(π), f(π)] ∩ Range(π). By single-peakedness over a

tree, since x∗(π) ∈ [τi(π), f(π)], we have x∗(π) ≻i f(π) for all i ∈ N . By unanimity,

for S = {x∗(π), f(π)} we have f(πS) = f(x∗(π), ..., x∗(π)) = x∗(π). By contraction

consistency, we have f(π) = f(πS). This is a contradiction since f(π) ̸= x∗(π). There-

fore, f(π) ∈ Range(π) for all π ∈ S(T )n.

f(π) f(π)+ f(π′)

Figure 3: Proving tops-onlyness

We now prove the tops-only property. Let π = (≻i)i∈N and π′ = (≻′
i)i∈N such
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that τ(π) = τ(π′). We show that f(π) = f(π′). Suppose for contradiction that

f(π) ̸= f(π′). Let f(π)+ be the alternative adjacent to f(π) and lies in the path

[f(π), f(π′)] (shown in Figure 2).

We construct a profile π̂ ∈ S(T )n by changing voter preferences in π such that,

π̂{f(π),f(π)+} = π{f(π),f(π)+} and π̂{f(π),f(π′)} = π′
{f(π),f(π′)}. (∗)

There are three types of voters in π and π′ whose preferences we change sequentially

as follows.

Case 1: Consider a voter i ∈ N , such that f(π) ∈ [τi(π), f(π)
+] or f(π) ∈ [τi(π

′), f(π)+]

(since τ(π) = τ(π′)). By single-peakedness, voter i prefers f(π) to f(π)+. Since

τ(π) = τ(π′), these voters have the same top in π′ as well. Therefore, by single-

peakedness, f(π) ∈ [τi(π
′), f(π)+] implies that f(π) ≻′

i f(π
′). We bring f(π) to the

top of the preferences of these voters. All the alternatives x ∈ [τi(π), f(π)] can be

moved below the peak but above the alternatives to the left of x as we move further

away from f(π). Therefore, for any voter i ∈ N , we make the following changes:

(i) If f(π) ∈ [τi(π), f(π)
+] then τi(π̂) = f(π).

(ii) For all x, y ∈ X, x ̸= y if x ∈ [τi(π̂), y], then x ≻̂i y.

All the other alternatives are adjusted accordingly as per the definition of single-

peakedness as we move away from the peak, τi(π̂) = f(π). This ensures that for these

voters the conditions in Equation (∗) are met.

Case 2: Consider any voter i ∈ N such that τi(π) = τi(π
′) ∈ [f(π)+, f(π′)].

By single-peakedness, f(π)+ ≻i f(π) which is consistent with the first part of ∗. We

bring f(π)+ to the top of the preference. However, their preferences may not satisfy

the second condition with respect to the preference profile π′. To account for this, we

make the following changes, for any voter i ∈ N ,

(i) If τi(π) ∈ [f(π)+, f(π′)] then τi(π) = f(π)+.Moreover, if f(π) ≻′
i f(π

′) then f(π)≻̂if(π
′),

otherwise, if f(π′) ≻′
i f(π) then f(π′)≻̂if(π).

(ii) For all x ̸= y if x ∈ [τi(π̂), y], then x ≻̂i y.

Condition (i) above ensures that both parts of the Equation (∗) are satisfied with

respect to the given alternatives, while condition (ii) ensures that the new preference,

≻̂i, is single-peaked with respect to all the alternatives.

Case 3: Consider any voter i ∈ N such that f(π′) ∈ [f(π)+, τi(π)]. All these voters

will have the same preferences over the pairs {f(π), f(π)+} and {f(π), f(π′)} due

to single-peakedness. Therefore, for these voters both the conditions in Equation (∗)
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are satisfied and no further change is required. Similar to Case 1, we change the

preferences as follows:

(i) If f(π′) ∈ [τi(π)), f(π)
+] then τi(π̂) = f(π′).

(ii) For all x, y ∈ X, x ̸= y if x ∈ [τi(π̂), y] then x ≻̂i y.

Therefore, the other alternatives are adjusted accordingly as per the definition of

single-peakedness as we move away from the peak, τi(π̂) = f(π). This ensures that

the conditions in Equation (∗) are met for these voters.

