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Abstract

We consider the implementation of efficiency with minimum inequality in a large population

model of negative externalities. Formally, the model is one of tragedy of the commons with the

aggregate strategy at the efficient state being lower than at the Nash equilibrium. A planner can

restore efficiency by imposing an externality equivalent tax and then redistribute the tax revenue

as transfers to lower inequality. We characterize the transfer vector that minimizes inequality

at the efficient state subject to incentive compatibility and budget balance. We then construct

a mechanism that implements efficiency with minimum inequality in dominant strategies. We

also show that minimizing inequality at the efficient state maximizes the minimum payoff at

efficiency. But it is not equivalent to implementing the Rawlsian social choice function.
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1 Introduction

The classical literature on welfare economics and mechanism design has considered the question of

achieving social efficiency in great detail. Efficiency is generally interpreted as implementing the

utilitarian social choice function that seeks to maximize aggregate payoff in society. Perhaps the

most well–known mechanisms pursuing this objective is the class of Vickrey–Clarke–Groves (VCG)

mechanisms (Vickrey [24], Clarke [3], Groves [8]), which take a dominant strategy implementation

approach to this problem. As far as we know, however, this literature has not addressed one

important question. That question is one of minimizing inequality at the socially efficient state

subject, of course, to the usual incentive compatibility and budget balance constraints. One reason

may be that in the usual setting of finite player mechanisms, dominant strategy implementation of

efficiency with incentive compatibility is incompatible with budget balance (Green and Laffont [7]).1

Adding the objective of minimum inequality would only make the problem even more intractable.

But equality is an important objective for any society. This is not just on grounds of fairness but

also because higher inequality may prove detrimental to the utilitarian objective of economic growth

by, for example, facilitating elite capture of institutions (Sokoloff and Engerman [21]). Therefore,

reconciling efficiency with equality is a significant question.

We consider precisely this question in this paper. But since a finite player setting would prove

intractable, we adopt a large population approach where there are a continuum of agents, each

agent being of measure zero. Unlike in finite player mechanisms, we can accommodate goals of effi-

ciency with incentive compability and budget balance in large population mechanisms (Lahkar and

Mukherjee [11]). Therefore, it may also be possible to combine minimum inequality with efficiency

in such an environment, which is what this paper seeks to establish. Existing models of implemen-

tation in large population games focus exclusively on efficiency. Thus, Sandholm [17, 18, 19], who

pioneered this literature, and Lahkar and Mukherjee [10, 12] consider the evolutionary implemen-

tation of efficiency in large population games.2 Our broader objective of efficiency with minimum

inequality, however, makes the evolutionary implementation approach inapplicable. Instead, we

need to rely upon a more conventional dominant strategy implementation approach. Our approach

has similarities to the large population VCG mechanism in Lahkar and Mukherjee [11] which im-

plements efficiency in strictly dominant strategies in a public goods model. But again, that model

does not consider equality issues. Thus, to the best of our knowledge, whether with a finite number

or with a large population of players, this paper is the first to consider implementing a social choice

function that combines efficiency with minimum inequality.

We consider a model with strategic interlinkages and negative externalities. Total output is a

1Thus, VCG mechanism implements efficiency by leaving a budget surplus with the planner. Budget balance would
require that there should be neither surplus nor deficit with the planner. An alternative to the VCG mechanism is the
AGV mechanism (Arrow [1], d’Aspremont and Gérard–Varet [5]) that generates truthful revelation as a Bayesian Nash
equilibrium. But this mechanism requires the stronger assumption that the type distribution is common knowledge
and also does not satisfy ex-post individual rationality.

2In evolutionary implementation, the planner imposes an externality price to generate a potential game (Sandholm
[16]). The original efficient state then becomes the Nash equilibrium of the potential game to which, evolutionary
dynamics converge. We note that there is no reliance on truthful revelation in such a model.
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function of aggregate effort by agents, which is the source of these interlinkages. Different types of

agents have different effort cost functions, which is private information, and they receive a share

of total output according to individual effort. Thus, payoffs are equivalent to that of a tragedy

of the commons model in which higher aggregate strategy reduces payoff (Lahkar and Mukherjee

[12]). Hence, there are negative externalities. The tragedy of the commons is, of course, a canonical

model of negative externalities in economics. It becomes relevant if the production process has the

two characteristics of a common resource, non–excludability and rivalry. Consider, for example,

the financial sector that produces exotic new financial products. No financial institution can be

excluded from developing such products. But as more such institutions develop and start holding

each other’s products thereby creating interlinkages, the possibility of one player’s actions having

catastrophic consequences on others increases as exemplified by the 2008 financial crisis.3 In our

model, as in any tragedy of the commons, the consequences of the negative externality arises in the

form of the aggregate strategy level at the Nash equilibrium being too high relative to the aggregate

strategy level at the socially efficient level, or the level that maximizes aggregate payoff.

The discrepancy between the Nash equilibrium and social efficiency creates scope for benign

intervention by a planner to restore efficiency. The planner can do so by taxing the externality

causing activity. This is also the approach of the evolutionary implementation models of Sandholm

[17, 18, 19] and Lahkar and Mukherjee [10, 12].4 Similarly, Lahkar and Mukherjee [11] also apply

externality pricing in their large population public goods model to implement efficiency in strictly

dominant strategies. We, however, go further than these papers and propose a transfer scheme

that redistributes the tax revenue in a way that reduces inequality without sacrificing efficiency.

