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1. INTRODUCTION

The deterministic approach to evolutionary game theory seeks to provide dynamical foundations to Nash

equilibria through the use of evolutionary dynamics, which usually take the form of ordinary differential

equations (Sandholm (2010)).1 A large population of agents play a game and the distribution of strategies

in that agent constitute the population state. Evolutionary dynamics are defined over such population states.

The key focus of most deterministic evolutionary game theoretic models is whether the population state

converges to a Nash equilibrium under different evolutionary dynamics.

Two important questions need to be addressed before admitting evolutionary dynamics as valid

descriptions of the behavior of a large population. The first is about the behavioral foundations of

evolutionary dynamics. This question is resolved by appealing to revision protocols which describe how

agents revise strategies when they receive a chance to do so. For example, imitative revision protocols

generate the replicator dynamic and the logit best response, which is a particular perturbation of the best

response, generates the logit dynamic.2 The second key question is about the mathematical foundations of

such dynamics. Technically, these dynamics are defined for a large population or a continuum of agents,

with each agent being of measure zero. But in reality, there is no population or society where there are

a continuum of agents or where agents are of measure zero. Even if a population is large, the number

of individuals will always be finite. How then to reconcile this aspect of reality with the mathematical

abstraction of a continuum of agents?

This paper considers the second question in the context of the logit dynamic with a continuum of

strategies (Perkins and Leslie (2014), Lahkar and Riedel (2015)). It does so by taking a deterministic

approximation approach which we explain more fully below. This approach has been applied earlier for

evolutionary dynamics defined on large population games with a finite strategy set (for example, Benaı̈m

and Weibull (2003)). But to the best of our knowledge, this is the first paper that adopts such an approach

to an evolutionary dynamic defined for a continuum of strategies. We then apply this approach to an

important class of large population games; namely, supermodular games. Hofbauer and Sandholm (2007)

analyze such games with finite strategy sets. We extend that notion to the context of continuous strategy

sets and establish convergence of the continuum logit dynamic to logit equilibria, which are a perturbation

of Nash equilibria, in such games. Again, as far as we know, this is the first paper to consider large

population supermodular games with a continuum of strategies.

It is not necessary to have a continuum of measure zero agents to construct evolutionary game theoretic

models. One can do so under the more realistic assumption of a finite number of agents by, for example,

adopting a stochastic instead of a deterministic approach. In such an approach, we would define a stochastic

process using a revision protocol to describe how the social state changes.3 The focus of attention is then

on the stationary distribution of the process and the weight that distribution places on the set of Nash

equilibria. A problem with this approach is that it may require astronomically long periods of time to

obtain convergence results under this approach; a time period so long that it is no longer meaningful

1Well known evolutionary dynamics include the replicator dynamic, the logit dynamic, the Brown–von Neumann–Nash
(BNN) dynamic and the pairwise comparison dynamic. Sandholm (2010) provides an extensive exposition of such dynamics for
finite strategy games. Such dynamics have also been extended to games with continuous strategy sets. See Cheung and Lahkar
(2018) for a review. Not all evolutionary dynamics need to be differential equations. For example, the best response dynamic is a
differential inclusion.

2See, for example, Lahkar and Sandholm (2008) for some such revision protocols that generate the different important
evolutionary dynamics. Also see Cheung (2014) for an extension of the notion of revision protocols to large population games
with a continuum of strategies.

3See Chapter 10 of Sandholm (2010) for further details of this methodology.
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as a prediction for social or economic processes (Ellison (1993)). This is probably the reason why the

deterministic approach to evolutionary game theory has been more widely used in economics.

Nevertheless, the stochastic approach can still be extremely useful in resolving the question we wish

to address; that of providing the mathematical foundations to deterministic evolutionary dynamics. It is

known, at least for large population games with a finite strategy set, that the behavior of a stochastic process

can be approximated by a deterministic dynamic over finite time intervals provided the number of agents,

while being finite, is large enough. This is the deterministic approximation approach to evolutionary

dynamics. As a purely mathematical result, deterministic approximation was introduced by Kurtz (1970).

Since then, various authors have extended such results to evolutionary game theory in the context of finite

strategy games. They include Boylan (1995), Binmore et al. (1995), Börgers and Sarin (1997), Schlag

(1998), and Sandholm (2003). The strongest and most general such results can be found in Benaı̈m and

Weibull (2003). Thus, under this approach, a deterministic evolutionary dynamic may be interpreted as the

approximation of the way a stochastic evolutionary process would behave over finite time periods.

The deterministic approximation approach, therefore, provides rigorous mathematical foundations

to evolutionary dynamics. From a practical point of view, this approach is useful because very often,

it is simpler to analyze an evolutionary dynamic instead of the underlying stochastic process. There is,

however, a significant gap in the literature on deterministic approach. It is that, as far as we know and as

we have already noted, all such deterministic approximation results are for large population games with a

finite number of strategies. But by now, there is a significant literature on evolutionary dynamics with

a continuum of strategies. These include the replicator dynamic and the more general class of imitative

dynamics (Oechssler and Riedel (2001),Oechssler and Riedel (2002), Cheung (2016)), the BNN dynamic

(Hofbauer et al. (2009)), the pairwise comparison dynamic (Cheung (2014)), the logit dynamic (Perkins

and Leslie (2014), Lahkar and Riedel (2015)) and the more general class of perturbed best response

dynamics to which the logit dynamic belongs (Lahkar et al. (2022)). Such dynamics have also been

applied to a variety of classical models in economics like public goods, common resource problems and

Cournot competition (Lahkar and Mukherjee (2019), Lahkar and Mukherjee (2021), Lahkar and Ramani

(2021)). Hence, dynamics with a continuum of strategies are now a well–established part of evolutionary

game theory, both from the theoretical perspective as well as the applied. Investigating their mathematical

foundations through the deterministic approximation approach would, therefore, be a worthwhile exercise.

Hence, this paper extends the deterministic approximation approach to evolutionary dynamics with a

continuum of strategies. In particular, we focus on the logit dynamic with a continuous strategy set. This

dynamic is one of the canonical dynamics of learning and evolutionary game theory. It was introduced

by Fudenberg and Levine (1998) for finite strategy games in the context of stochastic fictitious play and

has since then been widely used to model evolution in large population games.4 It is the prototype of the

wider class of perturbed best response dynamics (Hofbauer and Sandholm (2002), Hofbauer and Sandholm

(2007)) and is generated by perturbing payoffs with the Shannon entropy. Thus, it is an approximation of

the best response dynamic but is always uniquely defined and, hence, is a differential equation. Therefore,

it is more tractable than the best response dynamic, particulary in large population games where the best

response may not even exist.

We focus on the logit dynamic because of its importance in evolutionary game theory. A larger goal,

of course, would be to have a general deterministic approximation result for all continuous strategy

evolutionary dynamics. Right now, however, that is beyond our reach. In fact, even deriving such a

4See, for example, Hofbauer and Hopkins (2005) and Hofbauer and Sandholm (2007). As noted earlier, this dynamic has
been extended to continuous strategy sets by Perkins and Leslie (2014) and Lahkar and Riedel (2015).
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result for the broader class of continuous strategy perturbed best response dynamics may not be feasible

at present. Even though Lahkar et al. (2022) present a general class of continuous strategy perturbed

best response dynamics using perturbations other than the Shannon entropy, closed form expressions

of such dynamics are not easily derivable. Our analysis in the present paper, on the other hand, relies

significantly on the closed form expression of the logit best response, upon which the logit dynamic is

based. Nevertheless, the paper does illustrate the possibility of obtaining deterministic approximation

results for continuous strategy evolutionary dynamics, even though the technical challenges of extending it

more generally to other dynamics may be significant.

We consider a linear game with a continuum of strategies and played by a continuum of agents. Our

objective is to provide rigorous foundations to the logit dynamic in this game. We first define a step–wise

approximation of the original game and argue that solution trajectories of the original logit dynamic is

close to the logit dynamic in the step–wise approximation. We then consider a discrete approximation of

the original game with a finite number of strategies and a finite number of players and introduce the logit

stochastic process in this game. Using the approach of Benaı̈m and Weibull (2003), we argue that as the

number of players and strategies become large in this discrete game, the behavior of the stochastic process

approximates the step–wise logit dynamic which, in turn, approximates the original continuum logit

dynamic. This gives us our desired deterministic approximation result. As per this result, the continuum

logit dynamic is an approximation of the logit stochastic process in a finite game as the number of strategies

and players in that game go to infinity. We should note that even though we apply the finite strategy

deterministic approximation framework of Benaı̈m and Weibull (2003), its extension to a continuum of

strategies is not trivial. For example, even determining the notion of closeness in the continuous strategy

case raises significant topological considerations like whether to choose the strong or weak topology. All

our results are based on the strong topology or the topology induced by the total variation norm. As is

typically the case, our deterministic approximation result is a finite horizon result. It holds for finite time

intervals but may break down if the time span is of infinite length.

We then apply our deterministic approximation approach to the question of convergence of the

continuum logit dynamic in supermodular games. Supermodular games are characterized by strategic

complementarities and form an important class of games in economics with applications like search,

coordination and modeling of positive externalities (Topkis (1998), Vives (1990), Milgrom and Roberts

(1990)). Hofbauer and Sandholm (2007) introduce large population finite strategy supermodular games and

establish that a stochastic process generated by a perturbed best response would converge to a perturbed

best response equilibrium in a finite but sufficiently long period of time (medium run convergence).5 We

consider a continuous strategy supermodular game and apply the approach of Hofbauer and Sandholm

(2007) to argue that the logit stochastic process will converge in the medium run to a logit equilibrium

of the discrete approximation of the continuous strategy game. Our deterministic approximation result

then allows us to conclude that the logit dynamic converges to logit equilibria in the continuous strategy

supermodular game.

As noted earlier, this is the first paper that defines a continuous strategy supermodular games and,

therefore, also the first paper that establishes any result on convergence of an evolutionary dynamic in

such games. Hofbauer and Sandholm (2007) establish their medium run convergence result for the larger

class of perturbed best response dynamics. This is not feasible for us because their result relies on deriving

perturbed best response dynamics through stochastic perturbations. But a similar methodology is not yet

5A perturbed best response equilibrium is an approximation of a Nash equilibrium. It is a rest point of a perturbed best
response dynamic. For the logit dynamic in particular, we refer to its rest points as logit equilibria.
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known for games with a continuum of strategies.6 Hence, we need to rely on the specific form of the

logit best response for our analysis which, once again, illustrates the importance of focusing on the logit

dynamic in this paper.

The rest of the paper is as follows. Section 2 introduces the model and establishes the step–wise

approximation of the continuum logit dynamic. In Section 3, we derive our main deterministic approxima-

tion result. Section 4 defines large population supermodular games with a continuum of strategies and

establishes the medium run convergence of the logit dynamic in such games. Section 5 concludes.

2. PRELIMINARIES

We consider a population of unit mass with each agent in the population being of measure zero. Let

S := [0,1] ⊂ R be the strategy space of the players in the population.7 We endow S with the usual

Borel sigma-algebra B(S ). Let P(S ) denote the space of probability measures on S . A probability

measure µ ∈P(S ) denotes the state of the population which we interpret as the distribution of strategies

in the population. Hence, µ(A) is the proportion of players in the population using strategies in A⊆S .

Let L ∞(S ) be the collection of bounded measurable functions on S . A population game is a weakly

continuous mapping ϕ : P(S )→ L ∞(S ) such that ϕx(µ) denotes the payoff to a player playing

strategy x at population state µ . A population state µ◦ is said to be a Nash equilibrium of the underlying

population game ϕ if for all x ∈ Supp(µ◦) and all y ∈S , we have ϕx(µ◦) ≥ ϕy(µ◦).8

In this paper, we focus on games with a linear payoff structure in a pairwise random matching setting.

We define the linear structure using a function f : S ×S →R such that f (x,y) is the payoff of an agent

who plays x when randomly matched with another agent playing y. We can then write payoffs in the

associated population game ϕ as the expected value

ϕx(µ) =
∫

S
f (x,y)µ(dy), for all x ∈S . (1)

An example of such a linear game is as follows.