Case 4: Consider any voter i ∈ N for which none of the above conditions are sat-

isfied. This implies that τi(π) /∈ [f(π)+, f(π′)], f(π)+ ∈ [f(π), τi(π)] and f(π′) /∈
[τi(π), f(π)

+]. In other words, these voters have peaks which lie in one of the

‘branches’ of the tree T emanating from alternatives which lie in the path [f(π)+, f(π′)]

excluding f(π)+ and f(π′). These voters satisfy the first part of Equation (∗) but

may not satisfy the second part.

(i) If τi(π) /∈ [f(π)+, f(π′)], f(π)+ ∈ [f(π), τi(π)] and f(π′) /∈ [τi(π), f(π)
+] then

let [τi(π̂) = f(π)+]. Moreover, if f(π) ≻′
i f(π

′) then f(π)≻̂if(π)
′, otherwise,

if f(π′) ≻′
i f(π) then f(π′)≻̂if(π).

(ii) Moreover, for all x ̸= y if x ∈ [τi(π̂), y] then x ≻̂i y.

The changes above ensure that π̂ satisfies the conditions in Equation (∗) with respect

to both pairs of alternatives and is single-peaked.

Step 2: In Step 1, we constructed another profile π̂ ∈ S(T )n from π and π′ which

satisfies Equation (∗). Due to the above arguments, f(π̂) ∈ Range(π̂), which implies

that f(π̂) ∈ {f(π), f(π)+}. If f(π̂) = f(π)+, then by contraction consistency, we

have f(π̂) = f(π̂{f(π),f(π)+}) = f(π{f(π),f(π)+}) = f(π), where the second inequality is

due to Equation (∗) in our construction and the last inequality is an implication of

contraction consistency. But this is a contradiction since f(π) ̸= f(π)+. Therefore,

f(π̂) = f(π).

By contraction consistency and the above observation,

f(π̂) = f(π̂{f(π),f(π′)}) = f(π{f(π),f(π′)}) = f(π′).

The above two equations imply that f(π) = f(π′). This is a contradiction. Therefore,

f(π) = f(π′). ■

Proof of Theorem 1 We prove necessity of the axioms first. It is easy to check that

q-threshold rules on T are anonymous and unanimous. We show that q-threshold

rules are contraction consistent. We prove this property for any profile π ∈ S(T )n.
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By property of the q-threshold rule, there exists an x∗(π) ∈ X for every given profile

such that f q
r |[r,y](π[r,y]) = x∗(π) for all [r, y] ∈ Er. Suppose for contradiction that

f(π) = x∗(π) but for some S ∈ P(X), f(πS) = x′ ̸= x∗(π). Take S ′ = {x′, x∗(π)} ⊂
[r, y′] for some [r, y′] ∈ Er. By the definition of the rule,

f q
r (π) = f q

r (π[r,y′]) = x∗(π) = argmin
x∈Range(π[r,y′])

(∑
l≤rx

nl ≥ q[r,y
′]

x

)
, and

f q
r (πS) = f q

r ((πS)[r,y′]) = x′ = argmin
x∈Range(π[r,y′])

(∑
l≤rx

nl ≥ q[r,y
′]

x

)
.

However, this is a contradiction since π[r,y′] = (πS)[r,y′].

We prove sufficiency first. Suppose f is an s.c.f. on T which is contraction consistent,

unanimous and anonymity. By Proposition 1, f is tops-only so we will only need

to keep track of the changes in the top of the preferences in a profile. We fix an

alternative on a terminal node, say r. Let f |[r,y] be the restriction of the function

f to all profiles which have top-ranked alternatives in the extremal path [r, y] ∈ Er

i.e. f(π) = f |[r,y](π) for all π such that τ(π) ⊆ [r, y]. We first show that f |[r,y] is a

q-threshold rule on any extremal path [r, y] ∈ Er i.e. for all π ∈ S(T )n such that

τ(π) ⊆ [r, y],

f[r,y](π) = f(π) = f(π[r,y]) = x∗(π) = argmin
x∈Range(π[r,y])