Thus, a novel feature of this paper is to design a tax and transfer scheme that simultaneously

resolves the problem of negative externalities and improves equality. From a policy perspective,

this is an important finding. It illustrates that improving efficiency and enhancing equality are

not contradictory goals. Instead, the resources the policy maker requires to promote equality can

arise from the taxation of those very activities that harm efficiency.5 Analytically, our approach

can also be extended to a model of positive externalities like the public goods game in Lahkar and

Mukherjee [11], although we do not present such an extension here. The problem there would be

to characterize a vector of inequality minimizing taxes that provides the revenue to subsidize a

socially beneficial activity and restore efficiency. Considering negative externalities, though, allows

us to focus on a different type of policy challenge; taxing a harmful activity and then seeking the

3See, for example, Elliot et al. [6] for an analysis of such financial interlinkages from a network theory perspective.
Also see Chakrabarti and Lahkar [2] for a discussion of, besides finance, other industries like railways and information
technology that may be modeled as large population tragedies of the commons due to the nature of interlinkages
between them. In all such examples, the productive opportunities that these industries are seeking to exploit are
being interpreted as the common resource.

4Sandholm [17, 18] are deterministic evolutionary implementation models whereas Sandholm [19] is one of stochas-
tic evolution. These models consider large population games with a finite strategy set. Lahkar and Mukherjee [10, 12]
extend the deterministic method to games with a continuous strategy set and apply it to problems like public goods,
public bads and tragedy of the commons. The model in this paper is also a continuous strategy one.

5Thus, going back to our illustrative example, it may be possible to curb the speculative excesses of the financial
sector through a financial transactions tax and use the proceeds for redistributive purposes.
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inequality minimizing vector of redistributive transfers

Formally, we measure inequality as the variance of agents’ payoffs at the efficient state following

taxes and transfers. The planner seeks to minimize this variance subject to incentive compatibility

and budget balance. We design a variant of the classical VCG mechanism suitably adapted to

our large population context. Based on reported types, the planner assigns strategies, taxes and

transfers to agents. We characterize the transfers that make truthful revelation weakly dominant

while minimizing the variance of payoffs at the efficient state. Due to considerations of incentive

compatibility, this variance is not zero. Hence, the equality achieved is not perfect. Nevertheless,

agents disadvantaged with a higher cost of effort still receive a higher transfer due to which the

inequality that remains is less than that achievable through, for example, an equal redistribution

for all agents. Intuitively, equal redistribution, which suffices for efficiency, can be implemented

with truthful revelation being strictly dominant. This leaves the planner enough scope to adjust

incentive compatibility conditions so as to design the optimal transfer scheme that makes truthful

revelation weakly dominant and thereby improve equality without compromising efficiency.

An important technical caveat to our results is that they hold for large population models or

models where all agents are of measure zero. This is an important assumption because our analysis

relies on the fact that changes in individual strategy does not affect aggregate variables. This adds

considerably to the tractability of our problem. For example, the budget balance condition, which

is crucial for us, is satisfied at efficiency in our large population context. But, as noted earlier, it is

difficult to achieve in conventional finite player mechanisms. Of course, in real world situations, no

agent is ever of measure zero. But in most economic environments where public policy questions

like redistribution assume importance, we would expect the number of people involved to be fairly

large. Further, it is reasonable to assume that in such situations, agents would behave as if their

individual actions cannot influence aggregate variables. In that case, as in models of competitive

markets, we would expect our conclusions to be valid, at least approximately.

Independent of efficiency, the classical implementation literature has considered equality from

the point of view of implementing the Rawlsian social choice function (Rawls [15]), which seeks

to maximize the minimum welfare in society. It is known, for example, that this social choice

function is not implementable. While this is not our main focus, our model will also provide some

insights into combining utilitarian and Rawlsian objectives. In particular, we show that subject

to the feasibility constraints, our transfer scheme not only minimizes inequality at efficiency but

also maximizes the minimum payoff at the efficient state. Thus, in this sense, our transfer scheme

is a Rawlsian one but restricted to the efficient state. It provides a partial reconciliation of the

utilitarian objective of efficiency with the Rawlsian objective of maximizing the minimum payoff.

The reconciliation, however, is not complete because by using a counterexample, we show that this

is not equivalent to implementing the Rawlsian social choice function. If we are willing to sacrifice

efficiency, then we can identify another state where the minimum payoff is higher but aggregate

payoff is lower. This is the Rawlsian outcome subject to incentive compatibility and budget balance.

Again, as far as we know, the existing literature on implementation theory has not addressed such
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differences between implementing the Rawlsian social choice function and implementing the efficient

outcome with minimum inequality.

There are also papers that address the issue of fairness at efficiency in other ways. A widely

recognized axiom underlying fairness is envy freeness. No agent should desire the allocation of

another agent. There are both positive and negative results on whether envy freeness is consistent

with efficiency. For example, models by Tadenuma and Thomson [23] and Pápai [14] highlight

conflict between envy freeness and other goals like efficiency, incentive compatibility and budget

balance. On the other hand, Ohseto [13] and Sprumount [22] present models where efficiency and

envy freeness are compatible. The details of these models are very different from ours. They are

finite player object allocation models while ours is a large population model of negative externalities.

Hence, direct comparison of results are difficult. Nevertheless, it is easy to see that our model does

satisfy envy freeness at the efficient state. Transfers are designed in such a way that no agent

prefers the allocation of any other type of agents.

The rest of the paper is as follows. Section 2 presents our model of the tragedy of the commons

and characterizes its Nash equilibrium and efficient state. In Section 3, we identify the transfer

vector that minimizes inequality at the efficient state subject to budget balance and incentive com-

patibility. Section 4 describes the mechanism that implements efficiency with minimum inequality

in dominant strategies. Section 5 presents the counterexample about the Rawlsian social choice

function. Section 6 concludes.

