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Abstract

We consider a social choice model where voters have single-peaked preferences over the alternatives
that are aggregated to produce contiguous sets or intervals of fixed cardinality, 𝐿. This is applicable in
situations where the alternatives can be arranged in a line (e.g. plots of land) and a contiguous subset
of these is required (e.g. a hospital or a school). We define interval-social choice correspondences
(I-SCCs) on profiles of single-peaked preferences which select intervals. We extend single-peaked
preferences to intervals using responsiveness. We show that generalized median-interval (GMI) rules
are the only strategy-proof, anonymous and interval efficient I-SCCs. These rules are interval versions
of generalized median voter rules which consist of the median, min and max rules. We show that
responsiveness over intervals is necessary for the strategy-proofness of the GMI rule if preferences over
alternatives are single-peaked.
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1 Introduction

There are many voting situations over a one-dimensional policy space where a contiguous set of alternatives
of a fixed cardinality (say, 𝐿) needs to be chosen. We will call these contiguous sets of cardinality 𝐿,
intervals or more specifically, 𝐿-intervals. Consider the following examples:

• Choosing 𝐿 plots of land: Individuals have preferences over single plots of land or ‘alternatives’
which are ordered on a line. A public good like a hospital or school needs to be constructed which
requires 𝐿 number of contiguous plots or an 𝐿-interval.

• Choosing a committee with 𝐿 members: A committee needs to be selected from the set of ‘candidates’
which are located on a line, and a connected set of 𝐿 candidates need to be chosen (to reduce costs,
for example).

We consider aggregators or social choice correspondences which only pick intervals of cardinality 𝐿

(interval-social choice correspondences (I-SCCs)). In many cases, voters may have an incentive to lie
about their preferences if they can obtain a better outcome. Therefore, it is imperative to design an
aggregation rule which is immune to such unilateral manipulations or is strategy-proof. In this paper, we
study strategy-proof aggregation of ‘extended’ single-peaked preferences which pick 𝐿-intervals.

In our model, voters have single-peaked preferences over the set of alternatives (as defined in Black (1948),
Arrow (2012)) which will be extended to 𝐿-intervals. It is natural to assume that preferences are single-
peaked when the policy space is ordered or one-dimensional as shown in Hotelling (1929) and Downs
(1957).1 Since 𝐿-intervals are chosen, we will extend preferences of voters over alternatives to obtain
preferences over 𝐿-intervals using responsiveness over intervals. Responsiveness over intervals requires
that if an alternative 𝑎 has been removed from an 𝐿-interval 𝐴 and another alternative 𝑏 has been added to
create a new 𝐿-interval 𝐵, then interval 𝐴 is preferred to interval 𝐵 if and only if alternative 𝑎 is preferred
to alternative 𝑏. We provide an example.

Example 1 Suppose there are five alternatives 𝑎1 < 𝑎2 < 𝑎3 < 𝑎4 < 𝑎5 and let 𝐿 = 3. There are three
intervals of cardinality 3 from left to right: [𝑎1] = {𝑎1, 𝑎2, 𝑎3}, [𝑎2] = {𝑎2, 𝑎3, 𝑎4} and [𝑎3] = {𝑎3, 𝑎4, 𝑎5}
where we denote [𝑎𝑙] as the 𝐿-interval where 𝑎𝑙 is the left-end point of the interval, for any 𝑙 ∈ {1, 2, 3}.2

1See Thomson (1997) and Amorós (2002) for applications of single-peaked preferences to public goods model.
2One could use the last element of the interval as well to denote intervals. This does not affect the analysis in any way.
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Figure 1: Intervals of cardinality 3

We now illustrate responsiveness of preferences. Suppose a voter 𝑖 has the following single-peaked
preference over alternatives, 𝑃𝑖: 𝑎2𝑃𝑖𝑎3𝑃𝑖𝑎1𝑃𝑖𝑎4𝑃𝑖𝑎5. Therefore, peak of voter 𝑖 is 𝑎2, and preference
is decreasing on either side of the peak. Responsiveness over intervals requires that interval [𝑎1] =

{𝑎1, 𝑎2, 𝑎3} is preferred to interval [𝑎2] = {𝑎2, 𝑎3, 𝑎4} if and only if the only element in [𝑎1] which is
not in [𝑎2], i.e. 𝑎1, is better than the only element in [𝑎2] which is not in [𝑎1], i.e. 𝑎4. Since 𝑎1𝑃𝑖𝑎4,
responsiveness implies that voter 𝑖 must prefer [𝑎1] over [𝑎2]. Note that responsiveness does not put any
restrictions on intervals which differ by more than two alternatives, for example, [𝑎1] and [𝑎3]. The
lexicographic max preference extension over intervals works as follows: the alternatives in each interval
are listed in descending order of preference: in [𝑎1] : 𝑎2𝑃𝑖𝑎3𝑃𝑖𝑎1, and in [𝑎3] : 𝑎3𝑃𝑖𝑎4𝑃𝑖𝑎5 and each
corresponding ranked alternative is compared one by one till the lowest 𝑘-th ranked alternative in one
sequence that is strictly better than its 𝑘-th ranked counterpart alternative in the other sequence (if all
the alternatives ranked higher than the 𝑘-th ranked alternative in the first sequence are the same as the
corresponding ranked alternative in the other sequence). In the above example, since the best alternative
in [𝑎1], i.e. 𝑎2, is strictly better than the best ranked alternative in [𝑎3], i.e. 𝑎3, the max preference
extension would rank [𝑎1] higher than [𝑎3]. Therefore, responsiveness over intervals is weaker than
assuming lexicographic max preference extension over intervals.3 We only use this property to compare
adjacent intervals: two intervals are adjacent if their left end-points are adjacent (e.g. [𝑎1] and [𝑎2]
above are adjacent). Various preference extensions used in the literature on social choice theory (Bossert
et al. (2000), Pattanaik and Peleg (1984), Bossert (1995), Sato (2008)) and matching theory (Roth (1985)
and Alcalde and Barberà (1994)) satisfy responsiveness.4

This framework is applicable to settings where the voter preferences over alternatives can be used to make
decisions on public goods over intervals whose cardinality is fixed throughout. Another advantage of this
framework is that the cardinality of the interval may not be known a priori. Once the cardinality of the
interval is known, the aggregation of preferences over intervals can be done using the preferences over
alternatives. In this paper, we will keep the cardinality of the interval to be fixed at 𝐿. Therefore, voters
only need to report their preferences over alternatives. An I-SCC is strategy-proof if no voter can benefit
by misreporting her preference over the set of alternatives.

3One can check that all lexicographic max extensions are responsive over intervals but the converse is not true.
4See Barberà et al. (2004) for a survey on various preference extensions. All the extensions mentioned in Sato (2008) are

responsive when restricted to intervals.
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The classic works on strategy-proof social choice functions, Gibbard (1973) and Satterthwaite (1975), show
that the only rules which are strategy-proof on the unrestricted domain with more than three alternatives
are dictatorial rules. Similar results have been shown for SCCs in many works (see Gärdenfors (1976),
Barberà et al. (1977), Kelly (1977), Sato (2008), and Özyurt and Sanver (2009).) Barberà et al. (2001)
and Ching and Zhou (2002) provide similar results for strategy-proof mechanisms in a cardinal setting,
Schummer and Vohra (2002) for trees, and Border and Jordan (1983) for the 𝑛-dimensional Euclidean
space. When preferences are single-peaked, Moulin (1980) showed that generalized median voter rules
are the only strategy-proof, anonymous and Pareto optimal social choice functions.5 Our results generalize
the results of the latter to the setting with 𝐿-intervals.

There are works which study similar social choice problems on a set of alternatives that is a subset of
Euclidean space. Klaus and Protopapas (2020a) considers a model where the set of alternatives is [0, 1]. In
their model, the preferences are single-peaked and based on absolute distance from peak. The extension to
sets uses comparisons of the best and worst elements. A similar extension is used in Klaus and Protopapas
(2020b) to characterize target-set correspondences. Klaus and Storcken (2002) studies a multidimensional
model where the preferences over alternatives are single-peaked with a best point and separable-quadratic
with respect to distance from the best point. However, all these papers study social choice over a connected
subset of a Euclidean space. In our paper, we consider the set of discrete and finite set of alternatives.

Another paper which studies interval social choice in a discrete domain is Caramuta (2010). They consider
two types of preferences: separable and additive. Their result is an extension of Barberà et al. (1991)’s,
They obtain a negative result (dictatorial s.c.f.) with additivity, and a positive result with separability,
where they characterize the interval variant of voting by committees rule. Our result adds to the literature
on strategy-proof SCCs in a restricted domain- extended single-peaked domains.

Our first result (Proposition 1) states that when voters have single-peaked preferences over alternatives
then their extended preferences to intervals will be single-peaked over intervals if and only if they are
responsive over intervals. This implies that there is a peak interval and other intervals which are further
away from this interval are strictly worse. This is an important insight in this domain which allows us to
list the intervals from left to right. This result is proved using the fact that the ‘peak- interval’ or top-ranked
interval is the set of top-𝐿 ranked alternatives in a voter’s preference. Responsiveness then implies that
interval adjacent to it on the left (or right) must be less preferred to the peak interval since the alternatives
further away are strictly worse.

We characterize generalized median interval (GMI) rules which assign 𝑛 − 1 fixed intervals of cardinality
𝐿 (where 𝑛 is the number of voters) and outputs an 𝐿-interval. The top-𝐿 intervals of 𝑛 voters and the
𝑛 − 1 fixed intervals are listed from left to right with respect to their lower-end points. These rules then
pick the median interval which may not be the top-𝐿 interval of the median voter. These rules are the

5Barberà et al. (1993) provides a generalization of this result to the 𝑛-dimensional ‘box’ space.
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interval-versions of rules characterized in Moulin (1980) and coincide with it when 𝐿 = 1.