(∑
l≤rx

nl ≥ q[r,y]x

)

for some set of monotone decreasing thresholds q
[r,y]
x : [r, y] → N . By Proposition 1 we

know that f |[r,y] will also be a tops-only rule. We show that it must be a q-threshold

rule with monotone decreasing thresholds q
[r,y]
x on the path [r, y] for any x ∈ X. We

set the following ordering over the set of alternatives [r, y]: x ≤r y if and only if

x ∈ [r, y]. For any x ∈ [r, y], will denote as x− and x+ the alternatives which are

adjacent before and after x respectively on the path [r, y] i.e. [r, y] is the sequence

of alternatives (r, ..., x−, x, x+, ..., y). Let the thresholds be defined as follows: for all

x ∈ [r, y−],

q[r,y]x = argmin
q∈N

f |[r,y](x, ..., x︸ ︷︷ ︸
q votes

, x+, ..., x+︸ ︷︷ ︸
n−q votes

) = x

 ,

i.e. q
[r,y]
x is the minimum votes required at the top for x to beat the next alternative

towards y on the path [r, y]. For y, let q
[r,y]
y = 1. We prove a stronger version of this

claim next.
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Claim 3 For any x ∈ [r, y] with threshold q
[r,y]
x , f |[r,y](x, ..., x︸ ︷︷ ︸

k votes

, x′︸︷︷︸
n−k votes

) = x for all

k ∈ {q[r,y]x , ..., n}, for all x′ ∈ [x+, y]n−k.

Proof: Consider the profile π such that τ(π) = ( x, ..., x︸ ︷︷ ︸
q
[r,y]
x votes

, x+, ..., x+︸ ︷︷ ︸
n−q

[r,y]
x votes

) and for every

voter i such that τi(π) ̸= x, let their second ranked alternative be x′
i which is the ith

component of x as given in the statement of the claim. By definition of the threshold

of x,

f(π) = f |[r,y]( x, ..., x︸ ︷︷ ︸
q
[r,y]
x votes

, x+, ..., x+︸ ︷︷ ︸
n−q

[r,y]
x votes

) = x.

Consider S = {x,x′} where we abuse notation slightly to denote x′ as the set of al-

ternatives in the array x′. Note that τ(πS) ⊆ [r, y]. By contraction consistency,

f(π) = f(πS) = f |[r,y](πS) = f(x, ..., x︸ ︷︷ ︸
k votes

, x′︸︷︷︸
n−k votes

) = x

for any k ∈ {q[r,y]x , ..., n}.

Claim 4 We now prove that the thresholds are monotonic decreasing over the path

[r, y] i.e. q
[r,y]
x ≥ q

[r,y]

x+ for all x ∈ [r, y−].

Proof: We prove by contradiction. Suppose there exist x, x+ ∈ [r, y] such that q
[r,y]
x <

q
[r,y]

x+ . By construction, q
[r,y]
y = 1 ≤ q

[r,y]

x+ . Therefore, x+ < y.

Since x+ < y there exists an alternative (x++) ∈ X (we denote x++ as the adjacent

alternative on the right of x+ towards y in [r, y]) such that x < x+ < x++ ≤ y.

Consider a profile π such that τ(π) = ((x+)q
[r,y]
x , (x++)n−q

[r,y]
x ). We show that f(π) /∈

{x+, x++} thus violating the property f(π) ∈ Range(π).

Suppose f(π) = x+. By definition of threshold for x we have q
[r,y]

x+ ≤ q
[r,y]
x . This

is a contradiction to our assumption that q
[r,y]

x9i+ > q
[r,y]
x . Therefore, f(π) ̸= x+.

Suppose next that f(π) = x++ and consider S = {x, x++}. There exists a profile

π ∈ S(TS)
n, such that for any i ∈ N , [τi(π) = x+] ⇒ [τi(πS) = x]. Note that,

[τi(π) = x++] ⇒ [τi(πS) = x++]. By contraction consistency,

f(πS) = f( x, ..., x︸ ︷︷ ︸
q
[r,y]
x votes

, x++, ..., x++︸ ︷︷ ︸
n−q

[r,y]
x votes

) = x++.

But by Claim 3, f(πS) = x which is a contradiction. Therefore, q
[r,y]
x ≥ q

[r,y]

x+ for all

x ∈ [r, y−]. We now prove more generally, that f |[r,y] is a q-threshold rule on the path
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[r, y] with thresholds as defined above.