Example 2.1. Consider strategies x,y ∈ S and let f (x,y) = m(x)y− c(x), where m is an increasing

function of x and c is an arbitrary function of x. This linear payoff structure generates a population game

ϕ in which the payoff of an agent playing strategy x at a population state µ is

ϕx(µ) =
∫

S
f (x,y)µ(dy)

= m(x)
∫

S
yµ(dy)− c(x)

∫
S

µ(dy)

= m(x)a(µ)− c(x), (2)

where a(µ) =
∫
S yµ(dy) is the aggregate strategy level in the population. We note that m being an

increasing function in (2) is not required for ϕ to be linear. But we make this assumption in order to

establish supermodularity later. �

We focus on the logit dynamic for a large population game ϕ with a continuous strategy set. To

6Although Lahkar et al. (2022) extend continuous strategy perturbed best response dynamics beyond the logit dynamic, their
extension is still based on deterministic perturbations.

7The strategy set being [0,1] is a convenient normalization. Our arguments extend to any strategy set that is a compact convex
subset of R.

8We denote the support of a probability measure µ by Supp(µ).
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define the dynamic, fix a parameter η > 0. Then the continuum strategy logit best response is a mapping

Lη : P(S )→P(S ) such that for all µ ∈P(S ),

Lη [µ ](A) :=
∫

A

exp(η−1ϕx(µ))dx∫
S exp(η−1ϕy(µ))dy

, for all A ∈B(S ). (3)

Intuitively, the logit best response is an approximation of the best response, particularly for η small. In that

case, the probability measure Lη [µ ] puts nearly all its mass on the set of best responses to µ . Unlike best

responses, though, the logit best response is uniquely defined and varies smoothly with µ . From (3), we

then obtain the continuum strategy logit dynamic (Perkins and Leslie (2014); Lahkar and Riedel (2015))

µ̇ = Lη(µ)−µ (4)

induced by ϕ . Like any other evolutionary dynamic, the logit dynamic also measures the rate of change of

the population state. Under the logit dynamic, a population state moves in the direction of the logit best

response.

The definition of the logit dynamic does not depend upon ϕ being linear. But our subsequent results

will depend greatly on the linear structure. A probability measure µ◦ is said to be a logit equilibrium if

Lη(µ◦) = µ◦. Theorem 3.1 in Lahkar and Riedel (2015) establishes the existence of such equilibria. As

η→ 0, any such logit equilibrium converges weakly to a Nash equilibrium of ϕ (Theorem 3.2, Lahkar and

Riedel (2015)). We use the notation LEη(ϕ) to denote the collection of logit best response equilibrium.

2.1 STEP-WISE APPROXIMATION OF THE LOGIT DYNAMIC

We now introduce a step–wise approximation of the logit dynamic that will be useful for our analysis

that follows. Our objective is to show that this step–wise approximation is close to the original logit

dynamic (4).The methodology we apply has certain similarities with the one employed by Oechssler and

Riedel (2002) to establish the closeness of the continuous strategy replicator dynamic with its step–wise

approximation.9

For this purpose, consider n ≥ 1, j ∈ {0,1, . . . ,2n−1} and denote the dyadic rational number j
2n by

αn, j. Further, let Sn be the collection of left-closed right-open intervals with dyadic rational endpoints in

S defined in the following way:

Sn :=
{
[αn, j,αn, j+1) : j = 0, . . . ,2n−2

}
∪ [αn,2n−1,1]. (5)

Thus, Sn is a collection of 2n disjoint intervals which covers the original strategy space S . Recall the

payoff f (x,y) in (1). Our next step is to construct a step function approximation of f . For n ≥ 1, let

fn : S ×S →R is such that for all (x,y) ∈S ×S ,

fn(x,y) =

 f (αn, j,αn,k) if (x,y) ∈ [αn, j,αn, j+1)× [αn,k,αn,k+1) and j,k = 0,1, . . . ,2n−2

f (αn,2n−1,αn,2n−1) if (x,y) ∈ [αn,2n−1,1]× [αn,2n−1,1].
(6)

Hence, by definition, ( fn)n≥1 is a sequence of step functions such that fn→ f uniformly as n→ ∞.

Now, similar to the definition of the linear population game ϕ in (1), let ϕn : P(S )→L ∞(S ) be

9See Section 7 of Oechssler and Riedel (2002).
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such that for all µ ∈P(S ),

ϕ
n
x (µ) :=

∫
S

fn(x,y)µ(dy), for all x ∈S . (7)

Note from (6) that we can write (7) as

ϕ
n
x (µ) =

∑
2n−1
k=0 f (αn, j,αn,k)

∫
[αn, j ,αn, j+1)

µ(dy) if x ∈ [αn, j,αn, j+1) and j = 0,1, . . . ,2n−2

∑
2n−1
k=0 f (αn,2n−1,αn,k)

∫
[αn,2n−1,1] µ(dy) if x ∈ [αn,2n−1,1].

(8)

We note that for every µ ∈P(S ), ϕn is also a step function approximation of ϕ as defined in (1). This

follows from the definition of fn in (6). For a given n≥ 1 and parameter η > 0, we can then define the

logit best response induced by ϕn as a mapping Ln
η : P(S )→P(S ) such that for all µ ∈P(S ),

Ln
η [µ ](A) :=

∫
A

exp(η−1ϕn
x (µ))dx∫

S exp(η−1ϕn
y (µ))dy

, for all A ∈B(S ). (9)

Comparing (3) and (9), it is evident that the probability density function of the logit best response induced

by ϕn is also a step–wise approximation of the probability density function of the logit best response

induced by ϕ . Finally for n≥ 1 and η > 0, we define the logit dynamic induced by ϕn as

µ̇ = Ln
η(µ)−µ . (10)

Letting t ≥ 0 be time, we denote as µ(t) ∈P(S ) and µn(t) ∈P(S ), t ≥ 0, the solution trajectories

of the two logit dynamics (4) and (10) respectively from the initial state µ(0). Theorem 3.4 in Lahkar and

Riedel (2015) establishes the existence of such unique solution trajectories of the logit dynamic from every

initial state in P(S ) provided the underlying population game is bounded and Lipschitz continuous with

respect to the variational norm.10 Such conditions are automatically satisfied if ϕ is linear as defined in (1)

since the underlying two player game f , and hence ( fn)n≥1 are bounded. Intuitively, it is also reasonable

to expect that these two solution trajectories would be close to each other since the logit best response (9)

is itself a step function approximation of (3). We formalize this intuition in the following theorem.

Proposition 2.1. Consider the linear supermodular game ϕ as defined in (1) and its step function

approximation ϕn as defined in (7). Denote by (µ(t))t≥0 the solution to the logit dynamic (4) induced

by ϕ and by (µn(t))t≥0 the solution to the logit dynamic (10) induced by ϕn for n ≥ 1. Suppose that

µ(0) = µn(0) for every n≥ 1. Then (µn(t))t≥0 converges uniformly on compact sets to (µ(t))t≥0 in the

variational norm, that is, for every finite time horizon T > 0,

lim
n→∞

sup
0≤t≤T

‖µ(t)−µ
n(t)‖TV = 0.

Proof. See Appendix 6.1. �

Proposition 2.1 is our desired result on the step–wise approximation of the logit dynamic. It shows that

the solution trajectories of the two dynamics are close to each other the strong topology, or the topology

10The total variation distance is a mapping ‖ · ‖TV : P(S )×P(S )→R+ defined as

‖µ−ν‖TV := 2 sup
A∈B(S )

|µ(A)−ν(A)|, for all µ ,ν ∈P(S ).
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induced by the total variation norm. Of course, the result requires that the initial states be identical. Also, n

needs to be sufficiently large so that the step function fn defined in (6) is a reasonably close approximation

of the original linear payoff f in (1). Intuitively, the probability mass on each interval of the finite set Sn

defined in (5) under the two trajectories µ(t) and µn(t) become increasingly identical as n→ ∞.

3. DETERMINISTIC APPROXIMATION

The deterministic approximation approach to the continuum logit dynamic would require us to approximate

it as the behavior of a stochastic process in a discrete game where the number of strategies and the number

of players are finite but sufficiently large. With this objective, we now define the discrete analogue of our

population game ϕ . Consider the finite set

Sn = {αn,0,αn,1,αn,2, . . . ,αn,2n−1} , (11)

where, as defined previously, αn, j =
j

2n . Thus, Sn is a finite approximation of S = [0,1]. Like Sn in (5),

it contains 2n elements with the difference being it consists of points instead of intervals. Each element of

Sn is the leftmost point of the 2n intervals in Sn. Now, let

∆(Sn) =

{
pn ∈R2n

+ : ∑
0≤k≤2n−1

pn
i = 1

}
(12)

be the set of probability distributions on Sn. Hence, pn
j is the probability on αn, j for j ∈ {0,1, . . . ,2n−1}.

Recalling the step function fn from (6), we then define payoffs in the discrete version of ϕ as follows.

Definition 3.1. For n ≥ 1, the level-n discretization of a population game ϕ is the mapping Dn
ϕ :

∆(Sn)→R2n
such that for all pn ∈ ∆(Sn),

Dn
ϕ [p

n](αn, j) := 〈 fn(αn, j, ·),pn〉= ∑
0≤k≤2n−1

f (αn, j,αn,k)pn
k , for all j = 0,1, . . . ,2n−1. � (13)

We can, therefore, envisage Dn
ϕ as the population game induced by the matrix game whose entries are

given by ( fn(αn, j,αn,k))0≤ j,k≤2n−1. Equivalently, Dn
ϕ is a finite strategy population game in which players’

strategy set is Sn and the proportion of players playing αn, j is pn
j . Notice from (8) and (13) that if we have

µ ∈P(S ) and pn ∈ ∆(Sn) such that pn
j =

∫
[αn, j ,αn, j+1)

µ(dy) for j = 0,1, . . . ,2n−2, then the payoffs in

ϕn and Dn
ϕ are identical.

We focus on the discrete game Dn
ϕ introduced in Definition 3.1. Further, we now assume that the

game is being played by a finite number of players, with N > 1 being the number of players . Recall our

interpretation of pn
j as being the mass of agents playing αn, j ∈ Sn in Dn

ϕ . For n≥ 1, and pn ∈ ∆(Sn), we

also define the atomic probability measure on S as

µ
N
pn := ∑

0≤ j≤2n−1
pn

jδαn, j , (14)

where δx denotes the Dirac measure at x∈S and the superscript N indicates the dependence on the number

of players N.11 Thus, the measure µpn on S puts probability pn
j on αn, j =

j
2n , j ∈ {0,1, · · · ,2n−1} and 0

11This dependence will arise from the fact that with N being the number of players, pn
j can take values only in{

0, 1
N , . . . , N−1

N ,1
}

.

8



on all other points. This atomic measure now allows us to treat this discretized game as being played on

S with the proportion of players using strategy αn, j being pn
j .

We now introduce the logit best response on the discrete game Dn
ϕ . Given the parameter η > 0 and,

this logit best response Ln
η : ∆(Sn)→ ∆(Sn) at the state pn takes the standard finite dimensional form

(Fudenberg and Levine (1998))

Ln
η ,i[p

n] =
exp(η−1Dn

ϕ [pn](αn, j))

∑0≤k≤2n−1 exp(η−1Dn
ϕ [pn](αn,k))

=
exp(η−1〈 fn(αn,i, ·),pn〉)

∑0≤k≤2n−1 exp(η−1〈 fn(αn,k, ·),pn〉)
. (15)

Thus, given η , (15) is the probability with which strategy αn,i ∈S would get chosen under the logit best

response in the population game Dn
ϕ at the population state µN

pn .