2 The Model

We consider a society consisting of a continuum of agents, each of measure zero. The society is

divided into a finite set of populations, also called types, P = {1, 2, · · · , n}. The mass of type

p ∈ P is mp ∈ (0, 1) with
∑

p∈P mp = 1. Thus, the total mass of the society is 1. We refer to

the distribution m = (m1,m2, · · · ,mn) as the type distribution in the society. Every agent in the

society has a common strategy set S = (0,∞).6 Throughout, we will interpret x ∈ S synonymously

as the effort exerted by an agent. LetM+
λ (S) be the space of finite signed measures that impose a

mass λ > 0 on S. We then use the measure µp ∈M+
mp

(S) to denote the state of population p. The

population state describes the strategy distribution in that population. Thus, µp(A) ∈ [0,mp] is the

mass of agents in population p who are playing strategies in A ⊆ S. If every agent in population p

plays the same strategy x, then we obtain a monomorphic population state which we denote it as

mpδx. We interpret the vector of population states µ = (µ1, µ2, · · · , µn) ∈ ∆ =
∏
p∈PM+

mp
(S) as

the state of the entire society or the social state. The aggregate strategy level in the society at the

social state µ is then

A(µ) =
∑
p∈P

∫
S
xµp(dx). (1)

In our subsequent analysis, we will frequently refer to A(µ) ∈ (0,∞) as α.

6For certain technical reasons explained later, we exclude the 0 strategy.
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We consider an economy with interlinkages between agents. To capture such interlinkages, we

assume that total output in the society depends upon the aggregate strategy level. Formally, we

consider a smooth, strictly increasing and strictly concave production function π : (0,∞) → R+

such that π(A(µ)) is the total output in the society when the aggregate strategy is A(µ). We

assume that π satisfies the Inada conditions and that π(α)
α is strictly declining for all α ∈ (0,∞).

An agent exerting effort x then receives a share x
A(µ) of the total output and incurs an effort cost

cp(x). These cost functions are the source of type specific distinctions in our model. They differ

according to the type of agents but it is the same for all agents of a particular type. We assume that

every such type specific cost function cp : S → R+ is smooth, strictly increasing and strictly convex

and satisfies cp(0) = c′p(0) = 0 if we extend the function to 0, where c′p(x) is type p’s marginal cost.

Thus, there are no fixed costs and the marginal cost also tends to zero as x → 0. In addition, we

make the following assumption about the cost functions.

Assumption 2.1 For every p, q ∈ P, cq(x)− cp(x) is strictly increasing in x if q > p.

This assumption can be equivalently written as c′q(x) > c′p(x) for all x ∈ S if q > p, i.e. marginal

cost at any level of effort is higher for higher types. It has an important implication. Recall that

fixed cost is zero for all types. Hence, the area beneath the marginal cost is total cost. Assumption

2.1, therefore, generates the following observation.

Observation 2.2 For every x ∈ S, cp(x) is strictly increasing in p ∈ P. Thus, for every x ∈ S,

c1(x) < c2(x) < · · · < cn(x).

This observation gives us an important labeling convention in our model. Higher cost agents are

classified as higher types. Hence, we may interpret agents labeled as being of a higher type as

facing a greater disadvantage in exerting effort.

A population game is a weakly continuous mapping F : S × P ×∆ → R such that Fx,p(µ) is

the payoff of an agent from population p who plays strategy x at the social state µ. Given the

production and cost functions, this payoff in our model takes the form

Fx,p(µ) =
x

A(µ)
π(A(µ))− cp(x)

= xAP (A(µ))− cp(x), (2)

where AP (A(µ)) = π(A(µ))
A(µ) is the average product of the production function when aggregate effort

is A(µ). Thus, our assumption that π(α)
α is strictly declining is equivalent to the average product

function being strictly declining. Formally, the payoff (2) is equivalent to a large population tragedy

of the commons model with the aggregate output π(A(µ)) being shared among agents in proportion

to their individual effort x (Lahkar and Mukherjee [12]).7 We should note, however, that the validity

of our model doesn’t depend upon the existence of a literal physical common resource. All we need

7See footnote 6. The reason for excluding the 0 strategy is to ensure that (2) is defined at all social states.
Otherwise, if all agents play 0, the average product would be undefined.
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is that total output should depend upon aggregate strategy which is then shared among agents.

Non–excludability arises because no agent can be stopped from contributing to aggregate strategy.

Rivalry arises from diminishing average product.

2.1 Nash Equilibrium and Efficient State

The population game F defined by (2) is an aggregative game as the payoff of an agent depends

entirely upon his individual strategy and the aggregate strategy level A(µ) (Corchón [4]). We now

use this aggregative structure of F to characterize its Nash equilibrium and efficient state.8

Let us denote the aggregate strategy level A(µ) as α and write (2) as xAP (α) − cp(x). The

strict convexity of cp(x) implies that for every given α, this function has a unique maximizer in S.

This maximizer, which we denote as bp(α), is the unique best response of a type p agent to every

social state µ such that A(µ) = α. The following proposition then characterizes the unique Nash

equilibrium of our model. Further details of the proof are in Appendix A.1.9

Proposition 2.3 Consider the population game F defined by (2). Denote by αN the unique solu-

tion to ∑
p∈P

mpbp(α) = α. (3)

Then, F has a unique Nash equilibrium

µN =
(
m1δαN

1
,m2δαN

2
, · · · ,mnδαN

n

)
(4)

where αNp = bp(α
N ) and bp(α) is the unique best response function in F as characterized in (5).

Thus, every agent of type p ∈ P plays strategy αNp = bp(α
N ) at this Nash equilibrium. The aggregate

strategy at µN is, therefore, αN =
∑

p∈P mpα
N
p . The Nash equilibrium is characterized by

AP (αN ) = c′p(bp(α
N )). (5)

Intuitively, (3) implies that a Nash equilibrium of an aggregative game is a social state such

that when all agents play their best response to that state, the aggregate strategy level remains un-

changed. The key to Proposition 2.3 is that bp(α) is strictly declining due to our assumptions about

AP (α) and the cost functions. Hence, (3) has a unique solution in our model, which characterizes

the unique Nash equilibrium.