We show that GMI rules are the only strategy-proof, anonymous and interval efficient I-SCCs (Theorem 1.
The first two axioms are standard in the literature, however, the version of strategy-proofness we use is not
a direct extension of the condition to intervals. This axiom is defined on I-SCCs which choose intervals
but the manipulations made by voters are over alternatives. Therefore, the voters have more deviations than
they would if they could only manipulate ‘intervals’. Due to this, the proof of the main theorem does not
follow directly from the result in Moulin (1980). Additional properties of the domain need to be proved
in order to rule out these deviations. In fact, these additional arguments arise due to the fact that voters
report preferences over alternatives and not intervals. The last axiom is a weaker, interval-variant of Pareto
efficiency and can be stated as follows. Interval efficiency of the I-SCC requires that there should not exist
any 𝐿-interval that makes all the voters strictly better-off compared to the outcome of the I-SCC.

The proof of the first theorem proceeds in two steps. We first use Proposition 1 which provides preferences
of voters over intervals. We then show that a strategy-proof and interval efficient I-SCC must be top-𝐿
only (Proposition 2). This implies that such I-SCCs are invariant to changes in the preference profile made
outside the top-𝐿 intervals of voters. We first identify the fixed intervals used by the GMI rules using
profiles where voters have preferences at the end points of the policy interval. We use induction on the
number of voters who do not have such preferences to show that the rule must pick the median of the
top-intervals and the fixed intervals across all profiles. The final arguments proceed by contradiction: if
the I-SCC is not the GMI rule defined in the earlier steps, we construct preference profiles where a voter
can deviate beneficially.

Finally, we show the necessity of responsiveness over intervals for the strategy-proofness of the GMI rule.
This holds under the condition that voter preferences over alternatives is single-peaked. We show that
if there exists any preference which is not consistent with single-peaked preferences over intervals, then
we can find a GMI rule with specified fixed intervals and a profile over which it is not strategy-proof.
This validates the argument that responsiveness of intervals is a fairly weak assumption over preference
extensions over 𝐿-intervals. The paper is organized as follows. Section 2 will describe the model and
definitions. Section 3 and 4 presents the set of axioms and results respectively. We conclude in Section
5.

2 The Model

The set of voters is 𝑁 = {1, 2, . . . , 𝑛}, and the set of alternatives is 𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑚}. The alternatives
are arranged according to an ordering < on 𝑋 such that 𝑎1 < 𝑎2 < · · · < 𝑎𝑚. We will denote by 𝑎 𝑗 and
𝑎 𝑗+1 as two consecutive alternatives according to <.

Voter preferences over alternatives: Each voter 𝑖’s preference, 𝑃𝑖, is single-peaked on 𝑋 , i.e., there exists
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a ‘peak’, 𝜏(𝑃𝑖), such that for any 𝑥, 𝑦 ∈ 𝑋 ,

[
𝑦 < 𝑥 ≤ 𝜏(𝑃𝑖) or 𝜏(𝑃𝑖) ≤ 𝑥 < 𝑦

]
⇒ 𝑥𝑃𝑖𝑦,

where the peak, 𝜏(𝑃𝑖), is the top-ranked alternative in 𝑋 for any voter 𝑖 ∈ 𝑁 . Moreover, we require that
𝑃𝑖 is a linear order on 𝑋 .6 Let S be the set of all single-peaked preferences over 𝑋 according to < and let
𝑃 = (𝑃1, . . . , 𝑃𝑛) denote a profile of single-peaked preferences where each 𝑃𝑖 ∈ S. Let S𝑛 be the set of all
single-peaked profiles on 𝑋 . We only consider aggregation rules which pick contiguous sets of cardinality
𝐿 or 𝐿-intervals which we define below.

Interval of cardinality 𝐿: For any 𝐿 ∈ {1, 2, 3, . . . , 𝑚} we define an interval of cardinality 𝐿 or 𝐿-interval
as [𝑎𝑙] = {𝑎 ∈ 𝑋 | 𝑎𝑙 ≤ 𝑎 ≤ 𝑎𝑙+𝐿−1} where 𝑙 ∈ {1, . . . , 𝑚−𝐿+1}. For example, if 𝑋 = {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5},
then the interval [𝑎2] for 𝐿 = 3 and 𝐿 + 𝑙 − 1 = 3 + 2− 1 = 4 is the set, [𝑎2] = {𝑎2, 𝑎3, 𝑎4}. Therefore [𝑎𝑙]
includes all 𝑙 alternatives from 𝑎𝑙 to 𝑎𝑙+𝐿−1 according to the order <. We denote the set of all intervals of
cardinality 𝐿 over 𝑋 as I𝐿 for any 𝐿 ∈ {1, . . . , 𝑚}. We fix the cardinality of intervals to be 𝐿 throughout
the rest of this paper. For simplicity, we will refer to 𝐿-intervals as just intervals.7

Ordering, <𝐿 , over 𝐿-intervals: For any two intervals [𝑎𝑙] and [𝑎𝑟], define an ordering <𝐿 as follows:
[𝑎𝑙] <𝐿 [𝑎𝑟] if and only if 𝑙 < 𝑟 . Therefore, in the Example 1 with 5 alternatives and 𝐿 = 3, we have
[𝑎1] < [𝑎2] < [𝑎3]. Any two intervals [𝑎𝑙] and [𝑎𝑙+1] are adjacent for any 𝑙 ∈ {1, 2, ..., 𝑚 − 𝐿 + 1}, i.e.,
the starting points of the two 𝐿-intervals are at the 𝑙-th and (𝑙 + 1)-th position respectively.

Three intervals are shown from left to right in Figure 1: [𝑎1], [𝑎2] and so on till [𝑎𝑚−2] for a given length
of 𝐿 = 3. Interval [𝑎1] is adjacent to [𝑎2], [𝑎2] is adjacent to [𝑎3] and so on. Given single-peaked
preference 𝑃𝑖 for any 𝑖 ∈ 𝑁 we show that the top-𝐿 ranked alternatives in 𝑃𝑖 are 𝐿-intervals. We prove this
claim formally.

Claim 1 (Top-𝐿 interval:) Take any 𝐿 ∈ {1, ..., 𝑚}. The set of top-𝐿 ranked alternatives of any single-
peaked preference 𝑃𝑖 (denoted by 𝑃𝐿

𝑖 ) for any 𝑖 ∈ 𝑁 is an interval of cardinality 𝐿 (henceforth, top-𝐿
interval).

Proof. We prove Claim 1 by contradiction. It is trivially satisfied for 𝐿 ∈ {1, 𝑚}. Suppose the set of top-𝐿
ranked alternatives 𝑃𝐿

𝑖 = {𝑥 |#{𝑦 : 𝑦𝑅𝑖𝑥} ≤ 𝐿} is not an interval, for some 𝐿 ∈ {2, ..., 𝑚 − 1}. Then, there
exist distinct alternatives 𝑥, 𝑦 ∈ 𝑋 \ {𝜏(𝑃𝑖)} such that 𝑥 ∈ 𝑃𝐿

𝑖 and 𝑦 ∉ 𝑃𝐿
𝑖 , and either: (i) 𝑥 < 𝑦 < 𝜏(𝑃𝑖)

or (ii) 𝑥 > 𝑦 > 𝜏(𝑃𝑖). Since 𝑦 ∉ 𝑃𝐿
𝑖 and 𝑥 ∈ 𝑃𝐿

𝑖 , by definition of the top-𝐿 ranked set, 𝑥𝑃𝑖𝑦. This along

6A binary relation 𝑃 defined on 𝑋 is a linear order if it is (i) complete: either 𝑥𝑃𝑦 or 𝑦𝑃𝑥 ∀𝑥 ≠ 𝑦, (ii) transitive:
[𝑥𝑃𝑦 and 𝑦𝑃𝑧] ⇒ [𝑥𝑃𝑧] ∀𝑥, 𝑦, 𝑧 ∈ 𝑋 and (iii) asymmetric: [𝑥𝑃𝑦] ⇒ ¬[𝑦𝑃𝑖𝑥], ∀𝑥, 𝑦 ∈ 𝑋 .

7If intervals are represented using the right end points instead of left end points, our analysis would not change.
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with the fact that either (i) or (ii) holds, implies that 𝑦𝑃𝑖𝑥. This is a contradiction since 𝑃𝑖 is asymmetric.
Therefore, 𝑃𝐿

𝑖 is an interval for all 𝑖 ∈ 𝑁 . Henceforth, we will use the term top-𝐿 interval to denote the set
of top-𝐿 ranked alternatives, 𝑃𝐿

𝑖 for all 𝑖 ∈ 𝑁 . We are now ready to define aggregation rules.

An interval-social choice correspondence (I-SCC), 𝑓 : S𝑛 → I𝐿 produces an 𝐿-interval 𝑓 (𝑃) ∈ I𝐿 for
every profile 𝑃 ∈ S𝑛. In order to compare the outcomes of I-SCCs with other outcomes which are sets of
cardinality 𝐿, we need to extend voters’ preferences over alternatives to subsets of fixed cardinality 𝐿. We
define preference extensions below.