Claim 5 Suppose π ∈ S(T )n such that τ(π) ⊆ [r, y]. Let x∗(π) be as defined earlier

in the proof. Then f(π) = x∗(π).

Proof: Let x∗(π) = arg min
x∈Range(π[r,y])

∑
l≤rx

nl ≥ q
[r,y]
x . It is easy to check that x∗(π)

exists and is unique for the given profile. We show that f(π) = x∗(π). Suppose for

contradiction that f(π) = x′ ̸= x∗(π) for some x′ ∈ τ(π) ⊆ [r, y].

We first argue that x′ > x∗(π). Suppose for contradiction that x′ < x∗(π). Take

S = {x′, x′+}. By contraction consistency and single-peakedness on [r, y], we get

f(π) = f(πS) = ((x′)k, (x′+)n−k) = x′. By definition of the thresholds, this implies

that the threshold of x′ must be less than k. Note that k is also the cumulative vote

for x′ in π. This is a contradiction to the fact that x′ < x∗(π) since x∗(π) is unique

smallest alternative which has more cumulative votes than its threshold.

Therefore, x′ > x∗(π). Now, consider S ′ = {x∗, x′}. Note that, f(π) = f(πS′) =

((x∗(π)k, (x′)n−k) = x′. However, by Claim 4, f(πS′) = x∗(π) since k ≥ q
[r,y]
x∗(π). This is

a contradiction, therefore, f(π) = x∗(π).

Therefore, f |r,y is a q-threshold rule on [r, y]. Let us denote this s.c.f. as f q
[r,y]. By the

above arguments, f |[r,y] = f q
[r,y] for all y ∈ X \{r} such that [r, y] ∈ Er. An important

property needs to be satisfied to ensure that the rules are consistent across different

paths. We will call this property intersectionality, which is defined below.

Definition 2 Suppose f[a,b] and f[a,d] are two q-threshold rules on two extremal paths

[a, b] and [a, d] respectively. They are said to be intersectional if for any π ∈ S(T )n,[
f[a,b](π[a,b]) = x′ /∈

(
[a, b] ∩ [a, d]

)]
⇒
[
f[a,d](π[a,d]) ∈

(
[a, b] ∩ [a, d]

)]
.

Intersectionality states that at least one of the outcomes of the two s.c.f.s defined on

their respective extremal paths must lie in the intersection of the two paths when the

profile π is restricted to the relevant path.

Take any π ∈ S(T )n. We show that the every pair of restrictions of the rule f to

extremal paths in Er are intersectional. Suppose [a, b] and [a, d] are two distinct

extremal paths. If τ(π[a,b]) = τ(π[a,d]), then by definition of restriction of a rule and

by tops-only property, f |[a,b](π[a,b]) = f |[a,d](π[a,d]). In this case, our claim follows

directly.

Suppose τ(π[a,b]) ̸= τ(π[a,d]) and f |[a,b](π[a,b]) = x′ /∈ [a, b] ∩ [a, d], and assume for

contradiction that f |[a,d](π[a,d]) = x′′ /∈ [a, b] ∩ [a, d]. By the tops-only property, we

know that f |[a,d](π[a,d]) ∈ Range(π[a,d]). Therefore, it must be that x′ ∈ [c, b] (as
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a

d

c b

x′′

x′

Figure 4: Illustration for Proof of Theorem 1 part (ii)

illustrated in Figure 3) where c is the last alternative away from a which is both in

[a, b] and [a, d].

Now consider π{x′,x′′}. Note that Range(π{x′,x′′}) = [x′, x′′] and f |[d,b](π{x′,x′′}) ∈
Range(π{x′,x′′}) = [x′, x′′]. Suppose f |[d,b](π{x′,x′′}) = x̃. Then either x̃ ∈ [a, b] or x̃ ∈
[a, d]. We show that x̃ ∈ {x′, x′′}. Suppose for contradiction that x̃ ∈ [a, d] \ {x′, x′′}.
By contraction consistency, f |[a,d](π[a,d]) = x′′ implies that f |[a,d](π{x̃,x′′}) = x′′. This is

a contradiction since x̃ ̸= x′′. Similar contradiction is obtained if x̃ ∈ [a, b] Therefore,

f |[d,b](π{x′,x′′}) ∈ {x′, x′′}. Suppose f |[d,b](π{x′,x′′}) = x′ without loss of generality.