Let (Ω,F ,P) be an arbitrary probability space. We now consider the following discrete time stochastic

process (XN
n (k))k≥1, where XN

n (k) : Ω→P(S ) describes the state of the population at time k for every

k ≥ 1. We use the discrete logit best response (15) to define the transition probability function as

P

(
XN

n

(
k+

1
N

)
= µ

N
qn |XN

n (k) = µ
N
pn

)
=



pn
i Ln

η , j[pn], if qn = pn +
1
N
(e j− ei) and j 6= i

∑
2n−1
i=0 pn

i Ln
η ,i[pn] if qn = pn

0, otherwise.

(16)

To understand these transition probabilities, we suppose that at discrete time intervals of length 1
N , a

single agent gets the opportunity to change strategy.12 If that agent is currently playing strategy αn,i and

chooses to shift to αn, j, then the social state would change from µpn to µqn , with qn = pn + 1
N (e j− ei).

The probability of this transition is the mass of agents playing αn,i, which is pn
i , multiplied by the logit

probability of playing αn, j, which is Ln
η , j[pn]. Alternatively, the agent can continue playing the same

strategy, the probability of which is given by the second line of (16).

In the rest of this section, we show that the behavior of the logit stochastic process in Dn
ϕ approximates

the behavior of the continuum logit dynamic (4) in ϕ over finite time spans as the number of players,

N, and the number of strategies, 2n, becomes large. That would be the interpretation of the continuum

logit dynamic as a deterministic approximation of the logit stochastic process in a finite strategy and finite

player game. For that, we now extend the process (16) defined over discrete time to one over continuous

time. Thus, let (X̂N
n (t))t≥0 denote the continuous time Markov process obtained by affine interpolation of

the process (XN
n (k))k≥1 as defined in (16). We call this process the interpolated logit stochastic process.

We establish our deterministic approximation result with respect to this interpolated process. Note that this

process is defined on the discrete game Dn
ϕ . Establishing that result requires us to define the notion of

smoothing of a probability measure.

Definition 3.2. For n≥ 1, the smoothing of a probability measure is a mapping sn : P(Sn)→P(S )

such that the following two conditions are satisfied:13

12Here, e j, j ∈ {0,1, . . . ,2n−1}, is the standard basis vector on R2n
. Under our atomic measures, the strategies that receive

positive probability are αn, j =
j

2n , j ∈ {0,1, . . . ,2n−1}. Hence, e j assigns value 1 to strategy j
2n and 0 to all other strategies.

13Here, P(Sn) denotes the collection of atomic probability measures like (14) with support Sn.
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• sn(µN
pn) is absolutely continuous with respect to the Lebesgue measure λ , for all pn ∈ ∆(Sn).14

• The Radon-Nikodym derivative of the probability measure sn(µN
pn) is expressed as

sn(µN
pn)

dλ
(x) := ∑

0≤k≤2n−2
2n

µ
N
pn,k1[αn,k ,αn,k+1)(x), for all x ∈S . � (17)

The smoothing of a probability measure transforms atomic measures on S into probability measures

admitting a probability density function. Suppose that we have an atomic measure µpn on S , where the

probabilities are concentrated on the points αn, j. Then sn(µpn) denotes the probability measure obtained

by distributing the probability mass at αn, j uniformly on the interval [αn, j,αn, j+1). We, thereby, construct

a probability measure with a probability density function that is a step function. This density function

is given by (17). Applying Definition 3.2 to (X̂N
n (t))t≥0, we can derive the smoothed interpolated logit

stochastic process. As an intermediate step towards our desired result, we first establish a deterministic

approximation result with respect to the step–wise logit dynamic (10).

Proposition 3.1. Fix n,N ≥ 1. Suppose that the interpolated logit stochastic process (X̂N
n (k))k≥1 has

as initial condition the atomic measure µN
pn ∈P(S ), for some pn ∈ ∆(Sn). Let (µn(t))t≥0 denote the

solution to the level-n step logit dynamic (10) induced by the population game ϕn with initial condition

µn(0) = µN
pn . Then for every T > 0, there exists C̄ > 0 (independent of µn(0)) such that for all ε > 0, we

have that

P
µN

pn

(
sup

0≤t≤T

∥∥sn(X̂
N
n (t))−µ

n(t)
∥∥

TV ≥ ε

)
≤ 2n+1e−NC̄ε2

for sufficiently large N.

Proof. See Appendix 6.2. �

Proposition 3.1, therefore, approximates the interpolated logit stochastic process in Dn
ϕ with the step–

wise deterministic logit dynamic (10) over finite time horizons as the number of strategies and players in

Dn
ϕ become large. Its proof can broadly be divided into two steps. First, we show that for every η > 0, the

level-n step logit choice Ln
η is “approximately Lipschitz continuous” for sufficiently large n in a sense

made precise in Appendix 6.2. Then, along the lines of Benaı̈m and Weibull (2003), we bound the total

variation norm between the smoothed stochastic evolutionary process and the solution to the level-n step

logit dynamic uniformly over finite time horizons using Grönwall’s inequality and some other relevant

estimates to complete the proof.

Thus, Proposition 3.1 is a deterministic approximation result but with respect to the step–wise logit

dynamic and not the original continuum logit dynamic. As noted in the Introduction, such results are

well known in finite strategy games where a stochastic evolutionary process is well approximated by a

deterministic evolutionary dynamic over finite time horizons. But as far as we know, a deterministic

approximation result hasn’t been established for any of the canonical continuous strategy evolutionary

dynamics. We are, however, now in a position to use Proposition 3.1 along with Proposition 2.1 to state

such a theorem for the actual continuum logit dynamic and not just its step–wise approximation.

Theorem 3.1. Fix n,N ≥ 1. Suppose that the interpolated logit stochastic process (X̂N
n (t))t≥0 has initial

condition µN
pn , for some pn ∈ ∆(Sn). Let (µ(t))t≥0 denote the solution to the continuum strategy logit

14A probability measure µ is said to be absolutely continuous with respect to the Lebesgue measure λ if for all A ∈B(S ),
we have λ (A) = 0 =⇒ µ(A) = 0.
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dynamic induced by the population game ϕ with initial condition µ(0) = µN
pn . Then for every T > 0, and

every ε > 0, we have that

lim
n→∞

lim
N→∞

P
µN

pn

(
sup

0≤t≤T

∥∥sn(X̂
N
n (t))−µ(t)

∥∥
TV ≥ ε

)
= 0.

Proof. See Appendix 6.3. �

Theorem 3.1 is our desired deterministic approximation result and is a consequence of Propositions

2.1 and 3.1. By Proposition 3.1, the step–wise logit dynamic provides a deterministic approximation

of the logit stochastic process. But Proposition 2.1 implies that the step–wise logit dynamic itself is an

arbitrarily close approximation of the original continuum logit dynamic. Hence, intuitively, the original

logit dynamic should also be a deterministic approximation of the logit stochastic process. Notice that

in Proposition 3.1, we are also able to establish the rate of convergence of the step–wise dynamic to the

stochastic process. This is due to the simpler structure of the step–wise dynamic. In comparison, Theorem

3.1 is a weaker result as it only establishes convergence of the original logit dynamic and not the rate of

convergence. Nevertheless, it suffices in establishing the conclusion we desire.

This theorem provides microfoundations to the continuum logit dynamic (4). It implies that over finite

time horizons, the behavior of the logit stochastic process (16) or, equivalently, its smoothed version

dynamic sn(X̂N
n (t)) in Dn

ϕ , is arbitrarily well approximated by the solution trajectory from the same

initial state of the logit dynamic (4) in the continuum game ϕ provided the number of strategies and the

number of players in Dn
ϕ are sufficiently high. Thus, the continuum logit dynamic may be interpreted as

approximating evolution in situations where the underlying population game have a finite but large number

of strategies and players and where the strategic behavior of players is governed by the logit stochastic

process. This is important because the direct analysis of the stochastic process itself may be difficult. In

such situations, we can make the problem significantly more tractable by focusing, instead, on the behavior

of the continuum logit dynamic.

4. MEDIUM RUN CONVERGENCE IN SUPERMODULAR GAMES

As an application of our deterministic approximation approach, we now consider supermodular games.

Our objective is to show that over sufficiently large but finite time horizon, the continuum logit dynamic

converges to the set of logit equilibria in supermodular games. For finite strategy supermodular games,

Hofbauer and Sandholm (2007) establish results on convergence in such games for the class of stochas-

tically perturbed best response dynamics.15 But since we do not have a general theory of stochastic

perturbation of best response in continuous strategy games, we confine ourselves to the logit dynamic.

To define supermodular games with a continuous strategy set, we introduce the notation F̄µ : S → [0,1]

to denote the inverse cumulative distribution function of a probability measure µ ∈P(S ). Thus,

F̄µ(x) := µ((x,1]) for all x ∈S . Let � be a partial order on P(S ) defined as follows:

[µ � ν ] ⇐⇒ [F̄µ(x) ≤ F̄ν(x), for all x ∈S ]. (18)

Therefore, under this partial order, a population state ν is “ranked higher” than another state µ if the

proportion of agents playing higher strategies is greater under ν than µ . We then arrive at the following

15For other canonical evolutionary dynamics like the replicator dynamic, the Brown–von Neumann–Nash dynamic, payoff
comparison dynamics and the best response dynamic, general results on convergence in supermodular games are not available.
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definition of a large population supermodular game, which is an extension of the definition provided

by Hofbauer and Sandholm (2007) to our setting of a continuous strategy set. Intuitively, the definition

implies that in a supermodular game, higher strategy choices by other agents make a higher strategy more

attractive for every agent. Such games are, therefore, characterized by strategic complementarities.

Definition 4.1. A population game ϕ : P(S )→L ∞(S ) is said to be a continuum supermodular
game on S if for all µ ,ν ∈P(S ), the following condition is satisfied:

[µ � ν ] =⇒ [ϕy(µ)−ϕx(µ) ≤ ϕy(ν)−ϕx(ν), for all 0≤ x < y≤ 1]. (19)

As an illustration, the game in Example 2.1 is a supermodular game provided the function m(x) is

strictly increasing. To check that the relevant payoff (2) in this example satisfies supermodularity, notice

that ϕy(µ)−ϕx(µ) = (m(y)−m(x))a(µ)− (c(y)− c(x)). Further, if µ � ν , then a(µ) ≤ a(ν). Hence,

with m increasing, it must then be that ϕy(µ)−ϕx(µ) < ϕy(ν)−ϕx(ν) if x < y. Thus, (19) is satisfied.

Our result on convergence of the logit dynamic in supermodular games will depend upon our key

deterministic approximation result as presented in Theorem 3.1. Since such convergence is over finite

time horizons, we follow Hofbauer and Sandholm (2007) and call it medium run convergence. Hofbauer

and Sandholm (2007) also extend such convergence to an infinite time horizon by directly computing the

stationary distribution of a stochastic process like (16). We do not pursue this long run analysis here as

that is independent of the deterministic approximation approach to the logit dynamic.

We now consider a linear supermodular game ϕ such as Example 2.1. Recall that LEη(ϕ) is the set

of logit equilibria in a continuum population game ϕ . For ε > 0, let Oε(LEη(ϕ)) be the open ball of

radius ε under the total variation norm around LEη(ϕ) in a linear supermodular game ϕ . Applying the

methodology used to derive Theorem 3.1, we first discretize our supermodular game as in Definition

4.2. The following theorem establishes the relationship between a continuum supermodular game and its

discrete version. As is to be expected, the two notions are equivalent. Before presenting the theorem, we

state the definition of a discrete supermodular game.