Condition (5) implies that this Nash equilibrium involves equating average product to marginal

cost. That cannot be efficient. Instead, to characterize the efficient state, we consider the aggregate

8These results have also been established in Lahkar and Mukherjee [12]. Nevertheless, we present them here as well
briefly in order to keep the present paper self–contained. Moreover, due to their focus on evolutionary implementation,
Lahkar and Mukherjee [12] apply the method of potential games to derive these results (see footnote 2). Potential
games do not play any role in the implementation approach of this paper. Instead, we use the aggregative structure
of our model and apply more direct methods relying on best responses to derive our results. Also see Lahkar [9] for
an application of such methods to aggregative games.

9The superscript N in Proposition 2.3 indicates “Nash”.
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payoff. The aggregate payoff in a population game F at a social state µ, denoted F̄ (µ), is the total

payoff earned by all agents at that state. Hence, given the payoff function (2), the aggregate payoff

in our model is

F̄ (µ) =
∑
p∈P

∫
S
Fx,p(µ)µp(dx)

=
∑
p∈P

∫
S

(
x

A(µ)
π(A(µ))− cp(x)

)
µp(dx)

=
π(A(µ))

A(µ)

∑
p∈P

∫
S
xµp(dx)−

∑
p∈P

∫
S
cp(x)µp(dx)

= π(A(µ))−
∑
p∈P

∫
S
cp(x)µp(dx), (6)

where the last equality follows from the definition of the aggregate strategy in (1). Thus, the

aggregate payoff at a state µ is the total output generated by the society at that state minus the

aggregate cost
∑

p∈P
∫
S cp(x)µp(dx) incurred by agents at that state. An efficient state of F is

then a state µ∗ that maximizes the aggregate payoff (6) in ∆.

The strategic interlinkages in our model imply there are externalities. Therefore, characterizing

an efficient state would require us to account for such externalities. Let ex,p(µ) denote the total

externality imposed by an agent of type p who plays strategy x at the state µ on the entire society.

Corollary 5.7 in Lahkar and Mukherjee [12] calculates this total externality in a tragedy of the

commons model such as the present one to be

ex,p(µ) = x (MP (A(µ))−AP (A(µ))) , (7)

where MP (α) = π′(α) is the marginal product of π at the aggregate strategy α. Our assumption

that AP (α) is strictly declining implies MP (α) < AP (α) at all α ∈ (0,∞) so that ex,p(µ) < 0.

Hence, externalities are negative in our model, which is another standard characteristic of tragedy

of the commons problems.10

It is known from Sandholm [16] that an efficient state of a population game F is also a Nash

equilibrium of another game F̂ we obtain by adding externalities in F to the original payoffs.

We interpret the addition of this externality as the imposition of a tax which compels agents to

internalize the externality they create. The payoff of a type p agent who plays strategy x in F̂ is

F̂x,p(µ) = Fx,p(µ) + ex,p(µ)

= xAP (A(µ))− cp(x) + x(MP (A(µ))−AP (A(µ)))

= xMP (A(µ))− cp(x). (8)

10See Appendix A.1.1 in Lahkar and Mukherjee [10] for the technical details of calculating externalities in large
population games with a continuous strategy set. Also see Proposition 4.1 in Lahkar and Mukherjee [12] for a general
derivation of externalities in aggregative games.

7



Like (2), (8) is also an aggregative game with the only difference being that the average product

gets replaced by the marginal product. Hence, we can apply the same method as in Proposition 2.3

to obtain the Nash equilibrium of F̂ or, equivalently, the efficient state of F . Thus, let b̂p(α) be the

unique best response of a type p agent in F̂ defined by (8) at a social state µ such that A(µ) = α.

We then obtain the following result. Further details are in Appendix A.1.

Proposition 2.4 Consider the population game F̂ defined by (8) and the best response b̂p(α) char-

acterized in (11). This game has a unique Nash equilibrium

µ∗ =
(
m1δα∗1 ,m2δα∗2 , · · · ,mnδα∗n

)
, (9)

where α∗p = b̂p(α
∗) is the strategy of every agent of type p at µ∗ and α∗ is the unique solution to∑

p

mpb̂p(α) = α. (10)

Hence, µ∗ is also the efficient state of the original game F defined by (2). The aggregate strategy

at µ∗ is α∗ =
∑

p∈P mpα
∗
p. Further, for each p, α∗p < αNp , the Nash equilibrium strategy level

characterized in Proposition 2.3. Hence, α∗ < αN . Moreover, µ∗ is characterized by

MP (α∗) = c′p

(
b̂p(α

∗)
)
. (11)

As is any model of negative externalities, the efficient state involves a lower strategy level than

at the Nash equilibrium. This is true for all types of agents and, therefore, at the aggregate level as

well. At the efficient state, as implied by (11), every agent equates the marginal product of π to his

type specific marginal cost. This is, of course, the hallmark of efficiency. The following corollary

provides a ranking of payoffs at the efficient state. Quite intuitively, agents with lower levels of cost

are better off. They also exert higher effort in at the efficient state. The proof of the corollary is

in Appendix A.1.

Corollary 2.5 Consider the efficient state µ∗ characterized in Proposition 2.4. Using (8) and

Proposition 2.4, let us denote

F̂α∗p,p(µ
∗) = α∗pMP (α∗)− cp(α∗p), (12)

as the payoff of a type p agent at the efficient state of the tragedy of the commons F defined by (2).

If p < q, then F̂α∗p,p(α
∗) > F̂α∗q ,q(α

∗). Moreover, α∗p > α∗q i.e. α∗1 > α∗2 > · · · > α∗n.