Extension of preferences to I𝐿

Extension of 𝑃𝑖: A weak order ≿𝑖 for 𝑖 ∈ 𝑁 defined over I𝐿 is an extension of 𝑃𝑖 ∈ S.8 We refer to
the top-ranked 𝐿-cardinality subset according to ≿𝑖 as 𝑃𝐿

𝑖 . Note that if [𝑎𝑙] and [𝑎𝑙+1] are two intervals
then [𝑎𝑙] = ([𝑎𝑙+1] \ {𝑎𝑙+𝐿}) ∪ {𝑎𝑙} and [𝑎𝑙+1] = ( [𝑎𝑙] \ {𝑎𝑙}) ∪ {𝑎𝑙+𝐿}. In Example 1, [𝑎1] and [𝑎2]
are adjacent, where [𝑎1] = ([𝑎2] \ {𝑎4}) ∩ {𝑎1} and [𝑎2] = ( [𝑎1] \ {𝑎1}) ∩ {𝑎4}. In other words, two
intervals are adjacent if the left end point alternative (𝑎𝑙) of an interval [𝑎𝑙] is removed from it, and another
alternative right next to the right end point (𝑎𝑙+𝐿) is added to create a new interval [𝑎𝑙+1] . We impose a
property responsiveness on intervals which is only applicable to the adjacent intervals in I𝐿 .

Responsiveness on intervals: Consider any two adjacent intervals [𝑎𝑙], [𝑎𝑙+1] ∈ I𝐿 . Any extension ≿𝑖 of
𝑃𝑖 is responsive on intervals if,

(i) 𝑎𝑙𝑃𝑖𝑎𝑙+𝐿 ⇐⇒ [𝑎𝑙] �𝑖 [𝑎𝑙+1], 𝑎𝑛𝑑
(ii) 𝑎𝑙+𝐿𝑃𝑖𝑎𝑙 ⇐⇒ [𝑎𝑙+1] �𝑖 [𝑎𝑙] .

Responsiveness over intervals can also be interpreted as follows: if an alternative 𝑎𝑙 is removed from an
interval [𝑎𝑙] and another alternative 𝑎𝑙+𝐿 is replaced with it to create a new interval [𝑎𝑙+1] (thus making
the two intervals adjacent) then the new interval is preferred over the old one if and only if 𝑎𝑙+𝐿 is strictly
preferred over 𝑎𝑙 . This version of responsiveness is similar to the one used in Bossert (1995) and is also
used widely in the matching theory literature (Roth (1985), Alcalde and Barberà (1994) etc.). Respon-
siveness is a fairly weak condition since it only imposes restrictions on adjacent intervals. For example,
for a preference extension ≿𝑖 of a single-peaked preference 𝑃𝑖 with 𝐿 = 3, we can have [𝑎1] �𝑖 [𝑎2] if
and only if 𝑎1𝑃𝑖𝑎4. Responsiveness does not impose anything on two intervals [𝑎1] and [𝑎3]. However,
our next proposition will show that preference extensions ≿𝑖 are single-peaked over I𝐿 according to <𝐿 if
and if they are responsive over intervals. Since 𝑃𝑖 is strict or asymmetric, by responsiveness, the induced
extension ≿𝑖 will be anti-symmetric.9 We define single-peakedness over intervals first.

8A binary relation ≿ defined on 𝑋 is a weak order if it is (i) complete: either 𝑥 ≿ 𝑦 or 𝑦 ≿ 𝑥 ∀𝑥, 𝑦 ∈ 𝑋 and (ii) transitive:
[𝑥 ≿ 𝑦 and 𝑦 ≿ 𝑧] ⇒ [𝑥 ≿ 𝑧] ∀𝑥, 𝑦, 𝑧 ∈ 𝑋 .

9A weak relation ≿ on 𝑋 is anti-symmetric if [𝑥 ≿ 𝑦 and 𝑦 ≿ 𝑥] ⇔ [𝑥 = 𝑦], for all 𝑥, 𝑦 ∈ 𝑋 .
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Single-peakedness over intervals in I𝐿: A preference extension ≿𝑖 of 𝑃𝑖 for voter 𝑖 ∈ 𝑁 is single-peaked
over I𝐿 according to <𝐿 if there exists a ‘peak interval’ 𝜏(≿𝑖) such that for any two intervals [𝑎𝑘 ] and
[𝑎𝑘 ′], [

𝜏(≿𝑖) ≤𝐿 [𝑎𝑘 ] <𝐿 [𝑎𝑘 ′] or [𝑎𝑘 ′] <𝐿 [𝑎𝑘 ] ≤𝐿 𝜏(≿𝑖)
]
=⇒ [𝑎𝑘 ] �𝑖 [𝑎𝑘 ′] .

Single-peakedness over intervals is similar to single-peakedness over alternatives where a peak interval is
at the top of the preference and intervals further away according to <𝐿 are strictly worse. Moreover, two
intervals on different sides of the peak interval can be ranked in either way. Let S(I𝐿) denote the set of
single-peaked preference (extensions), ≿𝑖, over intervals for any 𝑖 ∈ 𝑁 . Our next Proposition establishes a
connection between single-peakedness over alternatives and single-peakedness over intervals.

Proposition 1 A linear extension, ≿𝑖, of a single-peaked preference 𝑃𝑖 ∈ S is single-peaked over I𝐿
according to <𝐿 with 𝜏(≿𝑖) = 𝑃𝐿

𝑖 as the top interval if and only if it is responsive on intervals.

Proof: We first show that responsiveness of ≿𝑖 implies that it is single-peaked over I𝐿 . Consider a linear
extension ≿𝑖 of 𝑃𝑖 that is responsive on intervals. We first show that the top-𝐿 interval of 𝑃𝑖 is 𝜏(≿𝑖) = 𝑃𝐿

𝑖

i.e. the set of top 𝐿 ranked alternatives in 𝑃𝑖 is also the top-ranked interval in ≿𝑖. Let 𝑃𝐿
𝑖 = [𝑎𝑡] for some

𝑡 ∈ {1, 2, ..., 𝑚−𝐿+1}. We will first show that (i) [[𝑎𝑙−1] <𝐿 [𝑎𝑙] ≤𝐿 𝜏(≿𝑖) = [𝑎𝑡]] =⇒ [[𝑎𝑙] �𝑖 [𝑎𝑙−1]]
for all 𝑙 ∈ {1, 2, ..., 𝑡} and (ii) [𝜏(≿𝑖) = [𝑎𝑡] ≤𝐿 [𝑎𝑙] <𝐿 [𝑎𝑙−1]] =⇒ [[𝑎𝑙] �𝑖 [𝑎𝑙−1]] for all
𝑙 ∈ {𝑡, ..., 𝑚 − 𝐿 + 1}. Transitivity of �𝑖 will imply that 𝜏(≿𝑖) is preferred to all the intervals on the ‘left’
according to<𝐿 and similar arguments for the intervals on the ‘right’ will then imply that 𝜏(≿𝑖) = 𝑃𝐿

𝑖 = [𝑎𝑡].
We provide arguments for part (i) above. Part (ii) can be proved similarly.

Case 1: For any 𝑙 ∈ {1, .., 𝑡}, let [𝑎𝑙−1] and [𝑎𝑙] be two intervals such that 𝜏(𝑃𝑖) ∈ [𝑎𝑙]. Let 𝑃𝐿
𝑖 =

{𝑎𝑡 , 𝑎𝑡+1 . . . , 𝜏(𝑃𝑖), 𝑎𝑟1, 𝑎𝑟2, . . . , 𝑎𝑟𝑘 } where 𝑎𝑟1, . . . , 𝑎𝑟𝑘 are elements to the right of 𝜏(𝑃𝑖) and are listed
in order according to <. Note that we can write [𝑎𝑡−1] = ( [𝑎𝑡] \ {𝑎𝑟𝑘 }) ∪ {𝑎𝑡−1}. By responsiveness over
the following intervals: 𝑃𝐿

𝑖 = [𝑎𝑡] and [𝑎𝑡−1], and due to the fact that 𝑎𝑟𝑘 belongs to the top-𝐿 interval of
𝑃𝑖 and 𝑎𝑡−1 does not, we have 𝑎𝑟𝑘𝑃𝑖𝑎𝑡−1. Therefore, 𝑃𝐿

𝑖 = [𝑎𝑡] �𝑖 [𝑎𝑡−1]. Similarly by responsiveness on
intervals, [𝑎𝑡−1] and [𝑎𝑡−2], we have 𝑎𝑟𝑘−1𝑃𝑖𝑎𝑡−2 ⇒ [𝑎𝑡−1] �𝑖 [𝑎𝑡−2].