Definition 4.2. A population game Dn
ϕ : ∆(Sn)→R2n

as defined in Definition 3.1 is a supermodular game

if it exhibits strategic complementarities, that is, for all pn,qn ∈ ∆(Sn), the following condition is satisfied:

[pn � qn] =⇒ [Dn
ϕ [p

n](αn, j+1)−Dn
ϕ [p

n](αn, j) ≤Dn
ϕ [q

n](αn, j+1)−Dn
ϕ [q

n](αn, j)], (20)

for all j = 0,1, . . . ,2n−2. �

In words, if qn stochastically dominates pn, then for any strategy αn, j, the payoff advantage of αn, j+1

over αn, j is greater at qn than at pn. We can also write the strategic complementarity condition (20)

equivalently by using partial derivatives as16

∂Dn
ϕ [pn](αn, j+1)

∂pn
i+1

−
∂Dn

ϕ [pn](αn, j+1)

∂pn
i

≥
∂Dn

ϕ [pn](αn, j)

∂pn
i+1

−
∂Dn

ϕ [pn](αn, j)

∂pn
i

, (21)

for all i, j = 0,1, . . . ,2n−2. Thus, if a small of mass of players switches from strategy αn,i to αn,i+1, then

the improvement in the payoff of strategy αn, j+1 is greater than that of αn, j. The result we now seek is as

follows.
16See Section 3.3 in Hofbauer and Sandholm (2007) and Theorem 3.4.2 in Sandholm (2010).
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Proposition 4.1. Fix a weakly continuous population game ϕ : P(S )→L ∞(S ). Then ϕ is a super-

modular if and only if for every n≥ 1, the level-n discretization Dn
ϕ : ∆(Sn)→R2n

of the population game

ϕ is a supermodular game.

Proof. See Appendix 6.4. �

Recall now the step–wise approximation of ϕ , ϕn, as defined in (7) or (8). Also recall our comments

about the relationship between the payoffs in Dn
ϕ and ϕn in the paragraph following Definition 3.1. We

then obtain the following corollary from Proposition 4.1. The proof is obvious and is left to the reader.

Corollary 4.1. Fix a population game ϕ : P(S )→L ∞(S ). Then ϕ is a supermodular if and only if

ϕn is a supermodular game for every n≥ 1.

Next, we introduce the discrete logit process XN
n (k) as defined in (16) on the discrete supermodular

game Dn
ϕ , construct the interpolated logit stochastic process X̂N

n (t) and smoothen the process as described

in Definition 3.2 to obtain sn(X̂N
n (t)). In addition, we also need the following definition of an irreducible

discrete supermodular game from Hofbauer and Sandholm (2007). In stating this definition, we recall the

finite strategy set Sn = {αn,0,αn,1, . . . ,αn,2n−1} over which we defined the discrete game Dn
ϕ in Definition

3.1. We also recall the notation αn, j to denote the strategy j
2n in (5).

Definition 4.3. Let Ŝn = Sn \αn,2n−1 = {αn,0,αn,1, . . . ,αn,2n−2}. For n≥ 1, the level-n discretization of a

supermodular game ϕ is said to be irreducible if for all states pn ∈ ∆(Sn) and all j ∈ Ŝn, there exists at

least one i ∈ Ŝn such that (21) holds with strict inequality.

Definition 4.3 is a mild strengthening of the strategic complementarity condition (21) for a discrete

supermodular game. It requires that at every state pn, a movement from strategy j to j+ 1 improves the

relative performance of at least one strategy. As an illustration, we show that the discrete version of the

game in Example 2.1 does satisfy irreducibility.

Proposition 4.2. For every n≥ 1, the discrete version Dn
ϕ of the game ϕ in Example 2.1 is irreducible.

Proof. See Appendix 6.5. �

With this irreducibility condition, we can now establish our main result about supermodular games

which, following Hofbauer and Sandholm (2007), we call a medium run convergence theorem. Before

considering that theorem, we state the following lemma which will be useful to us.

Lemma 4.1. Let ϕ be a linear population game as defined in (1) and Dn
ϕ be its discretization. Suppose

(p∗n)n≥1 is a sequence of logit equilibria of the discretized games (Dn
ϕ)n≥1. Recall from (14) the atomic

measure µp∗n derived from p∗n on S and the smoothing sn(µp∗n) of µp∗n (Definition 3.2). Then the accumula-

tion points of the sequence (sn(µp∗n))n≥1 under the total variation norm is non-empty. Furthermore, any

such accumulation point is a logit equilibrium of the game ϕ .

Proof. See Appendix 6.6. �

Lemma 4.1 is independent of supermodularity. It holds for any linear population game. It is well known

that the set of probability measures P(S ) is compact under the weak topology. Hence, the sequence

sn(µp∗n) that we obtain from the logit equilibria of the discretized game Dn
ϕ will have an accumulation

point in P(S ). We show that this accumulation point is a logit equilibrium of the original game ϕ . In

addition, we also need to show that in case of such logit equilibria, convergence under the weak topology

13



also implies convergence under the strong topology, or the topology induced by the total variation norm.

This follows because as n→ ∞, the probability mass put by the logit equilibrium p∗n on any strategy in the

finite strategy set of Dn
ϕ goes to zero.

We now establish our medium run convergence theorem. Suppose ϕ is a continuum supermodular

game and that its discretized form Dn
ϕ satisfies irreducibility. Consider the interpolated logit stochastic

process on Dn
ϕ and let the number of strategies and players in Dn

ϕ become large. The theorem states

that over sufficiently long but finite time horizons (hence the name “medium run”), the continuum logit

dynamic spends most of its time near the set of logit equilibria of ϕ .

Theorem 4.1. Suppose that the two player game f : S ×S →R be Lipschitz continuous. Suppose the

the population game ϕ : P(S )→L ∞(S ) is supermodular game such that for every n, the level-n

discretization of ϕ is irreducible. Then for every ε > 0, there exists Tε ≥ 0 such that for all T ≥ Tε ,

(µ(t))t≥0 ∈ O3ε(LEη(ϕ)) for all Tε ≤ t ≤ T .

Proof. See Appendix 6.7. �

The proof of Theorem 4.1 proceeds in several steps. First, we discretize ϕ into Dn
ϕ . Since ϕ is

supermodular, Proposition 4.1 implies that Dn
ϕ is also supermodular. We then consider the interpolated

logit stochastic process X̂N
n (t), define it appropriately on ∆(Sn) and allow it to run in Dn

ϕ . By Theorem 3.1,

once we smoothen X̂N
n (t) and N,n→∞, the behavior of the stochastic process in Dn

ϕ is well approximated

by the continuum logit dynamic (4) on ϕ . Therefore, it is legitimate to analyze the convergence of the

logit dynamic on ϕ by considering the convergence of the logit stochastic process on Dn
ϕ . We do so by

appealing to results in Hofbauer and Sandholm (2007) for finite strategy supermodular games and applying

some of our earlier results.

Since the discretized or finite–strategy game Dn
ϕ is supermodular, Theorem 4.1 (part (iii)) in Hofbauer

and Sandholm (2007) implies that as the number of players N→ ∞, the logit stochastic process converges

to the set of logit equilibria of Dn
ϕ . We then show that once we smoothen a logit equilibrium of Dn

ϕ , we

obtain a logit equilibrium of the step–wise approximation of ϕ , ϕn. Corollary 4.1 then implies that ϕn is

also supermodular. Hence, the smoothed interpolated process sn(X̂n(t)) lies near the set of logit equilibria

of ϕn over sufficiently long but finite time horizons as N→ ∞. By the deterministic approximation result

for the step–wise logit dynamic (Proposition 3.1), sn(X̂n(t)) is itself close to the trajectory of the step–wise

logit dynamic, µn(t), over such finite time horizons. Hence, over a finite time horizon, µn(t) converges to

the set of logit equilibria of ϕn. Now, as n→∞, a logit equilibrium of ϕn approaches a logit equilibrium of

ϕ under the strong topology. This follows from Lemma 4.1. Moreover, as n→ ∞, µn(t) itself is close to

µ(t) by Proposition 2.1. Combining all these arguments, we conclude that as both N,n→ ∞, a trajectory

µ(t) of the continuum logit dynamic converges to a logit equilibrium of the supermodular game ϕ over

finite but sufficiently long time periods.

Corollary 4.2. Suppose ϕ : P(S )→L ∞(S ) be a supermodular game such that for every n, the level-n

discretization of ϕ is irreducible. Then for every ε > 0, there exists Tε ≥ 0 such that for all T ≥ Tε , we

have

lim
n→∞

lim
N→∞

Pµn

(
sn(X̂

N
n (t)) ∈ Oε(LEη(ϕ)) for all Tε ≤ t ≤ T

)
= 1.

Proof. The proof follows from Theorem 4.1. �
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5. CONCLUSION

The deterministic approach to evolutionary game theoretic dynamics seeks to provide mathematical

foundations to such dynamics as the limiting outcome of a stochastic process as the number of players

become large. In this paper, we have adopted such a deterministic approach to the logit dynamic in a large

population game with a continuous strategy set. We first construct a step–wise approximation of such

a game and show that the logit dynamic in that approximate game is close the dynamic in the original

game. We then introduce a discrete approximation of the original game with a finite number of strategies

and players. Over finite time horizons, the logit stochastic process in this discrete game approximates the

behavior of the step–wise logit dynamic, which itself approximates the original continuum logit dynamic.

This gives us our deterministic approximation result. The continuum logit dynamic is approximation of the

logit stochastic process of a game in which both the number of players and strategies are finite but large.

We then apply our approach to large population supermodular games with a continuous strategy set. If

the discrete version of the supermodular game satisfies a condition called irreducibility, then over time

horizons that are finite but sufficiently long, the continuum logit dynamic converges to the set of logit

equilibria of the supermodular game. To establish this result, we consider the logit stochastic process in

the discrete version of the game. Results from finite strategy supermodular games imply that this process

converges. Our deterministic approximation result then show that the logit dynamic must also converge.

This paper is limited to the logit dynamic. An obvious research question for the future is to extend

the deterministic approach to other well–known continuous strategy evolutionary dynamics. For example,

should it prove feasible to establish such a result for the larger class on continuous strategy perturbed best

response dynamics, then it may be possible to extend our result on convergence of the logit dynamic in

supermodular games to such dynamics as well.

6. APPENDIX

6.1 PROOF OF PROPOSITION 2.1

Fix A ∈B(S ). We then observe that,

|µ [t](A)−µ
n[t](A)| ≤

∣∣∣∣∣
t∫
0

µ̇ [s](A)ds−
t∫
0

µ̇
n[s](A)ds

∣∣∣∣∣
=

∣∣∣∣∣
t∫
0

L[µ(s)](A)ds−
t∫
0

Ln[µn(s)](A)ds

∣∣∣∣∣+
∣∣∣∣∣
∫ t

0
µ [s](A)−µ

n[s](A)

∣∣∣∣∣ds

≤

∣∣∣∣∣
t∫
0

L[µ(s)](A)ds−
t∫
0

L[µn(s)](A)ds

∣∣∣∣∣+
∣∣∣∣∣
∫ t

0
µ [s](A)−µ

n[s](A)

∣∣∣∣∣ds

+

∣∣∣∣∣
t∫
0

L(µn(s))(A)ds−
t∫
0

Ln(µn(s))(A)ds

∣∣∣∣∣
≤

t∫
0

(‖L(µ(s))−L(µn(s))‖TV + ‖µ(s)−µ
n(s)‖TV)︸ ︷︷ ︸

=:T n
1 (s)

ds
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+

t∫
0

∫
A

∣∣∣∣∣ exp(ϕx(µn(s)))∫
S exp(ϕy(µn(s)))dy

− exp(ϕn
x (µ

n(s)))∫
S exp(ϕn

y (µ
n(s)))dy

∣∣∣∣∣︸ ︷︷ ︸
=:T n

2 (s,x)

dxds

It follows from Lahkar and Riedel (2015) that there exists κ > 0 such that

T n
1 (s) := ‖L(µ(s))−L(µn(s))‖TV ≤ (1+κ)‖µ(s)−µ

n(s)‖TV, for all s≥ 0. (22)

We now state and prove a lemma which provides an appropriate upper bound on the second term T2(s,x)

in order to apply Grönwall’s lemma.