3 Efficiency and Equality

Henceforth, our focus is on the efficient state µ∗ characterized in Proposition 2.4. We now envisage

a planner who wishes to implement the efficient state but with minimum possible inequality. In
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Section 4, we will discuss the formal methodology of implementing this objective. Here, we discuss

certain preliminary issues that will be relevant for implementation. Suppose the efficient state µ∗

has been achieved with every agent playing α∗p as characterized in Proposition 2.4 and paying a tax

α∗p (AP (α∗)−MP (α∗)) equal (in absolute value) to the negative externality (7) they create at the

efficient state (Proposition 2.4).11 Hence, the total tax revenue the planner obtains at the efficient

state is

T (µ∗) =
∑
p

mpα
∗
p (AP (α∗)−MP (α∗)) = α∗ (AP (α∗)−MP (α∗)) . (13)

We now allow the planner to redistribute the entire tax revenue received among the agents

as transfers. Notice from (8) that once the tax is paid, the payoff of every type p agent at the

efficient state is only α∗pAP (α∗)− cp
(
α∗p
)

+α∗p (MP (α∗)−AP (α∗)) = α∗pMP (α∗)− cp
(
α∗p
)
, which

is F̂α∗p,p(µ
∗) as defined in (12). Due to (13), redistribution ensures that the entire aggregate payoff

at the efficient state µ∗, ∑
p

mp

(
α∗pMP (α∗)− cp

(
α∗p
))

+ T (µ∗)

=α∗MP (α∗)−
∑
p

mpcp
(
α∗p
)

+ T (µ∗)

=α∗AP (α∗)−
∑
p

mpcp
(
α∗p
)

=π(α∗)−
∑
p

mpcp
(
α∗p
)

=π(A(µ∗))−
∑
p∈P

∫
S
cp(x)µ∗p(x), (14)

accrues to the agents. Note from (6) that (14) is just F̄ (µ∗).

Throughout, we assume that during the redistribution exercise, the planner provides the same

transfer to every agent of a particular type, although the transfer may vary across types. Let

t = (t1, t2, · · · , tp) be a vector of such type specific transfers. We also assume that any such

transfer vector satisfies the budget balance condition∑
p

mptp = T (µ∗), (15)

where T (µ∗) is as defined in (13). Then, at µ∗, if a type p agent plays his type specific efficient

strategy α∗p, we can use (12) to write his post redistribution payoff as

F̂α∗p,p(µ
∗) + tp = α∗pMP (α∗)− cp

(
α∗p
)

+ tp (16)

11A slight clarification about notation. When we interpret the tax as a payment from the agent to the planner,
we write it as the positive amount α∗p(AP (α∗)−MP (α∗)). When we interpret it as a payment from the planner to
the agent as in (16) below, we write it as the negative amount α∗p(MP (α∗)−AP (α∗)).
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Equivalently, using (8), we can think of the post redistribution payoff as the original payoff

α∗pAP (α∗) − cp
(
α∗p
)

plus the payment
[
α∗p (MP (α∗)−AP (α∗)) + tp

]
made by the planner to a

type p agent. The planner would like to also enhance equality during redistribution through these

transfers. The budget balance condition implies that whatever resources the planner needs to pro-

mote equality comes from the taxation of the negative externality. Hence, taxation in our model

will not only curb the negative externality but will also reduce inequality.

We measure inequality at the efficient state as the variance of these post redistribution payoffs

(16). Budget balance ensures that the aggregate payoff once all agents receive (16) is F̄ (µ∗) as

calculated in (14). Further, due to the measure zero characteristic of each agent, this aggregate

payoff is also the average payoff in the society following redistribution. Therefore, the variance of

the redistributed payoffs (16) at the efficient state of the tragedy of the commons (2) is

V (µ∗, t) =
∑
p∈P

mp

[
α∗pMP (α∗)− cp

(
α∗p
)

+ tp − F̄ (µ∗)
]2
. (17)

The planner’s objective is to choose a transfer scheme t that minimizes (17), which we shall denote

as t∗ = (t∗1, t
∗
2, · · · , t∗n).

In the rest of this section, we focus on characterizing the vector t∗. For this purpose, we will

use our earlier assumption made at the beginning of this section that the society is already at the

efficient state µ∗. We also assume that the that the planner knows the type distribution m. It is

legitimate to make such assumptions because the objective of this section is not to implement µ∗

or t∗. Instead, our aim right now is the entirely technical one of characterizing t∗. In the next

section, where we discuss the planner’s actual implementation of both µ∗ and t∗, we will drop these

assumptions.

The transfer vector we seek will have to respect incentives for truthful revelation. To formalize

those incentives, suppose the planner asks every agent to report his type. If an agent reports type

to be q, then the planner assigns that agent the strategy α∗q and the transfer tq. The planner is

able to assign α∗q because we have assumed that he knows m and, therefore, can calculate the type

specific efficient strategies (α∗1, · · · , α∗n) as in Proposition 2.4. We can then use (16) to write the

payoff of a type p agent who claims to be of type q under a transfer scheme t = {t1, t2, · · · , tn} as

φp(q, µ
∗, t) = α∗qMP (α∗)− cp

(
α∗q
)

+ tq, (18)

Hence, the payoff from truthful revelation, φp(p, µ
∗, t), is the same as (16).12 Notice that despite

a possible false report by this particular agent, the aggregate strategy in (18) is still α∗. This is

due to the measure zero characteristic of each agent and our assumption that the society is at µ∗.

A single agent who is assigned to play α∗q instead of α∗p then cannot affect the aggregate strategy

level α∗. This is another way that the large population setting of our model simplifies our analysis.

Given this payoff, the planner will be able to implement a particular transfer vector t = (t1, · · · , tn)

12Nevertheless, we need the notation in (18) to capture the possibility of false reporting of type.
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truthfully at µ∗ if

φp(p, µ
∗, t) ≥ φp(q, µ∗, t) (19)

for every p, q ∈ P. In words, every agent should find it at least weakly preferable to play his own

type specific strategy and receive his own type specific transfer than the strategy and transfer of any

other type when society is at the efficient state. Therefore, these are the incentive compatibility

(IC) constraints at µ∗, which we will generalize when we describe the mechanism more fully in

Section 4.