Case 2: For any 𝑙 ≤ 𝑡, let [𝑎𝑙−1] and [𝑎𝑙] such that 𝜏(𝑃𝑖) ∉ [𝑎𝑙]. By single-peakedness of 𝑃𝑖, 𝑎𝑙−1 <

𝑎𝑙+𝐿−1 < 𝜏(𝑃𝑖) implies that 𝑎𝑙+𝐿−1𝑃𝑖𝑎𝑙−1. By responsiveness [𝑎𝑙] �𝑖 [𝑎𝑙−1] since [𝑎𝑙−1] = ([𝑎𝑙] \
{𝑎𝑙+𝐿−1}) ∪ {𝑎𝑙−1}. By transitivity of �𝑖, for all [𝑎𝑙] ≤𝐿 𝑃𝐿

𝑖 = [𝑎𝑡], we have [[𝑎𝑙] �𝑖 [𝑎𝑙−1] and [𝑎𝑙−1] �𝑖

[𝑎𝑙−2]] ⇒ [[𝑎𝑙] �𝑖 [𝑎𝑙−2]]. Repeated application of transitivity of ≿𝑖 implies that [𝑎𝑙] �𝑖 [𝑎𝑙−𝑘 ] for all
[𝑎𝑙] ≤𝐿 𝑃𝐿

𝑖 for all 𝑘 ∈ {1, ..., 𝑙 − 1}. Similar arguments can be made for intervals to the ‘right’ of 𝑃𝐿
𝑖

according to <𝐿 . Therefore ≿𝑖 is single-peaked on I𝐿 with respect to <𝐿 and its peak interval is given by
𝜏(≿𝑖) = 𝑃𝐿

𝑖 .
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We now show the converse. Consider an extension of 𝑃𝑖, ≿𝑖 that is single-peaked on I𝐿 with respect to <𝐿

and 𝜏(≿𝑖) = 𝑃𝐿
𝑖 = [𝑎𝑡] for some 𝑡 ∈ {1, 2, ..., 𝑚 − 𝐿 + 1}. To show responsiveness on intervals, we need

to show that for any two adjacent intervals [𝑎𝑙], [𝑎𝑙−1], we have [[𝑎𝑙] �𝑖 [𝑎𝑙−1]] ⇔ [𝑎𝑙+𝐿−1𝑃𝑖𝑎𝑙−1] and
[[𝑎𝑙−1] �𝑖 [𝑎𝑙]] ⇔ [𝑎𝑙−1𝑃𝑖𝑎𝑙+𝐿−1] for any 𝑙 ∈ {1, ..., 𝑚 − 𝐿 + 1}. Consider intervals [𝑎𝑙−1] and [𝑎𝑙] on
the ‘left’ of 𝜏(≿𝑖) according to <𝐿 i.e. [𝑎𝑙−1] <𝐿 [𝑎𝑙] ≤𝐿 𝜏(≿𝑖) = [𝑎𝑡]. This is without loss of generality
since [𝑎𝑙] and [𝑎𝑙−1] are adjacent, which implies that either (i) 𝑎𝑙−1 < 𝑎𝑙 ≤ 𝜏(≿𝑖) or (ii) 𝜏(≿𝑖) ≤ 𝑎𝑙−1 < 𝑎𝑙 .
We provide arguments for part (i) above. There are two sub-cases:

Case I: Suppose 𝜏(𝑃𝑖) ∉ [𝑎𝑙]. By single-peakedness of ≿𝑖, we have [𝑎𝑙] �𝑖 [𝑎𝑙−1]. Since [𝑎𝑙−1] =

([𝑎𝑙] \ {𝑎𝑙+𝐿−1}) ∪ {𝑎𝑙−1}], by single-peakedness of 𝑃𝑖, 𝑎𝑙−1 < 𝑎𝑙+𝐿−1 < 𝜏(𝑃𝑖) implies 𝑎𝑙+𝐿−1𝑃𝑎𝑙−1.
Case II: Suppose 𝜏(𝑃𝑖) ∈ [𝑎𝑙]. Single-peakedness of ≿𝑖 implies 𝜏(≿𝑖) �𝑖 [𝑎𝑙] � [𝑎𝑙−1]. By similar
arguments as in Case I, [𝑎𝑙−1 < 𝑎𝑙 ≤ 𝜏(𝑃𝑖)] =⇒ [𝑎𝑙𝑃𝑖𝑎𝑙−1]. Therefore, ≿𝑖 is responsive. Similar
arguments can be made for intervals on the right of 𝜏(≿𝑖). Similar arguments can be made for part (ii)
𝜏(≿𝑖) ≤ 𝑎𝑙−1 < 𝑎𝑙 .

■

Proposition 1 provides an important insight into the nature of preference extensions ≿𝑖 of single-peaked
preferences 𝑃𝑖 for any 𝑖 ∈ 𝑁 . It states that if voters have single-peaked preferences over alternatives, then
any preference extension of 𝑃𝑖 over the domain of intervals I𝐿 is single-peaked over intervals if and only if
it responsive over intervals. In other words, we show in the proof that there exists a unique 𝐿-sized interval
or ‘peak interval’ which is top-ranked in ≿𝑖 and is also the set of top 𝐿 ranked alternatives. Henceforth, we
will denote the ‘top’ interval 𝜏(≿𝑖) = 𝑃𝐿

𝑖 as the set of top 𝐿 ranked alternatives. Other intervals which are
further away from the peak-interval on the same side of the peak interval are strictly worse. We provide an
example below.

Example 2 Suppose the set of voters is 𝑁 = {1, 2, 3}, there are five alternatives which are arranged as
follows: 𝑎1 < · · · < 𝑎5 and 𝐿 = 3. Consider the following preferences:

𝑃1 𝑃2 𝑃3

𝑎2 𝑎3 𝑎4

𝑎3 𝑎4 𝑎3

𝑎4 𝑎5 𝑎2

𝑎5 𝑎2 𝑎1

𝑎1 𝑎1 𝑎5

By Proposition 1, the responsive preference extensions (≿1,≿2,≿3) onI𝐿 will be single-peaked preferences,
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Voter 1: 𝜏(≿1) = [𝑎2] since [𝑎2] = {𝑎2, 𝑎3, 𝑎4} is the set of top 3 ranked alternatives of voter 1. Due
to Proposition 1, we know that preferences over I𝐿 are single-peaked. Therefore, [𝑎2] �1 [𝑎3] and
[𝑎2] �1 [𝑎1]. However, we impose no restriction on how [𝑎1] and [𝑎3] are to be compared as long as
≿1 is complete over the pair of intervals. Similarly, voter 2’s peak is 𝜏(≿2) = [𝑎3] and her preference
extension is such that [𝑎3] �2 [𝑎2] �2 [𝑎1]. Preference extension, ≿3, of voter 3 is such that 𝜏(≿3) = [𝑎2],
[𝑎2] �3 [𝑎3], [𝑎2] �3 [𝑎1].

We introduce some definitions to define generalized median interval rules:

Median of a sequence of alternatives: Consider any integer 𝑝 > 0 and a sequence of alternatives
𝐵 = (𝑥1, 𝑥2, . . . , 𝑥2𝑝−1) where repetitions are allowed and alternatives are arranged according to <. An
alternative 𝑥 ∈ 𝐵 is the median of this sequence, denoted by 𝑚𝑒𝑑 (𝑥1, 𝑥2, ..., 𝑥2𝑝−1), if

|{𝑥′ ∈ 𝐵 : 𝑥′ ≤ 𝑥}| ≥ 𝑝 and |{𝑥′ ∈ 𝐵 : 𝑥 ≤ 𝑥′}| ≥ 𝑝.

Note that the median of a sequence with 2𝑝 − 1 alternatives is the 𝑝-th alternative, and the order of the
sequence does not matter. For example, 𝑚𝑒𝑑 (𝑎1, 𝑎5, 𝑎2, 𝑎3, 𝑎2, 𝑎4, 𝑎5) = 𝑚𝑒𝑑 (𝑎1, 𝑎2, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎5) =
𝑎3 where 𝑝 = 4, and 2𝑝 − 1 = 2(4) − 1 = 7 since there are four alternatives (weakly) above and below 𝑎3

(including itself) when the alternatives are arranged in ascending order (with repetitions). The median can
be found by enumerating the alternatives from left to right and picking the 𝑝-th alternative out of a total of
2𝑝 − 1 alternatives.

Median of a sequence of intervals: Similarly, we can define the median of a sequence of intervals,
( [𝑥1], ..., ≤𝐿 [𝑥2𝑘−1]), as 𝑚𝑒𝑑 ([𝑥1], ..., [𝑥2𝑘−1]) = [𝑥𝑘 ] for any integer 𝑘 > 0. For example,
𝑚𝑒𝑑 ([𝑎1], [𝑎2], [𝑎2], [𝑎3], [𝑎4]) = [𝑎2] since there are three intervals on either side of [𝑎2] (counting
itself twice).

Fixed Intervals: A sequence of 𝑛 − 1 fixed intervals will be denoted by [𝛼1], . . . , [𝛼𝑛−1]. These will be
added to the vector of top-L intervals of the voters to compute the outcome of our main rule, which we
define now.

Generalized median interval (GMI) rules: An I-SCC, 𝑓 𝛼 : S𝑛 → I𝐿 , is a GMI rule if there exist 𝑛 − 1
fixed intervals 𝛼 = ( [𝛼1], . . . , [𝛼𝑛−1]) such that for any 𝑃 ∈ S𝑛,

𝑓 𝛼 (𝑃) = 𝑚𝑒𝑑 (𝜏(≿1), . . . , 𝜏(≿𝑛), [𝛼1], . . . , [𝛼𝑛−1]).

GMI rules pick the median interval from the sequence consisting of the top-L interval of voters {𝜏(≿𝑖)}𝑛𝑖=1
and the given fixed intervals {[𝛼𝑖]}𝑛−1

𝑖=1 . Note that for a given GMI rule the fixed intervals are defined
independently of the profiles and remain fixed for all 𝑃 ∈ S𝑛. Therefore, different sets of fixed intervals
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define different GMI rules.

Consider Example 2 again. Let 𝑓 𝛼 be the following GMI rule with two fixed intervals: [𝛼1] = [𝑎1]
and [𝛼2] = [𝑎3]. For the preference extensions derived in Example 2, we have 𝑓 𝛼 (𝑃) = 𝑚𝑒𝑑 (𝜏(≿1

), 𝜏(≿2), 𝜏(≿3), [𝛼1], [𝛼2]) = 𝑚𝑒𝑑 ( [𝑎2], [𝑎3], [𝑎2], [𝑎1], [𝑎3]) = [𝑎2] since it is the third interval while
enumerating from left (or right). Note that GMI rules only take into account the top-𝐿 intervals of voters.
Note that the median interval is according to the left most alternative in top-𝐿 intervals and may not be the
top-𝐿 interval of the median voter (except when 𝐿 = 1 as in Moulin (1980)). We provide an example to
illustrate.