Lemma 6.1. Fix n≥ 1. Then for every x ∈S and every s≥ 0, it holds that:

T n
2 (s,x) ≤ 2‖ fn− f‖∞ exp(2‖ f‖∞∨‖ fn‖∞). (23)

Proof. Fix x ∈S . It then follows from the definition of T n
2 (s,x) that,

T n
2 (s,x) =

∣∣∣∣∣
∫

S exp(ϕx(µn(s)))exp(ϕn
y (µ

n(s)))dy−
∫

S exp(ϕn
x (µ

n(s)))exp(ϕy(µn(s)))dy(∫
S exp(ϕy(µn(s)))dy

)(∫
S exp(ϕn

y (µ
n(s)))dy

) ∣∣∣∣∣
≤

∣∣∣∣∣
∫

S
exp(ϕx(µ

n(s)))exp(ϕn
y (µ

n(s)))dy−
∫

S
exp(ϕn

x (µ
n(s)))exp(ϕy(µ

n(s)))dy

∣∣∣∣∣
=

∣∣∣∣∣
∫

S
exp[ϕx(µ

n(s))+ϕ
n
y (µ

n(s))]dy−
∫

S
exp[ϕn

x (µ
n(s))+ϕy(µ

n(s))]dy

∣∣∣∣∣
≤
∫

S
|exp[ϕx(µ

n(s))+ϕ
n
y (µ

n(s))]− exp[ϕn
x (µ

n(s))+ϕ
n
y (µ

n(s))]|︸ ︷︷ ︸
=:T n

21(s,x)

dy

+
∫

S
|exp[ϕn

x (µ
n(s))+ϕ

n
y (µ

n(s))]− exp[ϕn
x (µ

n(s))+ϕy(µ
n(s))]|︸ ︷︷ ︸

=:T n
22(s,x)

dy.

The first inequality in the above string of inequalities occurs since the payoff functions ( fn)n≥1 and f

are bounded below by 0, in which case the integrals
∫

S exp(ϕy(µn(s)))dy and
∫

S exp(ϕn
y (µ

n(s)))dy are

bounded below by 1. Now we bound the terms T n
21(s,x) and T n

22(s,x) separately. For any bounded

function g : S →R, it follows by an application of mean-value theorem that

|exp(g(x))− exp(g(y))| ≤ exp(‖g‖∞)|g(x)−g(y)|, for all x,y ∈S . (24)

Therefore by an application of (24), we have for all s≥ 0, and x ∈S , that

T n
21(s,x) =

∫
S
|exp(ϕn

y (µ
n(s)))||exp(ϕx(µ

n(s)))− exp(ϕn
x (µ

n(s)))|dy

≤ exp‖ fn‖∞ exp‖ f‖∞∨‖ fn‖∞

∫
S
|ϕx(µ

n(s))−ϕ
n
x (µ

n(s))|dy

≤ exp(‖ fn‖∞ + ‖ f‖∞∨‖ fn‖∞)‖ f − fn‖∞

≤ exp(2‖ f‖∞∨‖ fn‖∞)‖ f − fn‖∞.
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Proceeding similarly as above we observe that

T n
22(s,x) ≤ exp(2‖ f‖∞∨‖ fn‖∞)‖ f − fn‖∞, for all x ∈S .

Combining the above inequalities we have,

T n
2 (s,x) ≤T n

21(s,x)+T n
22(s,x) ≤ 2‖ fn− f‖∞ exp(2‖ f‖∞∨‖ fn‖∞), for all x ∈S .

This completes the proof of Lemma 6.1. �

We now proceed with the proof of the proposition. Using Lemma 6.1 in conjunction with (22), we now

arrive at

|µ [t](A)−µ
n[t](A)| ≤

∫ t

0
T n

1 (s)ds+
∫ t

0
T n

2 (s,x)ds

≤ (1+κ)
∫ t

0
‖µ(s)−µ

n(s)‖TVds+ 2
∫ t

0
‖ fn− f‖∞ exp(2‖ f‖∞∨‖ fn‖∞)ds

≤ (κ + 3)
∫ t

0

[
‖ fn− f‖∞ exp(2‖ f‖∞∨‖ fn‖∞)+ ‖µ(s)−µ

n(s)‖TV

]
ds.

Taking supremum over all A ∈B(S ), we have

‖µ(t)−µ
n(t)‖TV ≤ 2(κ + 3)

∫ t

0

[
exp(2‖ f‖∞∨‖ fn‖∞)‖ fn− f‖∞ + ‖µ(s)−µ

n(s)‖TV

]
ds.

Define Λn(t) := ‖ fn− f‖∞ exp(2‖ f‖∞∨‖ fn‖∞)+ ‖µ(t)−µn(t)‖TV for all 0≤ t ≤ T . From the above

inequality, it then follows that

Λn(t) ≤ 2‖ fn− f‖∞ exp(2‖ f‖∞∨‖ fn‖∞)+ 2(κ + 3)
∫ t

0
Λn(s)ds, for all 0≤ t ≤ T .

As a result, by Grönwall’s inequality, we have for all 0≤ t ≤ T that

Λn(t) ≤ 2‖ fn− f‖∞ exp(2‖ f‖∞∨‖ fn‖∞)× exp (2tκ + 6t)

≤ 2‖ fn− f‖∞ exp(2‖ f‖∞∨‖ fn‖∞)× exp (2T κ + 6T ).

Since fn→ f uniformly, ‖ fn‖∞ is uniformly bounded, in which case it follows using the definition of Λn

that

sup
0≤t≤T

‖µ(t)−µ
n(t)‖TV ≤ 2‖ fn− f‖∞ exp(2‖ f‖∞∨‖ fn‖∞)× exp(2(κ + 3)T −1)→ 0, as n→ ∞.

This completes the proof of Proposition 2.1.

6.2 PROOF OF PROPOSITION 3.1

We begin the proof of the proposition along the lines of Benaı̈m and Weibull (2003). To get rid of cumber-

some notations in the proof, we shall, for every n≥ 1, denote the vector field P(S ) 3 µ 7→ Ln(µ)−µ ∈
M0(S ) by µ 7→ Ln

vect(µ) for all µ ∈P(S ). For N,n≥ 1, consider the stochastic evolutionary process
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as defined (XN
n (k))k≥1 as defined in (16). Now, let U N

n,k : [0,∞)→M (S ) be a mapping defined as

U N
n (kδN) =

1
δN

[XN
n ((k+ 1)δN)−XN

n (kδN)]−Ln
vect(X

N
n (kδN)), for all k ≥ 1. (25)

We now define the continuous time process as U N
n (t) := U N

n (kδN) for all kδN ≤ t < (k+ 1)δN . For

k ≥ 1, let Fk denote the σ -algebra generated by {XN
n (0), . . . ,X

N
n (kδN)}. To proceed with the proof, we

also require the following notation. Let X̄N
n (t) := XN

n (kδN), for all kδN ≤ t < (k + 1)δN , be the step

process corresponding to (XN
n (k))k≥1. It now follows that

X̂N
n (t)−µ

n
0 =

t∫
0

[Ln
vect(X̄

N
n (s))+U N

n (s)]ds

=

t∫
0

[Ln
vect(X̂

N
n (s))+Ln

vect(X̄
N
n (s))−Ln

vect(X̂
N
n (s))+U N

n (s)]ds.

By definition of the smoothing map sn, it follows that

sn(X̂
N
n (t))− sn(µ

N,n
x ) =

t∫
0

[Ln
vect(X̂

N
n (s))+Ln

vect(X̄
N
n (s))−Ln

vect(X̂
N
n (s))+ sn(U

N
n (s))]ds.

Also since we have µn(t)−µn
0 =

∫ t
0 L

n
vect(µ

n(s))ds, we have that

‖sn(X̂
N
n (t))−µ

n(t)‖TV ≤
∫ t

0
‖sn(L

n
vect(X̂

N
n (s)))− sn(L

n
vect(µ

n(s)))‖TVds∫ t

0
‖sn(L

n
vect(X̄

N
n (s)))− sn(L

n
vect(X̂

N
n (s)))‖TVds+Ψ(T ),

where Ψ(T ) = sup0≤t≤T ‖
∫ T

0 sn(U N
n (s))ds‖TV. We now require the following two lemmas to complete

the proof of Proposition 3.1.

Lemma 6.2. Fix n≥ 1. Let µ ,ν ∈P(Sn) be two arbitrary purely atomic probability measures. Then

‖sn(µ)− sn(ν)‖TV ≤
1
4
‖µ−ν‖TV. (26)

Proof. By definition of smoothing of a probability measure, we have that sn(µ),sn(µ) are both absolutely

continuous with respect to the Lebesgue measure. Now by definition of total variation distance, we have

‖sn(µ)− sn(ν)‖TV =
1
2

∫
S

∣∣∣dsn(µ)

dλ
(x)− dsn(ν)

dλ
(x)
∣∣∣dx

=
1
2

∫
S

∣∣∣ 2n−1

∑
k=0

2n
µ({αn,k})I[αn,k ,αn,k+1)(x)−

2n−1

∑
k=0

2n
ν({αn,k})I[αn,k ,αn,k+1)(x)

∣∣∣dx

≤ 1
2

2n−1

∑
k=0
|µ({αn,k})−ν({αn,k})|

=
1
4
‖µ−ν‖TV.

This completes the proof of Lemma 6.2. �
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Lemma 6.3. Fix ε > 0. Then for every µ ,ν ∈P(S ), we have

‖Ln
vect(µ)−Ln

vect(ν)‖TV ≤ 4ε exp(2‖ fn‖∞)+ 2‖ f‖∞ exp(2‖ fn‖∞)‖µ−ν‖TV. (27)

for sufficiently large n.

Proof. Fix µ ,ν ∈P(S ). By definition of total-variation norm, we have that

‖Ln
vect(µ)−Ln

vect(ν)‖TV =
∫

S

∣∣∣ exp(ϕn
x (µ))∫

S exp(ϕn
y (µ))dy

− exp(ϕn
x (ν))∫

S exp(ϕn
y (ν))dy

∣∣∣dx

=
∫

S

∣∣∣∫S exp(ϕn
x (µ))exp(ϕn

y (ν))dy−
∫
S exp(ϕn

x (ν))exp(ϕn
y (µ))dy

(
∫
S exp(ϕn

y (µ))dy)(
∫
S exp(ϕn

y (ν))dy)

∣∣∣dx

≤
∫

S

∣∣∣∫
S

exp(ϕn
x (µ)+ϕ

n
y (ν))dy−

∫
S

exp(ϕn
x (µ)+ϕ

n
y (ν))dy

+
∫

S
exp(ϕn

x (µ)+ϕ
n
y (ν))dy−

∫
S

exp(ϕn
x (ν)+ϕ

n
y (µ))dy

∣∣∣
≤
∫

S
|exp(ϕn

x (µ))(exp(ϕn
y (ν))− exp(ϕn

y (µ)))|dy∫
S
|exp(ϕn

y (µ))(exp(ϕn
x (µ))− exp(ϕn

x (ν)))|dy

≤ 2exp(‖ϕn(µ)‖∞ + ‖ϕn(µ)‖∞∨‖ϕn(ν)‖∞)‖ϕn(µ)−ϕ
n(ν)‖∞

≤ 2exp(2‖ fn‖∞)‖ϕn(µ)−ϕ
n(ν)‖∞

≤ 2exp(2‖ fn‖∞)(‖ϕn(µ)−ϕ(µ)‖∞ + ‖ϕ(µ)−ϕ(ν)‖∞ + ‖ϕn(ν)−ϕ(ν)‖∞)

≤ 2exp(2‖ fn‖∞)(2ε + ‖ f‖∞‖µ−ν‖TV)

= 4ε exp(2‖ fn‖∞)+ 2‖ f‖∞ exp(2‖ fn‖∞)‖µ−ν‖TV.

As a result, we have that

‖Ln
vect(µ)−Ln

vect(ν)‖TV ≤ 2exp(2‖ fn‖∞)(2ε +(1+ ‖ f‖∞)‖µ−ν‖TV), for all µ ,ν ∈P(S ).

This concludes the proof of Lemma 6.3. �

We now proceed with the proof of the proposition. Notice that

‖sn(X̂
N
n (t))−µ

n(t)‖TV ≤ 8εt exp(2‖ fn‖∞)+ 2(1+ ‖ f‖∞)exp(2‖ fn‖∞)δT

+ 2(1+ ‖ f‖∞)exp(2‖ fn‖∞)
∫ t

0
‖s(X̂N

n (s))−µ
n(s)‖TVds+Ψ(T ).