The planner, therefore, seeks a transfer vector that minimizes the variance (17) while satisfying

(19). Before characterizing the solution to this problem, let us consider two other alternatives

which, as we will argue, cannot be that transfer scheme. First is the equal redistribution transfer

scheme. Under this scheme, the planner redistributes an equal amount to every agent, irrespective

of type. Budget balance then implies that every agent of every type p receives tp = T (µ∗) as

defined in (13). The resulting post redistribution payoffs (16) will then be strategically equivalent

to F̂α∗p,p(µ
∗) as defined in (12). But µ∗ is the unique Nash equilibrium of F̂ and α∗p is the unique

best response of every type p to µ∗ (Proposition 2.4). Therefore, the equal redistribution rule will

satisfy all IC constraints (19) and, in fact, will do so strictly. Hence, it may be possible to further

improve equality by making truthful revelation weakly dominant and this is what we will discuss

in Sections 3.1 and 4.

The fact that the equal redistribution scheme is not the solution to our problem is also the key

difference between this paper and Lahkar and Mukherjee [11]. That paper sought to implement

efficiency with budget balance in a large population public goods game. Externalities in a public

goods model are positive. Hence, efficiency requires a subsidy for agents. Budget balance then

involves a tax so that the revenue for the total subsidy is recovered. If this tax is equal for all

agents, then that would be “equal redistribution” in that model. Such equal redistribution did

indeed implement efficiency in that model and did so in strictly dominant strategies. But with

equality being an additional objective in this model, we have to look beyond equal redistribution.

The second possibility is a transfer scheme that ensures perfect equality. This outcome would

make the post redistribution payoff (16) of all agents perfectly equal. Thus, the planner would like

to choose a transfer scheme t̃ such that at µ∗,

α∗pMP (α∗)− cp
(
α∗p
)

+ t̃p = α∗qMP (α∗)− cq
(
α∗q
)

+ t̃q (20)

for all p, q ∈ P. For a planner concerned with equality at the efficient state, this is obviously the

first best solution. It is, however, easy to see that such a transfer scheme cannot satisfy incentive

compatibility. Suppose p < q so that, by Observation 2.2, cp(x) < cq(x) for all x ∈ S. Hence,

cp(α
∗
q) < cq(α

∗
q) which means

α∗qMP (α∗)− cp
(
α∗q
)

+ t̃q > α∗qMP (α∗)− cq
(
α∗q
)

+ t̃q

= α∗pMP (α∗)− cp
(
α∗p
)

+ t̃p, (21)
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where the equality follows from (20). Thus, we have φp(q, µ
∗, t̃) > φp(p, µ

∗, t̃) so that type p′s IC

constraint (18) is violated. Hence, the first best solution cannot be achieved by the planner. We

now discuss the second best solution.

3.1 Minimum Incentive Compatible Inequality at the Efficient State

Recall the variance (17), the budget balance condition (15) and the IC constraints (19). Formally,

the planner’s objective is to choose a transfer vector t = (t1, t2, · · · , tn) so as to

Minimize
t

V (µ∗, t) such that φp(p, µ
∗, t) ≥ φp(q, µ∗, t) and

∑
p

mptp = T (µ∗), (22)

for all p, q ∈ P. We characterize the solution to this problem through the following lemmas leading

up to Proposition 3.4. All proofs are in Appendix A.2.

Lemma 3.1 Recall the IC conditions (19). Consider a type p ∈ {1, 2, · · · , n− 1} and an arbitrary

transfer scheme t = (t1, t2, . . . , tn) such that

φp(p, µ
∗, t) = φp(p+ 1, µ∗, t). (23)

Then,

φp(p, µ
∗, t) > φp(p+ q, µ∗, t), (24)

for all q ∈ {2, 3, · · · , n− p}.

Lemma 3.1 implies that to ensure that agents do not claim to be of a higher type at µ∗, it

suffices to equate their true payoff to the payoff they would obtain by claiming to be the next

higher type. Suppose now that we have a transfer scheme t = (t1, · · · , tn) that satisfies Lemma

3.1. The following lemma then establishes certain characteristics of the payoffs resulting from those

transfers as well as the transfers themselves.

Lemma 3.2 Recall the payoff (18). Suppose the transfer scheme t = (t1, t2, · · · , tn) satisfies (23)

in Lemma 3.1. Then, the following hold.

1. φp(p, µ
∗, t) > φp+1(p+ 1, µ∗, t) for all p = 1, 2, . . . , n− 1.

2. t1 < t2 < . . . < tn.

Lemma 3.2, therefore, establishes that under a transfer scheme that satisfies Lemma 3.1, types

with a lower cost function obtain a higher payoff than types with a higher cost function. This is

despite the fact, as part 2 of lemma shows, high cost types obtain a higher transfer. Part 2 of this

lemma also leads to Lemma 3.3 that shows that agents will not have any incentive to claim to be

of a lower type. Hence, Lemmas 3.1 and 3.3 suffice to rule out incentives for false representation.
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Lemma 3.3 Recall the IC conditions (19) and suppose a transfer scheme t = (t1, t2, · · · , tn) satis-

fies part 2 of Lemma 3.2. Suppose p > q. Then, φp(p, µ
∗, t) > φp(q, µ

∗, t). Therefore, if t satisfies

(23), then all IC constraints (19) are satisfied.

The key condition in Lemmas 3.1–3.3 is (23). The condition ensures there is no misrepresen-

tation as a higher type in Lemma 3.1. It also gives rise to the ordering between the transfers in

Lemma 3.2(2), which then leads to Lemma 3.3 that rules out misrepresentation as a lower type.