Example 3 Suppose 𝑁 = {1, 2, 3} and 𝑋 = {𝑎1, 𝑎2, ..., 𝑎5} where 𝑎1 < · · · < 𝑎5 and 𝐿 = 3. For the
following preferences over alternatives, we derive single-peaked preference extensions on I𝐿:

𝑃1 𝑃2 𝑃3

𝑎2 𝑎3 𝑎4

𝑎3 𝑎4 𝑎3

𝑎4 𝑎5 𝑎2

𝑎5 𝑎2 𝑎1

𝑎1 𝑎1 𝑎5

By Proposition 1, we get the following single-peaked preference extensions {≿1,≿2,≿3} :

Voter 1: 𝜏(≿1) = [𝑎2] with [𝑎2] �1 [𝑎3], [𝑎2] �1 [𝑎1], and for completeness we can have either
[𝑎1] �1 [𝑎3] or [𝑎3] �1 [𝑎1], voter 2: 𝜏(≿2) = [𝑎3] with [𝑎3] �2 [𝑎2] �2 [𝑎1] and voter 3: 𝜏(≿3) = [𝑎2]
with [𝑎2] �3 [𝑎3], [𝑎2] �3 [𝑎1], and for completeness we can have either [𝑎1] �3 [𝑎3] or [𝑎3] �3 [𝑎1].

Note that even though voters 1 and 3 have different preferences over alternatives, they may have similar
preferences over intervals. Suppose 𝑓 𝛼 is the GMI rule with fixed intervals [𝛼1] = [𝑎1] and [𝛼2] = [𝑎3]. By
definition of GMI rule, 𝑓 𝛼 (𝑃) = 𝑚𝑒𝑑 (≿1,≿2,≿3, [𝛼1], [𝛼2]) = 𝑚𝑒𝑑 ( [𝑎2], [𝑎3], [𝑎2], [𝑎1], [𝑎3]) = [𝑎2].
The median voter according to the peaks is voter 2, however the outcome of the GMI rule is not her peak
interval [𝑎3], rather the outcome is the peak interval of voters 1 and 3, i.e., [𝑎2].

We show in Section 4 that strategy-proofness and interval efficiency imply the top-𝐿 only property which
means that these I-SCCs only take as input the top-𝐿 intervals of voters. However, GMI rules are not the only
I-SCCs which are top-L only. We define some top-𝐿 only I-SCCs over the single-peaked domain.

Dicatorial I-SCC: A GMI rule, 𝑓 𝑖 is dictatorial if for all 𝑃 ∈ S𝑛, 𝑓 𝑖 (𝑃) = 𝜏(≿𝑖). Dictatorial rules pick
the dictator’s (voter 𝑖’s) peak interval for all profiles.
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Min (max) I-SCCs: A GMI rule, 𝑓 𝑚𝑖𝑛 ( 𝑓 𝑚𝑎𝑥) is a min (max) rule if for all 𝑃 ∈ S𝑛, 𝑓 𝑚𝑖𝑛 (𝑃) = 𝑚𝑖𝑛{𝜏(≿𝑖
)}𝑖∈𝑁 ( 𝑓 𝑚𝑎𝑥 (𝑃) = 𝑚𝑎𝑥{𝜏(≿𝑖)}𝑖∈𝑁 ), where 𝑚𝑖𝑛{.}𝑖∈𝑁 (𝑚𝑎𝑥{.}𝑖∈𝑁 ) picks the interval with the smallest
(largest) interval according to <𝐿 . Min and max I-SCCs are a sub-class of GMI rules if 𝛼 = ( [𝑎1], ..., [𝑎1])
for min and 𝛼 = ([𝑎𝑚−𝐿+1], ..., [𝑎𝑚−𝐿+1]) for max. A median I-SCC can also be defined as a GMI rule
with 𝛼 = ([𝑎1], ..., [𝑎1]︸          ︷︷          ︸

𝑛−1
2

, [𝑎𝑚], ..., [𝑎𝑚]︸           ︷︷           ︸
𝑛−1

2

) when 𝑛 is odd.10 We now present the axioms.

3 Axioms

In this section we list the axioms which will characterize GMI rules.

Anonymity: An I-SCC, 𝑓 , satisfies anonymity if for every preference profile 𝑃 ∈ S𝑛, and for each
permutation 𝜎 of 𝑁 , 𝑓 (𝑃) = 𝑓 (𝑃𝜎), where 𝑃𝜎 = (𝑃𝜎(1) , ..., 𝑃𝜎(𝑛)).

Anonymity implies that the outcome of an I-SCC is independent of the identities of voters. All the rules
mentioned above except the dictatorial rules are anonymous.

Strategy-proofness: An I-SCC, 𝑓 , is said to be strategy-proof if for every profile (𝑃𝑖, 𝑃−𝑖) ∈ S𝑛,

𝑓 (𝑃𝑖, 𝑃−𝑖) ≿𝑖 𝑓 (𝑃′
𝑖 , 𝑃−𝑖) ∀𝑃′

𝑖 ∈ S.

In other words, strategy-proofness states that unilateral deviations do not make a voter strictly better-off.
Note that the deviations of voters are in terms of preferences over alternatives, and the outcomes are
intervals. Since the outcome of I-SCCs are intervals, a natural extension of efficiency would be to compare
intervals in I𝐿 which we define below. All the rules mentioned above strategy-proof. The proof for GMI
rules (including min and max) rules is provided in the proof of our main result.

Interval efficiency: An I-SCC, 𝑓 , is said to be interval efficient if for any 𝑃 ∈ S𝑛 and any [𝑎𝑙] ∈ I𝐿 ,

[∃ 𝑗 ∈ 𝑁 s.t. [𝑎𝑙] � 𝑗 𝑓 (𝑃)] ⇒ [∃ 𝑘 ∈ 𝑁 s.t. 𝑓 (𝑃) �𝑘 [𝑎𝑙]] .

An I-SCC satisfies interval efficiency if for any voter who can be made strictly better-off by any interval
[𝑎𝑙] there will be another voter who is made strictly worse-off by that interval. Interval efficiency can
be interpreted as the interval version of Pareto efficiency. The dictatorial rule is interval efficient since it
always picks the top-interval of the dictator. GMI rules are interval efficient as will be proved in the proof
of Theorem 1.

10A similar rule can be defined for 𝑛 even using the left or right median.
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4 Results

We first show that all strategy-proof and interval efficient I-SCC must be top-L only. The latter property is
the interval version of the tops-only property commonly used in the social choice literature. This implies
that only changes in the top 𝐿 intervals of voters can affect the outcome of a strategy-proof and interval
efficient I-SCC. We define top-𝐿 only.

Top-𝐿 only: An I-SCC, 𝑓 , is said to be top-𝐿 only if for all 𝑃, 𝑃′ ∈ S𝑛 such that 𝜏(≿𝑖) = 𝜏(≿′𝑖) for all
𝑖 ∈ 𝑁 , 𝑓 (𝑃) = 𝑓 (𝑃′).

It states that if voter 𝑖 reports 𝑃 with the same set of top 𝐿-ranked alternatives (which is always an interval,
by Proposition 1) as in 𝑃′, then the outcomes under 𝑃 and 𝑃′ are the same.

Proposition 2 Suppose 𝑓 : S𝑛 → I𝐿 is strategy-proof and interval efficient. Then it is top-𝐿 only i.e. the
outcome of an I-SCC only depends on the top-𝐿 alternatives of the voters.

Proof: Suppose 𝑓 is a strategy-proof and interval efficient I-SCC. We will denote a closed interval (of
any cardinality) as [𝑎 𝑗 , 𝑎𝑘 ] = {𝑥 ∈ 𝑋 |𝑎 𝑗 ≤ 𝑥 ≤ 𝑎𝑘 } and an open interval as (𝑎 𝑗 , 𝑎𝑘 ) = {𝑥 ∈ 𝑋 | 𝑎 𝑗 <

𝑥 < 𝑎𝑘 }. We define [𝑎, 𝑎] as the smallest interval which contains the top-𝐿 intervals of all voters, i.e. (i)⋃
𝑖∈𝑁 {𝑃𝐿

𝑖 } ⊆ [𝑎, 𝑎] for some 𝑎, 𝑎 ∈ 𝑋 and (ii) � 𝑎′, 𝑎′ ∈ (𝑎, 𝑎) such that
⋃

𝑖∈𝑁 {𝑃𝐿
𝑖 } ⊆ [𝑎′, 𝑎′] .

Lemma 1 An interval [𝑎𝑙] is interval efficient if and only if [𝑎𝑙] ⊆ [𝑎, 𝑎].

Proof We prove necessity first. All voters prefer [𝑎, 𝑎 + 𝐿 − 1] to any other interval [𝑎𝑙] <𝐿 [𝑎, 𝑎 + 𝐿 − 1],
since their top-𝐿 alternatives are on the right of [𝑎𝑙]. Similarly, all voters prefer [𝑎 − 𝐿 + 1, 𝑎] to any other
interval [𝑎𝑙] >𝐿 [𝑎 − 𝐿 + 1, 𝑎]. We prove sufficiency. Suppose an 𝐿-interval [𝑎𝑙] ⊆ [𝑎, 𝑎] is the outcome.
Any distinct interval on the right of [𝑎𝑙] makes all voters 𝑖 such that [𝑃𝐿

𝑖 ] <𝐿 [𝑎𝑙] strictly worse-off and
any distinct interval on the left makes all voters 𝑖 such that [𝑎𝑙] <𝐿 [𝑃𝐿

𝑖 ] strictly worse-off. Therefore,
𝑓 (𝑃) ∈ [𝑎, 𝑎] for all 𝑃 ∈ S𝑛.