This implies that

sup
0≤t≤T

‖sn(X̂
N
n (t))−µ

n(t)‖TV ≤
[
8εT exp(2‖ fn‖∞)+ 2(1+ ‖ f‖∞)exp(2‖ fn‖∞)δT

+Ψ(T )
]
+ 2(1+ ‖ f‖∞)exp(2‖ fn‖∞)

∫ t

0
‖s(X̂N

n (s))−µ
n(s)‖TVds.

Therefore by Grönwall’s inequality we have the following bound:

sup
0≤t≤T

‖sn(X̂
N
n (t))−µ

n(t)‖TV ≤
[
8εT exp(2‖ fn‖∞)+ 2(1+ ‖ f‖∞)exp(2‖ fn‖∞)δT
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+Ψ(T )
]

exp(2(1+ ‖ f‖∞)exp(2‖ fn‖∞)T ).

(28)

Letting n,N to be sufficiently large enough such that

εn∨δN ≤
ε

8T (1+κ)exp(2‖ fn‖∞)
exp(−2(1+ ‖ f‖∞)exp(2‖ fn‖∞)T ), (29)

in which case we have{
sup

0≤t≤T
‖s(X̂N

n (t))−µ
n(t)‖TV ≥ ε

}
=⇒

{
Ψ(T ) ≥ ε

( 5+ ‖ f‖∞

4+ 4‖ f‖∞

)
exp(−2(1+κ)exp(2‖ fn‖∞)T )

}
(30)

As a result, we have

Pµn
0

(
sup

0≤t≤T
‖s(X̂N

n (t))−µ
n(t)‖TV≥ ε

)
≤Pµn

0

(
Ψ(T )≥ ε

( 5+ ‖ f‖∞

4+ 4‖ f‖∞

)
exp(−2(1+‖ f‖∞)exp(2‖ fn‖∞)T )

)
.

We now proceed to bound the probability on the right hand side of the above inequality. Let us define

the following collection of functions:

L̄ ∞(S ) :

{
ḡ ∈L ∞(S ) : ∃ (βk)

2n−1
k=0 ⊆R, such that ḡ(x) :=

2n−1

∑
k=0

βk1[αn,k ,αn,k+1)(x), for all x ∈S

}
.

(31)

Now fix ḡ ∈ L̄ ∞(S). For k ≥ 1, let Zk(ḡ) := exp
( k

∑
i=0
〈ḡ,δs(U N

n,i)〉− γkδ 2‖ḡ‖2
∞

)
.

Lemma 6.4. For every ḡ ∈ L̄ ∞(S), the process (Zk(ḡ))k≥1 is a supermartingale with respect to the

filtration (Fk)k≥1.

Proof. From definition of (Uk), we observe that

‖s(U N
k )‖TV ≤

1
δN
‖XN

n ((k+ 1)δN)−XN
n (kδN)‖TV + ‖Ln

vect(X
N
n (kδN))‖TV

≤
√

2+ ‖Ln
vect‖TV =

√
γ (say).

Now it follows along the lines of Benaı̈m and Weibull (2003), that E(exp(〈ḡ,U N
n,k〉)) ≤ exp( γ‖ḡ‖2

∞

2 ), and

thus completes the proof of Lemma 6.4. �

Thus for any θ > 0, using Lemma 6.4, we have that

Pµn
0

(
max

0≤k≤n

〈
ḡ,

k−1

∑
i=0

δNsn(U
N

n,i)
〉
≥ θ

)
≤Pµn

0

(
max

0≤k≤n
Zk(ḡ) ≥ exp(θ − γ

2
‖g‖2

∞nδ
2
N)
)

≤ exp
(

γ

2
‖g‖2

∞nδ
2
N−θ

)
For k≥ 1, let hk : S→R be defined as hk(x) := 1[αn,k ,αn,k+1)(x), for x ∈ S. It then follows that (hk)0≤k≤2n−1

forms a basis of L̄ ∞(S). Let h = hk or h = −hk for some k. Set θ = ε2

γ̃nδ 2 . Then there exists h =

(h(αn,0), . . . ,h(αn,2n−1)) ∈ R2n
and UN

n ∈ R2n
such that

〈
h,

k−1
∑

i=0
δsn(U N

n,i)
〉
=
〈

h,
k−1
∑

i=0
δUN

n,i

〉
. Now set
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g =
(

θ

ε

)
h and define g :=

(
θ

ε

)
h. It then follows from Benaı̈m and Weibull (2003) that

Pµn
0

(
max

0≤k≤m

〈
h,

k−1

∑
i=0

δNs(UN
n,i)
〉
≥ ε

)
= Pµn

0

(
max

0≤k≤m

〈
h,

k−1

∑
i=0

δNUN
n,i

〉
≥ ε

)
≤Pµn

0

(
max

0≤k≤m

〈
g,

k−1

∑
i=0

δNUN
n,i

〉
≥ θ

)
≤ exp

( −ε2

2mγδ 2
N

)
.

It now follows from Lemma 6.2 that

Pµn
0
(Ψ(T ) ≥ ε) ≤ 2n+1 exp

( −ε2

8δNγT

)
.

Define C =
( 5+ ‖ f‖∞

4+ 4‖ f‖∞

)
exp(−2(1+ ‖ f‖∞)exp(2(1+ ‖ f‖∞)T ). Note that by definition of C, it is

independent of µn
0 . As a result, we then arrive the inequality:

Pµn
0

(
sup

0≤t≤T
‖sn(X̂

N
n (t))−µ

n(t)‖TV ≥ ε

)
≤Pµn

0

(
Ψ(T ) ≥Cε

)
≤ 2n+1 exp

(
−C2ε2

8δNγT

)
.

Let C̄ :=C2/8γT . As δN = 1/N, we have that

Pµn
0

(
sup

0≤t≤T
‖sn(X̂

N
n (t))−µ

n(t)‖TV ≥ ε

)
≤ 2n+1 exp(−NC̄ε

2).

This concludes the proof of Proposition 3.1.

6.3 PROOF OF THEOREM 3.1

The proof Theorem 3.1 follows from Propositions 2.1 and 3.1. To make the proof mathematically rigorous,

consider the fixed probability space (Ω,F ,P) on which the stochastic evolutionary process (X̂N
n (t))t≥0 is

defined. For n≥ 1, let X̂n : Ω→P(S ) be the degenerate stochastic process such that for al ω ∈Ω, we

have X̂n(ω)(t) := µn(t), for all t ≥ 0. Also define the process X̂ : Ω→P(S ) such that for all ω ∈Ω,

X̂(ω)(t) := µ(t), for all t ≥ 0. For ε > 0, we have that{
sup

0≤t≤T
‖sn(X̂

N
n (t))− X̂(t)‖TV ≥ ε

}
⊆

{
sup

0≤t≤T
‖sn(X̂

N
n (t))− X̂n(t)‖TV ≥ ε/2

}

∪

{
sup

0≤t≤T
‖X̂n(t)− X̂(t)‖TV ≥ ε/2

}
.

As a result we have that

P
µN

pn

(
sup

0≤t≤T

∥∥sn(X̂
N
n (t))− X̂(t)

∥∥
TV ≥ ε

)
≤P

µN
pn

(
sup

0≤t≤T

∥∥sn(X̂
N
n (t))− X̂n(t)

∥∥
TV ≥ ε/2

)
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+P
µN

pn

(
sup

0≤t≤T

∥∥X̂n(t)− X̂(t)
∥∥

TV ≥ ε/2

)
.

By assumption of the theorem, we have that the initial conditions µN
pn = µ0, for all N,n≥ 1, implies that

Pµ0

(
sup

0≤t≤T

∥∥sn(X̂
N
n (t))− X̂(t)

∥∥
TV ≥ ε

)
≤Pµ0

(
sup

0≤t≤T

∥∥sn(X̂
N
n (t))− X̂n(t)

∥∥
TV ≥ ε/2

)

+Pµ0

(
sup

0≤t≤T

∥∥X̂n(t)− X̂(t)
∥∥

TV ≥ ε/2

)
.

Fix n≥ 1. Then by taking limits as N→ ∞ we have by Proposition 3.1 that

lim
N→∞

Pµ0

(
sup

0≤t≤T

∥∥sn(X̂
N
n (t))− X̂(t)

∥∥
TV ≥ ε

)
≤Pµ0

(
sup

0≤t≤T

∥∥X̂n(t)− X̂(t)
∥∥

TV ≥ ε/2

)
. (32)

Now, allowing n→ ∞, in (32) we have by an application of Proposition 2.1 that

lim
n→∞

lim
N→∞

Pµ0

(
sup

0≤t≤T

∥∥sn(X̂
N
n (t))− X̂(t)

∥∥
TV ≥ ε

)
= 0.

Finally, using the fact that X̂(t) = µ(t), for all t ≥ 0, Pµ0-a.s concludes the proof of Theorem 3.1.

6.4 PROOF OF PROPOSITION 4.1

For this proof, we topologize the space of probability measures P(S ) with the BL∗ which we define

below: let g : S →R be a bounded Lipschitz map. Then the bounded Lipschitz norm is defined as

‖g‖BL := sup
x∈S
|g(x)|+ sup

x 6=y

|g(x)−g(y)|
|x− y|

, for all g ∈ Lip(S ), (33)

where Lip(S ) denotes the collection of all bounded Lipschitz functions on S . Now let

Bounded-Lip(S ) := {g : S →R | g is bounded and Lipschitz with ‖g‖BL ≤ 1}

be the collection of bounded Lipschitz continuous functions with BL-norm bounded by 1. Denote by

M (S ), the space of all signed measures on S . Then the dual BL∗-norm on M (S ) is defined as

‖µ−ν‖BL∗ := sup
g∈Bounded-Lip(S )

(∫
S

f dµ−
∫

S
f dν

)
, for all µ ,ν ∈M (S ). (34)

It is well-known (see Billingsley (2013), Perkins and Leslie (2014)) that the weak topology on P(S )

coincides with the topology generated by the BL∗-norm on P(S ). Therefore, weak convergence is

equivalent to convergence with respect to the BL∗-norm.

We now proceed with the proof of the proposition. Suppose that ϕ is supermodular and let n≥ 1. We

show that the level-n discretization Dn
ϕ of ϕ as defined in Definition 3.1 is a supermodular game. Fix

x,y∈ ∆(Sn) with x� y. It then follows that µx := ∑0≤ j≤2n x jδαn, j �∑0≤ j≤2n y jδαn, j =: µy. Now fix i < j.
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It then follows from the definition of Dn
ϕ that,

Dn
ϕ [x](αn, j)−Dn

ϕ [x](αn,i) = 〈 fn(αn, j, ·),x〉−〈 fn(αn,i, ·),x〉

= ∑
0≤k≤2n

fn(αn, j,αn,k)xk− ∑
0≤k≤2n

fn(αn,i,αn,k)xk

=
∫

S
fn(αn, j, t)µx(dt)−

∫
S

fn(αn,i, t)µx(dt)

= ϕαn, j(µx)−ϕαn,i(µx)

≥ ϕαn, j(µy)−ϕαn,i(µy)

=
∫

S
fn(αn, j, t)µy(dt)−

∫
S

fn(αn,i, t)µy(dt)

= ∑
0≤k≤2n

fn(αn, j,αn,k)yk− ∑
0≤k≤2n

fn(αn,i,αn,k)yk

= 〈 fn(αn, j, ·),y〉−〈 fn(αn,i, ·),y〉

= Dn
ϕ [y](αn, j)−Dn

ϕ [y](αn,i).

This completes the proof that Dn
ϕ is a supermodular game. Since n ≥ 1 is arbitrary, this concludes the

proof of “only-if part” of Proposition 4.1.