Notice that the three preceding lemmas are independent of the budget balance condition. But once

we combine the IC constraints with the budget balance condition, we obtain the unique solution

to the planner’s problem (22). The following proposition formalizes that solution. The proposition

also shows that the solution satisfies individual rationality, which means the post redistribution

payoffs will be positive for all types of agents. This is important because it means no agent has to

be coerced to participate in the mechanism.

Proposition 3.4 Consider the system of n linear equations consisting of the n − 1 equations

φp(p, µ
∗, t) = φp(p + 1, µ∗, t) as specified in (23) for types p ∈ {1, 2, · · · , n − 1} and the budget

balance equation
∑

p∈P mptp = T (µ∗), where T (µ∗) is as defined in (13). Denote the solution to

these n equations as t∗ = (t∗1, t
∗
2, · · · , t∗n). Then, t∗ is the solution to the planner’s problem (22).

Thus, t∗ satisfies t∗1 < t∗2 < · · · < t∗n. Moreover, among all transfer vectors t at the efficient

state that satisfy incentive compatibility and budget balance, t∗ maximizes the post redistribution

payoff of type n agents, φn(n, µ∗, t). Hence, at t∗,

φ1(1, µ
∗, t∗) > φ2(2, µ

∗, t∗) > · · · > φn(n, µ∗, t∗) > 0, (25)

which means t∗ also ensures individual rationality.

Proposition 3.4 is the most important technical result of our paper. It characterizes the optimal

transfer vector t∗ = (t∗1, t
∗
2, · · · , t∗n) as the solution to a set of linear equations. We emphasise that

this proposition is not an implementation result. We will present our main theorem on dominant

strategy implementation of (µ∗, t∗) in the next section using Proposition 3.4.

Even though t∗ does not ensure perfect equality, it does minimize inequality at the efficient state

subject to incentive compatibility and budget balance. Any other transfer vector that satisfies these

two conditions must generate a higher variance (17) in the post redistribution payoffs. One such

transfer scheme is the equal redistribution scheme T (µ∗) as defined in (13). Compared to equal

redistribution, t∗ increases the payoff of higher cost types and reduces the payoff of lower cost types

thereby reducing variance while still satisfying incentive compatibility. Quite intuitively, and as

implied by Lemma 3.2(2), the variance minimizing transfer favors high cost agents over low cost

ones. Hence, t∗1 < t∗2 < · · · < t∗n.

The order among the payoffs in (25) arises from part 1 of Lemma 3.2. All these payoffs are

strictly positive because the equal redistribution transfer T (µ∗) itself ensures that the payoff of
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the highest cost type n is strictly positive.13 But the proof of Proposition 2.4 not only shows

that t∗ minimizes the variance but also maximizes the payoff of type n agents among all incentive

compatible and budget balanced transfer vectors.14 Hence, the payoff of type n agents must be

even higher than under equal redistribution. Therefore, not only do we minimize variance at the

efficient state but also maximizes the minimum payoff. In this sense, implementing (µ∗, t∗) would

be one way to reconcile the utilitarian objective of achieving efficiency with the Rawlsian objective

of maximizing the minimum payoff. However, as we discuss in more detail in Section 5, this is not

equivalent to implementing the Rawlsian social choice function.

We have interpreted our results as the planner imposing the externality equivalent tax α∗p(AP (α∗)−
MP (α∗)) on agents of type p and providing them the transfer t∗p. It is worth pointing out that

we could also have provided an alternative but equivalent presentation in terms of the optimal

payment vector and not the optimal transfer vector t∗. Suppose βp is the (net) payment received

by a type p agent. Then the payment vector β∗ = (β∗1 , β
∗
2 , · · · , β∗n) such that

β∗p = α∗p(MP (α∗)−AP (α∗)) + t∗p (26)

would solve the planner’s problem (22) subject to the budget constraint
∑

p∈P mpβp = 0.15 In this

interpretation, these optimal payments would be uniquely defined but not the taxes and transfers.

In our presentation, though, because we have fixed the tax at α∗p(AP (α∗)−MP (α∗)), we also obtain

a unique value of t∗p. According to us, it is economically more intuitive to present our conclusions

in this manner. This tax is equal to the negative externality an agent is generating at the efficient

state. Hence, by imposing this particular tax, it is as if the planner is using the tax to achieve

efficiency and then using the transfers as a redistributive measure while retaining efficiency.

4 Dominant Strategy Implementation

Proposition 3.4 characterizes the transfer vector t∗ that minimizes inequality at the efficient state µ∗

while retaining incentive compatibility and budget balance. It, however, required the assumption

that the planner knows the type distribution m. To make our problem more substantive, we now

drop this assumption as well as the assumption that the society is at µ∗. This section then describes

the mechanism that enables the planner to simultaneously implement both µ∗ and t∗ in dominant

strategies. Formally, for any given type distribution m, the planner wishes to implement µ∗ and t∗

corresponding to that type distribution. Thus, m 7→ (µ∗, t∗) is the planner’s social choice function.

While the planner doesn’t know the type distribution, we do assume that he knows the set of

13Even without T (µ∗), the fact that there are no fixed costs in our model ensures that the pre–redistribution
payoff α∗nMP (α∗)− cn(α∗n) in (16) is strictly positive.

14See Claim 5 of that proof.
15With an abuse of notation and by using the original tragedy of the commons payoff (2), we can then write

the analog of payoff (18) as φp(q, µ∗, β) = α∗qAP (α∗) − cp(α∗q) + βq. The IC constraints (19) will then take the
form φp(p, µ∗, β) ≥ φp(q, µ∗, β) for all p, q ∈ P and the variance (17) would then have to be written as V (µ∗, β) =∑

p∈P mp

[
α∗pAP (α∗)− cp

(
α∗p
)

+ βp − F̄ (µ∗)
]2

.
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possible types P, the production function π and the type specific cost functions (c1, · · · , cn).