■

We now argue that 𝑓 must be top-𝐿 only. Take any two profiles 𝑃 and 𝑃′ in S𝑛, with the same top-𝐿
intervals, i.e., 𝑃𝐿

𝑖 = 𝑃
′𝐿
𝑖 for all 𝑖 ∈ 𝑁 . We show that 𝑓 (𝑃) = 𝑓 (𝑃′). We show construct a sequence of

profiles where each voter’s preference changes to 𝑃′
𝑖 sequentially but the outcome of the rule does not

change between any two consecutive profiles. Consider the following sequence of profiles:

𝑃0 = 𝑃 = (𝑃1, 𝑃2, 𝑃3, . . . , 𝑃𝑛), 𝑃1 = (𝑃′
1, 𝑃2, 𝑃3, . . . , 𝑃𝑛), 𝑃2 = (𝑃′

1, 𝑃
′
2, 𝑃3, . . . , 𝑃𝑛) , ..., 𝑃𝑛 = 𝑃′ =

(𝑃′
1, 𝑃

′
2, 𝑃

′
3, . . . , 𝑃

′
𝑛).
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In the above sequence, the profile 𝑃 is transformed one step at a time to the profile 𝑃′. We show that
𝑓 (𝑃𝑞) = 𝑓 (𝑃𝑞+1) for all 𝑞 ∈ {0, ..., 𝑛 − 1}. We first provide the argument for 𝑞 = 0. Similar arguments
can be made for other values of 𝑞. Assume for contradiction that 𝑓 (𝑃) = 𝑓 (𝑃0) = [𝑎𝑙] ≠ 𝑓 (𝑃′

1, 𝑃−1) =
𝑓 (𝑃1) = [𝑎𝑟]. Assume w.l.o.g that 𝑃𝐿

1 = 𝑃
′𝐿
1 ≤𝐿 [𝑎𝑙]. There are three cases:

Case 1: Suppose 𝑃𝐿
1 = 𝑃

′𝐿
1 ≤𝐿 [𝑎𝑙] <𝐿 [𝑎𝑟]. Voter 1 can deviate at profile 𝑃1 from 𝑃′

1 to 𝑃1 and be
better-off at the profile 𝑃0 by single-peakedness of ≿𝑖. Since 𝑓 is strategy-proof this is a contradiction.
Case 2: Suppose [𝑎𝑟] <𝐿 [𝑎𝑙]. Similar contradiction arises in the following two sub-cases: Case 2.1:
𝑃𝐿

1 ≤𝐿 [𝑎𝑟] <𝐿 [𝑎𝑙]. Voter 1 can deviate at profile 𝑃0 from 𝑃1 to 𝑃′
1 and be better-off by single-peakedness

of ≿𝑖. Case 2.2: [𝑎𝑟] ≤𝐿 𝑃𝐿
1 = 𝑃

′𝐿
1 ≤𝐿 [𝑎𝑙] with at least one equality holding strictly. Suppose 𝑃1 is such

𝑃𝐿
1 = [𝑎𝑡] and that all the alternatives to the left of 𝑎𝑡 are preferred over alternatives to the right of 𝑎𝑡+𝐿−1

i.e. 𝑥𝑃1𝑦 for all 𝑥 < 𝑎𝑡 and for all 𝑎𝑡+𝐿−1 < 𝑦. By single-peakedness of ≿𝑖, this implies that [𝑎𝑟] �𝑖 [𝑎𝑙].
Therefore, voter 1 will benefit from deviating at profile 𝑃0 from 𝑃1 to 𝑃′

1. Since 𝑓 is strategy-proof, this is
not possible. Therefore 𝑓 (𝑃0) = [𝑎𝑙] = [𝑎𝑟] = 𝑓 (𝑃1). Similar arguments can be made for the case where
[𝑎𝑙] ≤𝐿 𝑃𝐿

1 = 𝑃
′𝐿
1 . Therefore, 𝑓 (𝑃) = 𝑓 (𝑃0) = 𝑓 (𝑃𝑛) = 𝑓 (𝑃′).

■

Therefore, the outcome of an interval efficient and strategy-proof I-SCC only depends on the top-𝐿 intervals
of voters irrespective of the ordering of alternatives within that interval. In other words, the outcomes
of any two profiles which have the same set of top-𝐿 alternatives are the same. Next, our main theorem
provides a characterization of strategy-proof I-SCCs.

Theorem 1 Suppose the extension ≿𝑖 of preferences 𝑃𝑖 for each voter 𝑖 ∈ 𝑁 is responsive on intervals. An
I-SCC, 𝑓 : S𝑛 → I𝐿 , is anonymous, strategy-proof and interval efficient if and only if it is a GMI rule.

Proof: We prove necessity first. Anonymity follows from the definition of GMI rules. Strategy-proofness:
Consider any voter 𝑖 ∈ 𝑁 and a given profile 𝑃 ∈ S𝑛. There are two cases: (i) If 𝑓 (𝑃) = 𝑃𝐿

𝑖 then there is
no profitable deviation that leads to a strictly better outcome for 𝑖. (ii) If 𝑓 (𝑃) <𝐿 𝑃𝐿

𝑖 then the only way to
change the outcome is to change the median of the reported top-𝐿 intervals by all the voters {𝑃𝐿

𝑖 }𝑛𝑖=1 and the
fixed intervals {[𝛼𝑖]}𝑛−1

𝑖=1 . This can be done by reporting 𝑃′
𝑖 such that 𝑃′𝐿

𝑖 <𝐿 𝑓 (𝑃). By single-peakedness
over intervals and by the definition of GMI rule, [ 𝑓 (𝑃𝑖, 𝑃−𝑖) ≤𝐿 𝑓 (𝑃′

𝑖 , 𝑃−𝑖) <𝐿 𝑃𝐿
𝑖 ] =⇒ [ 𝑓 (𝑃𝑖, 𝑃−𝑖) ≿𝑖

𝑓 (𝑃′
𝑖 , 𝑃−𝑖)]. Therefore no unilateral deviation can be strictly beneficial.

Interval Efficiency: Take any profile 𝑃 ∈ S𝑛 and suppose [𝑎𝑙] <𝐿 𝑓 (𝑃) for some interval [𝑎𝑙] ∈ I𝐿 .
Since 𝑓 (𝑃) = 𝑚𝑒𝑑 (𝑃𝐿

1 , ..., 𝑃
𝐿
𝑛 , [𝛼1], ..., [𝛼𝑛−1]) all those voters 𝑖 with 𝑃𝐿

𝑖 >𝐿 𝑓 (𝑃) strictly prefer 𝑓 (𝑃)
over [𝑎𝑙] by single-peakedness over intervals. Therefore, any such interval [𝑎𝑙] cannot make all the voters
strictly better-off compared to 𝑓 (𝑃). Similar arguments can be made for the intervals on the right of 𝑓 (𝑃).
Therefore, GMI rules are interval-efficient.

14



We now prove sufficiency. Suppose an I-SCC, 𝑓 : S𝑛 → I𝐿 is anonymous, strategy-proof and interval
efficiency. We will show that it is a GMI rule. Note that interval efficiency of 𝑓 implies unanimity i.e. if
𝑃𝐿
𝑖 = 𝑃𝐿

𝑗 for all 𝑖, 𝑗 ∈ 𝑁 , then 𝑓 (𝑃) = 𝑃𝐿
𝑖 since any other outcome would not be interval efficient (it can be

improved upon by selecting 𝑃𝐿
𝑖 ). By Proposition 2 the rule is top-𝐿 only. Our proof proceeds in steps. We

first consider voter profiles where varying number of voters have peaks either at 𝑎1 or 𝑎𝑚. We define the
fixed intervals ([𝛼1], ..., [𝛼𝑛−1]) using the outcomes at those profiles. Finally, we show that the outcome
for every profile is a GMI rule according to the given 𝛼’s. We elaborate on the first step below.

Let 𝑃: 𝑎1𝑃𝑎2 . . . 𝑃𝑎𝑚 with the top-𝐿 interval as 𝑃𝐿 = [𝑎1] and let 𝑃: 𝑎𝑚𝑃𝑎𝑚−1 . . . 𝑃𝑎1 with the top-𝐿
interval as 𝑃𝐿

= [𝑎𝑚−𝐿+1]. Let (𝑃𝑛−𝑘 , 𝑃
𝑘 ) ∈ S𝑛 be a profile where 𝑛 − 𝑘 voters have the preference 𝑃 and

𝑘 voters have the preference 𝑃 for any 𝑘 ∈ {1, . . . , 𝑛 − 1}. We define the fixed intervals for the GMI rule
𝑓 𝛼 as follows. Let [𝛼𝑘 ] = 𝑓 (𝑃𝑛−𝑘 , 𝑃

𝑘 ) for all 𝑘 ∈ {1, . . . , 𝑛 − 1}. Therefore, 𝛼𝑘 is the outcome of the
I-SCC 𝑓 where 𝑘 voters have the preference 𝑃 and the remaining voters have the preference 𝑃. These 𝛼’s
define a GMI rule 𝑓 𝛼 with {[𝛼𝑖]}𝑛−1

𝑖=1 . To show that the two rules coincide i.e. 𝑓 = 𝑓 𝛼 we use the following
Lemma.