We construct the following profile π′ = (≻′
i)i∈N ∈ S(T )n to obtain a contradiction to

our initial assumption. Let τi(π
′) = τi(π[a,b])) for all i ∈ N . Also,

x′ ≻i x
′′ =⇒ x′ ≻′

i x
′′ and x′′ ≻i x

′ =⇒ x′′ ≻′
i x

′.

We argue that the above can be done without affecting the earlier step where we

ensured that τi(π
′) = τi(π[a,b])) due to the following observations:

(a) Any voter who preferred x′ over x′′ in π must be such that either x′ ∈ [x′′, τi(π)],

in which case τi(π[a,b]) ∈ [x′, b], or has a peak τi(π) such that x′ /∈ [τi(π), x
′′] in which

case τi(π[a,b]) ∈ [a, x′). In either case, for these voters their tops will be unaffected in

the previous step.

(b) Any voter who preferred x′′ over x′ in π must be such that either x′′ ∈ [τi(π), x
′]

in which case τi(π[a,b]) = c or x′′ /∈ [τi(π), x
′]. In either case, for these voters

τi(π[a,b]) ∈ [a, b]. Therefore, for these voters too their tops will be unaffected in

the previous step.

In all the cases, there is no constraint while constructing π′ when ensuring that

preferences of each voter over x′ and x′′ are the same as they were in π. Therefore,

by our construction, π{x′,x′′} = π′
{x′,x′′}.
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Similarly, we construct another profile π′′ such that τi(π
′′) = τi(π[a,d]) for all i ∈ N .

We also ensure that,

x′ ≻i x
′′ =⇒ x′ ≻′′

i x
′′ and x′′ ≻i x

′ =⇒ x′′ ≻′′
i x

′.

By tops-onlyness, we have f |[a,b](π[a,b]) = f(π′) = x′ and f |[a,d](π[a,d]) = f(π′′) =

x′′. By contraction consistency, we have f(π) = f |[b,d](π′
{x′,x′′}) = x′ and f(π′′) =

f |[b,d](π′
{x′,x′′}) = x′′. This is a contradiction.

(iii) We show that intersectionality implies the following: for all x ∈ T such that

deg(x) ≥ 3, q
[r,y]
x + q

[r,y′]
x < n+ 2 for all extremal paths [r, y], [r, y′] ∈ Er.

We first prove for even number of voters. Suppose for contradiction that the above

condition is violated. Then, there exists a node x which has degree greater than or

equal to 3 which belongs to two distinct extremal paths [r, y] and [r, y′] in Er, and

q
[r,y]
x + q

[r,y′]
x ≥ n + 2 as shown in Figure 6 below. This implies that there exists an

integer k ∈ {1, 2, ..., n} such that q
[r,y]
x + q

[r,y′]
x − (k + 1) = n.

r

y′

x y

x(y′)

x(y)

Figure 4

Consider the following profile with two types of preferences with the top three alter-

natives as follows:

π =



x(y′)

x

x(y)
...


q
[r,y]
x −1 

x(y)

x

x(y′)
...


q
[r,y′]
x −k


where x(y) and x(y′) are the alternatives adjacent to x away from r in the path [r, y]

and [r, y′] respectively and the preferences over other alternatives can be defined in

any way consistent with single-peakedness. By definition of q-threshold rules on the

path [r, y] and [r, y′] we have,

f q
[r,y](π{x,x(y)}) = f q

[r,y](x
q
[r,y]−1
x , x(y)q

[r,y′]
x −k) = x(y)
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f q
[r,y](π{x,x(y′)}) = f q

[r,y′](x
q
[r,y′]−k
x , x(y′)q

[r,y]−1
x ) = x(y′)

The two equations are due to the fact that x does not have enough votes at the top

to beat the other alternative since its threshold is strictly greater than its top votes.

This is a contradiction to intersectionality. Therefore, q
[r,y]
x + q

[r,y′]
x < n + 2 for any

two paths [r, y], [r, y′] ∈ Er such that x ∈ [r, y] ∩ [r, y′]. ■
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