We now proceed to prove the “if-part” of the theorem. Now suppose that Dn
ϕ is a supermodular

game for every n ≥ 1. We need to show that ϕ is a supermodular game. To this end, first x > y. Let

S∞ := ∪n≥1Sn. Since S∞ is dense in S , there exists two subsequences {nk}k≥1,{mk}k≥1 ⊆N and

sequences
{

αx
nk , jnk

}
⊆Snk and

{
α

y
mk , jmk

}
⊆Smk such that αx

nk , jnk
↓ x and α

y
mk , jmk

↑ y as k→ ∞. Again,

since S∞ is dense in S , it follows (see Billingsley (2013)) that that space of atomic probability measures

P(S∞) on S∞ is dense in P(S ) relative to the topology of weak convergence. Since weak topology

in equivalent to the BL∗-norm on P(S ), we therefore have that for every µ ∈P(S ), there exists

(µn)n≥1 ⊆P(S∞) such that µn
BL∗−−→ µ . By definition since ϕ is a weakly continuous population game,

we have ϕx(µn) converges to ϕx(µ) for all x ∈S . As a result we have for all x ∈S that,

ϕx(µ) = lim
n→∞

ϕx(µn)

= lim
n→∞

∫
S

f (x, t)µn(dt).

By the definition in (6), the sequence ( fn)n≥1 converges uniformly to f . This, in conjuction with Bounded

Convergence Theorem (Billingsley (2013)) implies that

ϕx(µ) = lim
n→∞

∫
S

f (x, t)µn(dt).

= lim
n→∞

lim
k→∞

∫
S

fk(α
x
nk , jnk

, t)µn(dt)

= lim
n→∞

lim
k→∞

Dn
ϕ [pµn

](αx
nk , jnk

).

We are now ready to conclude the proof of the theorem. Fix µ ,ν ∈P(S ) with µ � ν . Then there

exists two sequences of atomic probability measures (µn)n≥1 ⊆P(S∞) and (νn)n≥1 ⊆P(S∞) such

that µn � νn for all n≥ 1, such that µn
BL∗−−→ µ and νn

BL∗−−→ ν . By hypothesis of the theorem, the level-n

discretization Dn
ϕ is a supermodular game. Also by construction, we have that αx

nk , jnk
> α

y
mk , jmk

for every
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k ≥ 1. Therefore we have

ϕx(µ)−ϕy(µ) = lim
n→∞

lim
k→∞

Dn
ϕ [pµn

](αx
nk , jnk

)− lim
n→∞

lim
k→∞

Dn
ϕ [pµn

](αy
mk , jmk

)

= lim
n→∞

lim
k→∞

[
Dn

ϕ [pµn
](αx

nk , jnk
)−Dn

ϕ [pµn
](αy

mk , jmk
)
]

≥ lim
n→∞

lim
k→∞

[
Dn

ϕ [pνn
](αx

nk , jnk
)−Dn

ϕ [pνn
](αy

mk , jmk
)
]

= lim
n→∞

lim
k→∞

Dn
ϕ [pνn

](αx
nk , jnk

)− lim
n→∞

lim
k→∞

Dn
ϕ [pνn

](αy
mk , jmk

)

= ϕx(ν)−ϕy(ν).

Since µ � ν is arbitrary, this proves that ϕ is a supermodular game and hence concludes the proof of

Proposition 4.1.

6.5 PROOF OF PROPOSITION 4.2

Recall that the two-player game f which induces ϕ in Example 2.1 is defined as f (x,y) = m(x)y− c(x),

for all x,y ∈S , where m is an increasing function of x and c is an arbitrary function of x. Using (6), we

define the step–wise approximation of f as

fn(x,y) =


m(αn, j)αn,k− c(αn, j), if (x,y) ∈ [αn, j,αn, j+1)× [αn,k,αn.k+1) and j,k = 0, . . . ,2n−2

m(αn,2n−1)αn,2n−1− c(αn,2n−1) if (x,y) ∈ [αn,2n−1,1]× [αn,2n−1,1].
(35)

This implies that for every n≥ 1, we have from (13),

Dn
ϕ [p

n](αn, j) = ∑
0≤k≤2n−1

fn(αn, j,αn,k)pn
k , for all j = 0,1, . . . ,2n−1.

We now proceed to show that Dn
ϕ is irreducible. Fix pn ∈ ∆(Sn) and K ⊂ Ŝn arbitrary as in Definition

4.3. Now let j ∈ K and i ∈ Ŝn \K. Since m is an increasing function of x, we have

∂Dn
ϕ [pn](αn, j+1)

∂pn
i+1

−
∂Dn

ϕ [pn](αn, j+1)

∂pn
i

= fn(αn, j+1,αn,i+1)− fn(αn, j+1,αn,i)

= m(αn, j+1)(αn,i+1−αn,i)

> m(αn, j)(αn,i+1−αn,i)

= fn(αn, j,αn,i+1)− fn(αn, j,αn,i)

=
∂Dn

ϕ [pn](αn, j)

∂pn
i+1

−
∂Dn

ϕ [pn](αn, j)

∂pn
i

This proves that Dn
ϕ is irreducible and hence concludes the proof of Proposition 4.2.

6.6 PROOF OF LEMMA 4.1

To prove the lemma we shall first exploit the properties of BL∗-norm, or equivalently weak topology on

the space P(S ). Observe that the sequence of level-n step logit equilibria sn(µp∗n) ∈P(S ) for every

n≥ 1. Since the weak topology, and hence the BL∗-norm renders the space P(S ) compact, there exists

a subsequence (nk)k≥1 such that snk(µp∗nk
) converges in the BL∗-norm to some µ∗ ∈P(S ). We now
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show that µ∗ is a logit equilibrium of the original game ϕ . To this end, we need to show that

µ
∗(A) = Lη [µ

∗](A), for all A ∈B(S ).

Note that since snk(µp∗nk
) is a level-nk step logit equilibrium of the game ϕnk for every k ≥ 1, we have that

snk [µp∗nk
](A) = Lnk

η [snk(µp∗nk
)](A), for all A ∈B(S ) such that µ

∗(∂A) = 0. (36)

Now, we show that ϕnk(snk(µp∗nk
))→ ϕ(µ∗) as k→ ∞. Fix x ∈S . Since f is Lipschitz continuous, we

have

|ϕnk
x (snk(µp∗nk

))−ϕx(µ
∗)|=

∣∣∣∣∣
∫

S
fnk(x,y)snk(µp∗nk

)(dy)−
∫

S
f (x,y)µ∗(dy)

∣∣∣∣∣
≤
∫

S
| fnk(x,y)− f (x,y)|snk(µp∗nk

)(dy)+

∣∣∣∣∣
∫

S
f (x,y)(snk(µp∗nk

)−µ
∗)(dy)

∣∣∣∣∣
≤ 2‖ fnk − f‖∞ + ‖ f‖∞‖snk(µp∗nk

)−µ
∗‖BL∗ .

As a result, using the fact that fn→ f uniformly, and that snk(µp∗nk
) converges in the BL∗-norm to µ∗, we

have

‖ϕnk(snk(µp∗nk
))−ϕ(µ∗)‖∞ = sup

x∈S
|ϕnk

x (snk(µp∗nk
))−ϕx(µ

∗)|

≤ 2‖ fnk − f‖∞ + ‖ f‖∞‖snk(µp∗nk
)−µ

∗‖BL∗

→ 0, as k→ ∞.

Also since

exp(ϕnk
x (snk(µp∗nk

)))≤ exp(2(1+ ‖ f‖∞)), for all x ∈S ,

we have using dominated convergence theorem that
∫
S exp(ϕnk

y (snk(µp∗nk
)))dy→

∫
S exp(ϕy(µ∗))dy.

Now, in order to prove that Lnk
η (snk(µp∗nk

)) converges in the variational norm to Lη(µ∗), it is enough to

show that
dLnk

η (snk(µp∗nk
))

dλ
→

dLη(µ∗)

dλ
in L 1(S ) as k→ ∞.17

Note that the density function of Lnk
η (snk(µp∗nk

)) satisfies

dLnk
η (snk(µp∗nk

))

dλ
(x) ≤ exp(2(1+ ‖ f‖∞)), for all x ∈S .

We also have that for all x ∈S ,

dLnk
η (snk(µp∗nk

))

dλ
(x)→

dLη(µ∗)

dλ
(x) as k→ ∞.

Again, by an application of Dominated Convergence Theorem, we conclude that Lnk
η (snk(µp∗nk

)) converges

in the variational norm to Lη(µ∗). Therefore, for every A ∈B(S ), we have that Lnk
η [snk(µp∗nk

)](A)→
Lη [µ∗](A) as k→ ∞. Using this observation in (36), we have that µ∗ is a fixed point of Lη and hence a

17The space L 1(S ) is defined as the collection of all measurable functions g : S →R such that
∫
S | f (x)|dx < ∞. We say

that gn→ g in L 1(S ) if
∫
S |gn(x)−g(x)|dx→ 0 as n→ ∞.
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logit equilibrium of ϕ . In fact, we proved that that snk(µp∗nk
) = Lnk

η (snk(µp∗nk
))→ Lη(µ∗) = µ∗ as k→ ∞

in with respect to the total variation norm. This concludes the proof of Lemma 4.1.

6.7 PROOF OF THEOREM 4.1

The proof of Theorem 4.1 is subdivided into several steps.

Step 1: In this step, we show that the discretized version of the stochastic evolutionary process

converges in the medium run to an element of LEη(Dn
ϕ). Fix ε > 0. Pick N,n ≥ 1 and consider

the interpolated stochastic evolutionary process (X̂N
n (t))t≥0. We observe that though (X̂N

n (t))t≥0 is a

stochastic process in taking values in P(S ), however in principle, (X̂N
n (t))t≥0 takes values in the

space of atomic measures on S with support Sn. Note that any probability measure µ ∈P(Sn) can be

expressed as µ = ∑0≤k≤2n−1 pn
jδαn, j , for some pn ∈ ∆(Sn) and vice-versa. We therefore define the bijective

mapping dn : P(Sn)→ ∆(Sn) such that dn(∑0≤k≤2n−1 pn
jδαn, j) = pn for all pn ∈ ∆(Sn). It then follows

that (dn(X̂N
n (t)))t≥0 is the interpolated stochastic evolutionary process on ∆(Sn). Let LEη(Dn

ϕ) denote

the collection of discretized logit equilibria corresponding to the level-n discretized game Dn
ϕ . More

precisely, LEη(Dn
ϕ) := {pn,∗

η : Ln
η [p

n,∗
η ] = pn,∗

η }. By assumption of the theorem, we have that the original

population game ϕ is supermodular. Therefore by Proposition 4.1, we have that the level-n discretization

Dn
ϕ is supermodular. Also by hypothesis of the theorem, we have that Dn

ϕ is irreducible. Thus, by Hofbauer

and Sandholm (2007), the process (dn(X̂N
n (t)))t≥0 ⊆ ∆(Sn) converges in the medium run to an element of

LEη(Dn
ϕ) as N→∞. Let us denote by p∗n the element in LEη(Dn

ϕ) to which (dn(X̂N
n (t)))t≥0 converges in

the medium run as N→ ∞.18 That is, there exists Tε > 0 such that for all T ≥ Tε , such that

lim
N→∞

Pµ0

(
dn(X̂

N
n (t)) ∈ Oε(p∗n) for all Tε ≤ t ≤ T

)
= 1.

We now proceed to show that the smoothed version of the stochastic evolutionary process (sn(X̂N
n (t)))t≥0

converges in the medium run to an element of LEη(ϕn) as N → ∞. In particular, we show that

(sn(X̂N
n (t)))t≥0 converges in the medium run to sn(µp∗n). The fact that the processes (sn(X̂N

n (t)))t≥0 and

(dn(X̂N
n (t)))t≥0 are in one-to-one correspondence with each other implies that sn(X̂N

n (t))t≥0 converges in

the medium run to an element of sn(LEη(Dn
ϕ)).

Step 2: As a next step in the proof, we proceed to show that sn(LEη(Dn
ϕ)) coincides with LEη(ϕn),

thereby proving that sn(µp∗n) ∈ LEη(ϕn). We prove this in the following lemma.