Lemma 2 For all 𝑖 ∈ {1, . . . , 𝑛 − 2} we have [𝛼𝑖] ≤𝐿 [𝛼𝑖+1].

Proof: Suppose a voter 𝑙 changes preference from 𝑃 to 𝑃 such that the profile changes from (𝑃𝑛−𝑘 , 𝑃
𝑘 )

to (𝑃𝑛−𝑘−1, 𝑃
𝑘+1). Strategy-proofness requires that if the true preference of voter 𝑙 is 𝑃 then by de-

viating to 𝑃 the outcome cannot be strictly preferred. Therefore, there are only two cases: (i) Sup-
pose 𝑓 (𝑃𝑛−𝑘 , 𝑃

𝑘 ) ∼𝑙 𝑓 (𝑃𝑛−𝑘−1, 𝑃
𝑘+1). This is only possible if 𝑓 (𝑃𝑛−𝑘 , 𝑃

𝑘 ) = 𝑓 (𝑃𝑛−𝑘−1, 𝑃
𝑘+1) since

≿𝑖 is anti-symmetric. Therefore, 𝑓 (𝑃𝑛−𝑘 , 𝑃
𝑘 ) = [𝛼𝑘 ] = 𝑓 (𝑃𝑛−𝑘−1, 𝑃

𝑘+1) = [𝛼𝑘+1]. (ii) Suppose
𝑓 (𝑃𝑛−𝑘 , 𝑃

𝑘 ) �𝑙 𝑓 (𝑃𝑛−𝑘−1, 𝑃
𝑘+1). By definition and single-peakedness over intervals, [𝛼𝑖] <𝐿 [𝛼𝑖+1].

Hence, [𝛼1] ≤𝐿 [𝛼2] · · · ≤𝐿 [𝛼𝑛−1].

■

We now show that 𝑓 is the GMI rule 𝑓 𝛼 with fixed intervals as 𝛼 = {[𝛼𝑖]}𝑛𝑖=1 i.e. for any 𝑃 ∈ S𝑛,
𝑓 (𝑃) = 𝑓 𝛼 (𝑃). We apply induction on the number of voters (say, 𝜅) who don’t have their top as 𝑎1 or
𝑎𝑚. Let 𝜅 be the induction variable such that 𝜅 = |{𝑖 : 𝜏(𝑃𝑖) ∉ {𝑎1, 𝑎𝑚}}|. We first argue for the base case
where 𝜅 = 0 i.e. 𝑃𝑖 ∈ {𝑃, 𝑃} for all 𝑖 ∈ 𝑁 . There are two cases here. Let |{𝑖 |𝜏(𝑃𝑖) = 𝑎1}| = 𝑛 − 𝑘 and
|{𝑖 |𝜏(𝑃𝑖) = 𝑎𝑚}| = 𝑘 . Case B1: Suppose 𝑘 ∈ {0, 𝑛}. For all 𝑖 ∈ 𝑁 , either 𝜏(𝑃𝑖) = 𝑎1 (𝑃𝑖 = 𝑃) or 𝜏(𝑃𝑖) =
𝑎𝑚 (𝑃𝑖 = 𝑃). By interval efficiency, 𝑓 (𝑃𝑛) = 𝑓 𝛼 (𝑃𝑛) = 𝑃𝐿 = [𝑎1] and 𝑓 (𝑃𝑛) = 𝑓 𝛼 (𝑃𝑛) = 𝑃

𝐿
= [𝑎𝑚−𝐿+1]

respectively. Case B2: Suppose 0 < 𝑘 < 𝑛. By Lemma 2, [𝛼𝑖] ≤𝐿 [𝛼𝑖+1] for all 𝑖 ∈ {1, . . . , 𝑛 − 2}.
Therefore, by construction, 𝑓 (𝑃) = 𝑓 (𝑃𝑛−𝑘 , 𝑃

𝑘 ) = [𝛼𝑘 ] = 𝑚𝑒𝑑{𝑃𝐿
1 , . . . , 𝑃

𝐿
𝑛 , [𝛼1], . . . , [𝛼𝑛−1]} = 𝑓 𝛼 (𝑃).

We have shown that when the top-ranked alternatives of voters is either 𝑎1 or 𝑎𝑚, the outputs of 𝑓 and 𝑓 𝛼

coincide, which is the base case (𝜅 = 0). Using induction we will show that for any arbitrary profile the
outputs of 𝑓 and 𝑓 𝛼 coincide.
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Induction Hypothesis: Suppose any 𝜅 ∈ {0, . . . , 𝑛−1} the two functions 𝑓 and 𝑓 𝛼 coincide. We prove that
for 𝜅 + 1, the outputs of 𝑓 and 𝑓 𝛼 will also coincide. Consider any 𝑃 ∈ S𝑛 where 𝜅 + 1 voters do not have
their top alternatives as 𝑎1 or 𝑎𝑚. Pick any such voter 𝑗 with top-𝐿 interval 𝑃𝐿

𝑗 . Assume for contradiction
[𝑎𝑙] = 𝑓 (𝑃 𝑗 , 𝑃− 𝑗 ) ≠ 𝑓 𝛼 (𝑃 𝑗 , 𝑃− 𝑗 ) = [𝑏𝑙]. We show that there is a unilateral deviation which will benefit
some voter.

W.l.o.g. assume that [𝑎𝑙] <𝐿 [𝑏𝑙]. There are three cases. Case 1: 𝑃𝐿
𝑗 = [𝑎𝑡] ≤𝐿 [𝑎𝑙] <𝐿 [𝑏𝑙]. Consider

the preference profile 𝑃
′′
= (𝑃′′

𝑗 , 𝑃− 𝑗 ), where 𝑃
′′𝐿
𝑗 = 𝑃. This falls under the case where 𝜅 voters do

not have their top alternative as 𝑎1 or 𝑎𝑚. Therefore, by the induction hypothesis, 𝑓 𝛼 (𝑃′′) = 𝑓 (𝑃′′).
By definition of GMI rule 𝑓 𝛼, since 𝑗 has moved her top-𝐿 interval on the same side of the previous
outcome (which is a median), the outcome remains unchanged, i.e., 𝑓 𝛼 (𝑃) = 𝑓 𝛼 (𝑃′′). This implies that
𝑓 (𝑃) = [𝑎𝑙] <𝐿 𝑓 (𝑃′′) = 𝑓 𝛼 (𝑃) = 𝑓 𝛼 (𝑃′′) = [𝑏𝑙]. The following move for 𝑗 at profile 𝑃′′ is beneficial:
𝑃

′′
𝑗 → 𝑃 𝑗 since due responsiveness/single-peakedness over intervals,

[
𝜏(≿′′

𝑗 ) = 𝑃
′′𝐿
𝑗 = 𝑃𝐿 ≤𝐿 [𝑎𝑙] <𝐿

[𝑏𝑙]
]

=⇒
[
[𝑎𝑙] �′′

𝑗 [𝑏𝑙]
]

=⇒
[
𝑓 (𝑃) �′′

𝑗 𝑓 (𝑃′′)
]
. Case 2: 𝑃𝐿

𝑗 = [𝑎𝑡], where, 𝑎𝑡 ∈ (𝑎𝑙 , 𝑏𝑙). There
are two sub-cases: 𝜏(𝑃 𝑗 ) > 𝑏𝑙 or 𝜏(𝑃 𝑗 ) ∈ [𝑎𝑡 , 𝑏𝑙]. The following argument works for both the cases.
Consider the preference 𝑃′

𝑗 and a preference extension ≿′𝑗 such that [𝑏𝑙] �′
𝑗 [𝑎𝑙]. Note that responsiveness

does not impose any restriction on how the intervals [𝑎𝑙] and [𝑏𝑙] are compared according to ≿ 𝑗 since
[𝑎𝑙] <𝐿 ≿

′
𝑗= [𝑎𝑡] < [𝑏𝑙]. Therefore, such a preference ≿′𝑗 exists in the domain S(I𝐿). Now consider

the move from 𝑃
′
𝑗 to 𝑃

′′
𝑗 = 𝑃, where voter 𝑗 gets better off since 𝑓 (𝑃′′) = [𝑏𝑙] �′

𝑗 𝑓 (𝑃) = [𝑎𝑙]. Case
3: Suppose 𝑎𝑙 <𝐿 [𝑏𝑙] <𝐿 𝑃𝐿

𝑗 = [𝑎𝑡]. Here by deviating to 𝑃
′′𝐿
𝑗 = 𝑃 again the outcomes must coincide

but since the median cannot change we have 𝑓 (𝑃) = [𝑎𝑙] < [𝑏𝑙] = 𝑓 𝛼 (𝑃) = 𝑓 𝛼 (𝑃′′) = 𝑓 (𝑃′′). This
move is beneficial since by single-peakedness over intervals we get

[
[𝑎𝑙] <𝐿 [𝑏𝑙] ≤𝐿 [𝑎𝑡]

]
=⇒ [[𝑏𝑙] � 𝑗

[𝑎𝑙]] =⇒ [ 𝑓 (𝑃′′) � 𝑗 𝑓 (𝑃)] .

Similar arguments can be made when [𝑎𝑙] >𝐿 [𝑏𝑙]. Therefore, in both the cases, when [𝑎𝑙] ≠ [𝑏𝑙], there
exists a profitable deviation for a given preference profile. This contradictions the assumption that 𝑓 is not
strategy proof. Therefore, 𝑓 (𝑃) = [𝑎𝑙] = 𝑓 𝛼 (𝑃) = [𝑏𝑙] and the two rules coincide. This completes the
induction argument, and the claim is true for all 𝜅 ∈ {1, 2, ..., 𝑛}. Therefore for all 𝑃 ∈ S𝑛, 𝑓 (𝑃) = 𝑓 𝛼 (𝑃)
with the fixed intervals 𝛼 = (𝛼1, ..., 𝛼𝑛−1) as defined above.

■

We provide an intuitive sketch of the proof of Theorem 1. Necessity is straightforward. GMI rules are
anonymous since the rule is invariant to permutation of voters’ preferences. GMI rules are interval efficient
since they always pick an 𝐿-interval which lies between the left-most and right-most top interval of voters.
This implies that any other interval which makes a voter strictly better-off will also make a voter strictly
worse-off. We show that GMI rules are strategy-proof. Since GMI rules only take into account the top
interval of voters, a voter 𝑖 has to change her own top interval to change the outcome. Since the GMI
rule picks the median of the top intervals and the fixed intervals, the only way to change the outcome is
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to ‘report’ the top interval on the other side of the interval outcome, 𝑓 (𝑃) (the outcome under truthful
reporting). As a result of the deviation, the outcome moves further away from the ‘true’ top-𝐿 interval of
voter 𝑖. Since the extension ≿𝑖 of 𝑃𝑖 is single-peaked over intervals (Proposition 1) any such deviation will
make voter 𝑖 worse-off.

Sufficiency of the axioms is proved in multiple steps. By Proposition 1, a preference ≿𝑖 over intervals is
single-peaked according to <𝐿 . This implies that intervals can be arranged from left to right and can be
seen as ‘alternatives’ in the relevant interval-based single-peaked domain. We have shown that any I-SCC
which is strategy-proof and interval efficiency must be top-𝐿 only (Proposition 2). This implies that only
the top intervals determine the outcome of such I-SCCs.

The next part of proof involves identifying the fixed intervals, [𝛼1], . . . , [𝛼𝑛−1]. This is done by starting
with a profile where all voters have peak interval starting at either [𝑎1] or [𝑎𝑚−𝐿+1], i.e., the extreme left
and right intervals respectively. Once the fixed intervals for the GMI rule have been identified, an induction
argument is applied on the number of voters who do not have the extreme left or right peak intervals. The
induction argument then proceeds by contradiction. If the given I-SCC rule is not the GMI rule defined
in the first step, then we can construct preference profiles where an individual can deviate to get a strictly
better outcome. A deviation to any of the extreme preferences falls under the induction hypothesis case.
These arguments then imply that the I-SCC which is strategy-proof, anonymous and interval efficient must
be the GMI rule with the defined fixed intervals.

4.1 Necessity of responsiveness for the strategy-proofness of the GMI rule

In this section we show that responsiveness over intervals is a necessary condition for the GMI rule to be
strategy-proof given the ordering over the set of alternatives. Using Proposition 1 we only need to show
that preferences over intervals are single-peaked if the GMI rule is strategy-proof. To formally study this,
we list the primitives of the model.

Suppose the alternatives are ordered 𝑎1 < 𝑎2 < ... < 𝑎𝑚 and every voter 𝑖 ∈ 𝑁 has a single-peaked
preference 𝑃𝑖 over 𝑋 . Voters have preferences ≿𝑖 over I𝐿 which are also complete and transitive. Let
P(I𝐿) be the set of all complete and transitive binary relations on I𝐿 . Let S(I𝐿) be the set of all single-
peaked preferences on I𝐿 . Let D denote any generic domain of complete and transitive preferences over
I𝐿 .

A s.c.f. 𝑓 : D𝑛 → I𝐿 is defined over 𝑛-tuples of 𝜋 = (≿1,≿2, ...,≿𝑛) and produces an alternative 𝑓 (𝜋) ∈ 𝑋 .
The GMI rule is defined as before since it only takes into account the top-L intervals of voters: an I-SCC,
𝑓 𝛼 : D𝑛 → I𝐿 , is a GMI rule if there exist 𝑛 − 1 fixed intervals [𝛼1], . . . , [𝛼𝑛−1]) such that for any
𝑃 ∈ S𝑛,

𝑓 𝛼 (𝑃) = 𝑚𝑒𝑑 (𝑃𝐿
1 , . . . , 𝑃

𝐿
𝑛 , [𝛼1], . . . , [𝛼𝑛−1]).
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Theorem 2 The set of single-peaked preferences over I𝐿 is the largest set over which the class of GMI
rules is strategy-proof, i.e., if D ⊈ S(I𝐿) then there exists a GMI rule 𝑓 𝛼 on D ⊆ P(I𝐿) with fixed
intervals, [𝛼1], . . . , [𝛼𝑛−1] and a profile 𝑃 ∈ D𝑛 on which 𝑓 𝛼 is not strategy-proof.

Proof. Suppose D ⊈ S(I𝐿). We show that there exists a GMI rule, 𝑓 𝛼 : D𝑛 → I𝐿 with fixed intervals,
[𝛼1], . . . , [𝛼𝑛−1] and a profile 𝑃 ∈ D𝑛 on which 𝑓 𝛼 is not strategy-proof. Since 𝑎1 < 𝑎2 < ... < 𝑎𝑚,
D ⊈ S(I𝐿) implies that there exist intervals 𝐴, 𝐵, 𝐶 ∈ I𝐿 such that (i) 𝐴 < 𝐵 < 𝐶 or 𝐶 < 𝐵 < 𝐴 and (ii)
for some voter 𝑖∗ ∈ 𝑁 , 𝜏(≿𝑖∗) = 𝐴, and 𝐶 �𝑖∗ 𝐵.

Suppose w.l.o.g that 𝐴 < 𝐵 < 𝐶 and 𝜏(≿𝑖∗) = 𝐴. We take the following GMI rule, 𝑓 𝛼 which has the
following fixed intervals: [𝛼1] = [𝛼2] = ... = [𝛼𝑛−1] = 𝐶. Consider the following profile, 𝜋 ∈ D𝑛 with the
top intervals as follows (since GMI only takes the top-L intervals into account): 𝜏(≿𝑖∗) = 𝐴 and 𝜏(�𝑖) = 𝐵

for all 𝑖 ∈ 𝑁 \ {𝑖∗}. Note that 𝜋 ∉ S(I𝐿) since 𝐴 �𝑖∗ 𝐶 �𝑖∗ 𝐵 even though 𝐴 < 𝐵 < 𝐶. By definition of
the GMI rule,

𝑓 𝛼 (𝜋) = 𝑚𝑒𝑑 (𝜏(≿1), ..., 𝜏(≿𝑖∗−1), 𝜏(≿𝑖∗), 𝜏(≿𝑖∗+1), ..., 𝜏(≿𝑛), [𝛼1], ..., [𝛼𝑛−1])
= 𝑚𝑒𝑑 (𝐵, ..., 𝐵︸  ︷︷  ︸

𝑖∗−1

, 𝐴︸︷︷︸
𝑖∗𝑡ℎ voter

, 𝐵, ..., 𝐵︸  ︷︷  ︸
𝑛−𝑖∗

, 𝐶, ..., 𝐶︸  ︷︷  ︸
𝑛−1

) = 𝐵

= 𝑚𝑒𝑑 ( 𝐴︸︷︷︸
voter 𝑖∗

, 𝐵, ..., 𝐵︸  ︷︷  ︸
𝑛−1

, 𝐶, ..., 𝐶︸  ︷︷  ︸
𝑛−1

) = 𝐵

However, if individual 𝑖∗ deviates to ≿′𝑖∗= 𝐶, then the outcome at 𝜋′ = (≿′𝑖∗ ,≿−𝑖∗) is,

𝑓 𝛼 (𝜋′) = 𝑚𝑒𝑑 ( 𝐶︸︷︷︸
𝑖∗

, 𝐵, ..., 𝐵︸  ︷︷  ︸
𝑛−1

, 𝐶, ..., 𝐶︸  ︷︷  ︸
𝑛−1

) = 𝐶

Since 𝐶 �𝑖∗ 𝐵, this move is beneficial for 𝑖∗. Therefore, we get a contradiction that 𝑓 𝛼 is not strategy-
proof. This implies that D ⊆ S(I𝐿). By Proposition 1, since preferences 𝑃𝑖 are single-peaked, and ≿𝑖 are
single-peaked, ≿𝑖 is responsive.

Therefore, not only is responsiveness weaker than the max or min preference extension it is ‘somewhat’
necessary for the GMI rule to be strategy-proof. The condition under which the latter holds is that the
preferences over alternatives be single-peaked. If the latter condition is violated, there is no guarantee that
a single-peaked preference extension over intervals will imply single-peakedness over alternatives, thereby
violating responsiveness over intervals (since Proposition 1 would no longer hold).11

11Preferences over alternatives need not be single-peaked for preferences over intervals to be single-peaked, e.g.: consider an
ordered set of alternatives 𝑎1 < 𝑎2 < 𝑎3 < 𝑎4 < 𝑎5 and 𝐿 = 3. The preference 𝑃𝑖 = 𝑎2𝑃𝑖𝑎4𝑃𝑖𝑎3𝑃𝑖𝑎1𝑃𝑖𝑎5 is not single-peaked
but the following responsive preference extension ≿𝑖 is: [𝑎2] ≿𝑖 [𝑎1] and [𝑎2] ≿𝑖 [𝑎3].
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5 Conclusion

We characterize generalized median interval rules on an extended single-peaked domain which satisfy
responsiveness on intervals. It remains to be seen what the class of strategy-proof and interval efficient
SCCs would be without responsiveness over intervals or if the aggregation rules picked non-intervals. This
will depend on the nature of assumptions made on preference extensions to intervals or non-intervals.
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