Lemma 6.5. For n≥ 1, let LEη(Dn
ϕ) and LEη(ϕn) be the collection of level-n discretized and step logit

equilibria corresponding to Dn
ϕ and ϕn respectively. Then pn,∗

η ∈ LEη(Dn
ϕ) if and only if sn(µpn,∗

η
) ∈

LEη(ϕn).

Proof. Again, as before, we shall use the notation p∗ to denote a discretized level-n logit equilibrium to

simplify the presentation of the proof. First observe that for any pn ∈ ∆(Sn), we have by definition of sn

that

µpn [αn,k,αn,k+1) = sn(µpn)[αn,k,αn,k+1) = pn
k , for all k = 0,1, . . . ,2n−1.

Suppose that p∗ ∈ LEη(Dn
ϕ). Then we have p∗ = Ln

η [p∗]. This, in particular implies that

µp∗ = ∑
0≤k≤2n−1

Ln
η ,k[p

∗]δαn,k .

18To keep the notations simple, we remove the dependence of η in p∗n.
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Thus by definition of sn (Definition 3.2), above equality implies that for all x ∈S ,

sn(µp∗)

dλ
(x) = ∑

0≤k≤2n−1
2nLn

η ,k[p
∗]1[αn,k ,αn,k+1)(x)

= ∑
0≤k≤2n−1

2n exp(η−1〈 fn(αn,k, ·),p∗〉)
∑

2n−1
j=0 exp(η−1〈 fn(αn, j, ·),p∗〉)

1[αn,k ,αn,k+1)(x)

= ∑
0≤k≤2n−1

exp(η−1
∑0≤ j≤2n−1 fn(αn,k,αn, j)p∗j)

2−n ∑
2n−1
j=0 exp(η−1 ∑0≤i≤2n−1 fn(αn, j,αn,i)p∗i ))

1[αn,k ,αn,k+1)(x)

= ∑
0≤k≤2n−1

exp(η−1
∑0≤ j≤2n−1 fn(αn,k,αn, j)µp∗ [αn, j,αn, j+1))

2−n ∑
2n−1
j=0 exp(η−1 ∑0≤i≤2n−1 fn(αn, j,αn,i)µp∗ [αn,i,αn,i+1))

1[αn,k ,αn,k+1)(x)

= ∑
0≤k≤2n−1

exp(η−1 ∫
S fn(αn,k,y)µp∗(dy))

2−n ∑
2n−1
j=0 exp(η−1

∫
S fn(αn, j,y)µp∗(dy))

1[αn,k ,αn,k+1)(x)

= ∑
0≤k≤2n−1

exp(η−1ϕn
αn,k

(µp∗))

2−n ∑
2n−1
j=0 exp(η−1ϕn

αn, j
(µp∗))

1[αn,k ,αn,k+1)(x)

= ∑
0≤k≤2n−1

exp(η−1ϕn
αn,k

(µp∗))

∑
2n−1
j=0 exp(η−1ϕn

αn, j
(µp∗))λ ([αn, j,αn, j+1)

1[αn,k ,αn,k+1)(x)

= ∑
0≤k≤2n−1

exp(η−1ϕn
αn,k

(µp∗))∫
S exp(η−1ϕn

y (µp∗))λ (dy)
1[αn,k ,αn,k+1)(x). (37)

The proof of Lemma 6.5 concludes if we are able to show that ϕn
x (sn(µp∗)) = ϕn

x (µp∗) for all x ∈S .

In fact, a more general equality holds: for all x ∈S , we have

ϕ
n
x (sn(µpn)) = ϕ

n
x (µpn), for all pn ∈ ∆(Sn).

To this end, fix x ∈S . Then, using the definition of ϕn, we have that

ϕ
n
x (sn(µpn)) =

∫
S

fn(x,y)sn(µpn)(dy)

= ∑
0≤k≤2n−1

fn(x,αn,k)sn(µpn)[αn,k,αn,k+1)

= ∑
0≤k≤2n−1

fn(x,αn,k)pn
k

=
∫

S
fn(x,y)µpn(dy)

= ϕ
n
x (µpn).

Plugging in the above observation in (37), we have the following equality:

sn(µp∗)

dλ
(x) = ∑

0≤k≤2n−1

exp(η−1ϕn
αn,k

(sn(µp∗)))∫
S exp(η−1ϕn

y (sn(µp∗)))λ (dy)
1[αn,k ,αn,k+1)(x), for all x ∈S .

Thus, using the above equality, we have by definition of level-n step logit equilibrium that sn(µp∗) =

Ln
η(sn(µp∗)). As a result, we have that sn(µp∗) ∈ LEη(ϕn). Similarly, suppose p∗ be such that sn(µp∗) ∈

LEη(ϕn). It then follows using similar arguments that p∗ ∈ LEη(Dn
ϕ). This concludes the proof of Lemma

6.5. �

Therefore by applying Lemma 6.5 along with Hofbauer and Sandholm (2007), we then have that for
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every ε > 0, interpolated smoothed version sn(X̂N
n (t))t≥0 converges in the medium run to Oε(sn(µp∗n)).

Step 3: In this step, we use the deterministic approximation result (Proposition 3.1) to obtain that for

sufficiently large T ≥ Tε , the solution to the level-n step logit dynamic (µn(t))t≥0 is close to an element

of LEη(ϕn) in the medium run. We require the following lemma in this regard.

Lemma 6.6. For every ε > 0, there exits Tε > 0 such that for all T ≥ Tε , we have µn(t) ∈ Oε(sn(µp∗n))

for all Tε ≤ t ≤ T .

Proof. Consider the probability space (Ω,F ,P) on which the interpolated stochastic evolutionary process

(X̂N
n (t))t≥0 is defined. Let (X̂n(t))t≥0 be a process such that X̂n(t) : Ω→P(S ) is defined as X̂n(t,ω) =

µn(t) for all ω ∈Ω. The fact that (X̂n(t))t≥0 is a deterministic process implies that it is measurable. To

prove the lemma, we need to show that

Pµ0

(
X̂n(t) ∈ Oε(sn(µp∗n)) for all Tε ≤ t ≤ T

)
= 1.

To this end, we first show that the solution trajectory µn(t) is continuous in t. Note that by definition of

ϕn, we have that for all µ ,ν ∈P(S ) and all x ∈S ,

|ϕn
x (µ)−ϕ

n
n (ν)|=

∣∣∣∫
S

fn(x,y)µ(dy)−
∫

S
fn(x,y)ν(dy)

∣∣∣
≤ ‖ fn‖∞‖µ−ν‖TV.

As a result, we have ‖ϕn(µ)−ϕn(ν)‖∞ ≤ ‖ fn‖∞‖µ−ν‖TV for all µ ,ν ∈P(S ). Thus, ϕ is a Lipschitz

population game, and hence by Lahkar and Riedel (2015), we have that the continuum logit dynamic

admits a continuous solution (µn(t))t≥0. Therefore X̂n has continuous paths P-a.s. This implies that

Pµ0

(
X̂n(t) ∈ Oε(sn(µp∗n)) for all Tε ≤ t ≤ T

)
= Pµ0

(
X̂n(t) ∈ Oε(sn(µp∗n)) for all t ∈ [Tε ,T ]∩Q+

)
,

where Q+ denotes the collection of all positive rationals. Let (rk)k≥1 be an enumeration of rationals in

[Tε ,T ]. Thus, in order to prove the lemma, we need to show that P
(
∩∞

k=1 X̂n(rk) ∈ Oε(sn(µp∗n))
)
= 1.

To this end, we show that P
(
X̂n(rk) ∈ Oε(sn(µp∗n))

)
= 1 for all k ≥ 1. Fix ε̄ > 0. Then, for all N ≥ 1, it

holds that{
‖X̂n(rk)−Oε(sn(µp∗n))‖TV > ε̄

}
⊆
{
‖X̂n(rk)− sn(X̂

N
n (rk))‖TV > ε̄/2

}
∪
{
‖sn(X̂

N
n (rk)−Oε(sn(µp∗n))‖TV > ε̄/2

}
.

This implies that

Pµ0

(
‖X̂n(rk)−Oε(sn(µp∗n))‖TV > ε̄

)
≤Pµ0

(
‖X̂n(rk)− sn(X̂

N
n (rk))‖TV > ε̄/2

)
+Pµ0

(
‖sn(X̂

N
n (rk)−Oε(sn(µp∗n))‖TV > ε̄/2

)
.

We now apply Theorem 3.1 and Theorem 4.1 of Hofbauer and Sandholm (2007) to conclude that there

exists Nε̄ ≥ 1 sufficiently large such that for all N ≥ Nε̄ , we have

Pµ0

(
‖X̂n(rk)−Oε(sn(µp∗n))‖TV > ε̄

)
≤ 2n+1e−NC̄ε̄2

+ ε̄

≤ 2ε̄
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Since ε̄ is arbitrary, we conclude that Pµ0(X̂n(rk) ∈Oε(sn(µp∗n))) = 1. Also, since k ≥ 1 is arbitrary, we

have that P(X̂n(rk) ∈Oε(LEη(ϕn))) = 1 for all k≥ 1. Now, by an application of Bonferroni’s inequality

(see Billingsley (2008)), we have that P(∩∞
k=1X̂n(rk) ∈ Oε(sn(µp∗n))) = 1. This concludes the proof of

Step 2. Since (X̂n(t))t≥0 is a degenerate stochastic process, we have that µn(t) ∈ Oε(sn(µp∗n)) for all

Tε ≤ t ≤ T . �

Step 4: As a final step of the proof, we now proceed to show that the solution to the continuum strategy

logit dynamic (µ(t))t≥0 is close to the continuum strategy logit equilibria LEη(ϕ) in the medium run. We

again show this in the following lemma.

Lemma 6.7. For ε > 0, there exists Tε > 0 such that for all T ≥ Tε , we have µ(t) ∈O3ε(LEη(ϕ)) for all

Tε ≤ t ≤ T .

Proof. First note that since the original supermodular game ϕ is supermodular, we have by Theorem 4.1

that the level-n discretization Dn
ϕ is supermodular for every n ≥ 1. By assumption of the theorem, Dn

ϕ

is irreducible for every n≥ 1. Thus, it follows from Hofbauer and Sandholm (2007) that the discretized

stochastic evolutionary process (dn(X̂N
n (t)))t≥0 converges in the medium run to an element of LEη(Dn

ϕ).

Let us denote by µpn
∗ the medium run limit. Again, it follows from Lemma 6.5 that (sn(X̂N

n (t)))t≥0

converges in the medium run to sn(µpn
∗), which is an element of LEη(ϕn). By applying Lemma, we

have that 6.6, µn(t) stays in the medium run near sn(µpn
∗). By Lemma 4.1, there exists a subsequence of

sn(µpn
∗) which converges to µ∗ under the variational norm for some µ∗ ∈P(S ). Again by Lemma 4.1,

the limit µ∗ is a continuum strategy logit equilibrium corresponding to the game ϕ , that is, µ∗ ∈ LEη(ϕ).

We now proceed show that the solution to the continuum strategy logit dynamic (µ(t))t≥0 stays near µ∗

in the medium run. To this end we make use of the approximation result (Proposition 2.1). The fact that

sup0≤t≤T ‖µn(t)− µ(t)‖TV → 0 as n→ ∞, implies that for every ε > 0, there exists Nε ≥ 1 such that

sup0≤t≤T ‖µn(t)−µ(t)‖TV ≤ ε for all n≥ Nε . For T ≥ Tε , we have by Lemma 6.6 that µn(t) stays in the

medium run near sn(µpn
∗). Again by Lemma 4.1, we have that sn(µpn

∗)→ µ∗ in the total variation norm,

with µ∗ being a continuum strategy logit equilibrium. Combining all these observations we have that µ(t)

stays in the 3ε neighborhood of µ∗ in the medium run. This completes the proof of Lemma 6.7. �

This concludes the proof of Theorem 4.1.
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