By the revelation principle, it suffices to consider direct mechanisms. Hence, the planner designs

a direct mechanism, which we denote as Φ, as follows. The planner asks each agent to report

his type. Suppose m̃ = (m̃1, m̃2, · · · , m̃n) is the reported type distribution. Thus, m̃p is the

proportion of agents who report their type to be p. As agents can report type falsely, it is possible

that m̃p 6= mp. Using the reported type distribution m̃, the planner calculates the efficient state

corresponding to m̃. This can be done by proceeding as in Proposition 2.4 once m is replaced

with m̃ in (10). Let the efficient state corresponding to the distribution m̃ be µ̃∗ and the strategy

level of a type p agent at that state be α̃∗p. Thus, µ̃∗ =
(
m̃1δα̃∗1 , m̃2δα̃∗2 , · · · , m̃nδα̃∗n

)
. Denote the

corresponding aggregate strategy level A(µ̃∗) =
∑

p∈P m̃pα̃
∗
p = α̃∗. Further, analogous to (13) and

(18), we define

T (µ̃∗) = α̃∗ (AP (α̃∗)−MP (α̃∗)) . (27)

and

φp(q, µ̃
∗, t̃) = α̃∗qMP (α̃∗)− cp(ã∗q) + t̃q. (28)

for some arbitrary transfer vector t̃ = (t̃1, t̃2, · · · , t̃n).

Intuitively, (27) is the aggregate tax that the planner would receive if all agents who report

type to be q are assigned and play α̃∗q while (28) is the payoff of a type p agent who reports type

to be q and is, therefore, assigned strategy α̃∗q and transfer t̃q. Following Proposition 3.4, we now

denote as t̃∗ = (t̃∗1, t̃
∗
2, · · · , t̃∗n) the solution to the following system of equations

φp(p, µ̃
∗, t̃) = φp(p+ 1, µ̃∗, t̃), for all p ∈ {1, 2, · · · , n− 1}∑

p∈P
m̃ptp = T (µ̃∗), (29)

where T (µ̃∗) is as defined in (27). The first set of equalities are the minimal IC constraints that

need to satisfied as in Lemma 3.1 but with respect to m̃. The second equality is the budget balance

condition similar to (15) but with respect to m̃.

The planner then assigns the type specific strategy α̃∗q and the transfer t̃∗q to any agent who

announces type to be q. Thus, in the conventional terminology of mechanism design, the planner

designs the direct mechanism

Φ : (q, m̃) 7→ (α̃∗q , t̃
∗
q) (30)

which takes the reported type q of an agent and the reported type distribution m̃ as inputs and

generates the type specific strategy and transfer (α̃∗q , t̃
∗
q) as output as described above. The resulting

payoff is then φp(q, µ̃
∗, t̃∗) as defined in (28). The following is then the main result of this paper.

Theorem 4.1 The direct mechanism Φ defined by (30) implements (µ∗, t∗) in weakly dominant

strategies, where µ∗ is the efficient state characterized in Proposition 2.4 and t∗ is the transfer

vector characterized in Proposition 3.4. The mechanism also satisfies budget balance and individual

15



rationality. The resulting variance in payoffs is

V (µ∗, t∗) =
∑
p∈P

mp

[
α∗pMP (α∗)− cp

(
α∗p
)

+ t∗p − F̄ (µ∗)
]2
, (31)

which is the lowest possible variance at the efficient state subject to incentive compatibility and

budget balance.

Proof. A single agent cannot influence the type distribution m̃ and, hence, the aggregate

strategy level α̃∗ or the aggregate tax T (µ̃∗). Consider an agent p. Given α̃∗, (α̃∗p, t̃
∗
p) satisfy (29).

We now apply arguments akin to Lemmas 3.1–3.3 and Proposition 3.4 but with respect to the

reported type distribution m̃. For all m̃, it is weakly incentive compatible for type p to reveal type

truthfully and, if fact, strictly so if p = n. Hence, m̃ = m and (µ̃∗, t̃∗) = (µ∗, t∗) gets implemented.

The conclusions about budget balance and individual rationality follow from Proposition 3.4. The

resulting variance (31) follows from (17). �

The logic behind Theorem 4.1 is the same as that of Proposition 3.4, which established domi-

nance of truthful revelation at (µ∗, t∗) at the actual type distribution m. But mathematically, there

is noting special about m. Hence, if the planner announces that he will calculate (µ̃∗, t̃∗) and assign

strategies and transfers based on the reported type, it becomes a dominant strategy for every agent

to report type truthfully. The type distribution that gets revealed is the true one m and, therefore,

the outcome that is implemented is (µ∗, t∗).

As we noted after Proposition 3.4, t∗ is different from the equal redistribution transfer scheme.

It also achieves a lower inequality at µ∗. It would be instructive to understand why this happens.

While discussing equal redistribution, we noted that such a transfer scheme will render truthful

revelation strictly dominant. This creates the possibility of adjusting the equal redistribution

transfer scheme such that at least some of those constraints are satisfied with equality, which would

render truthful revelation only weakly dominant for at least some types. It turns out we can do

for all types from 1 to n − 1, as argued in Proposition 3.4. This allows us to reduce the transfers

for the lower cost agents and increase them for the higher cost agents in comparison to equal

redistribution. Then, while still satisfying incentive compatibility and budget balance, we are able

to reduce inequality at µ∗.

We have noted earlier that this paper does not rely on the evolutionary implementation method-

ology applied in large population games by Sandholm [17, 18, 19] and Lahkar and Mukherjee [10, 12].

It would be useful to remark why. Evolutionary implementation relies on the fact that the exter-

nality adjusted game F̂ defined in (8) is a potential game. Standard evolutionary dynamics would,

therefore, converge to its Nash equilibrium which, of course, is the efficient state of F . But once

we add transfers to F̂ with the objective of reducing inequality, we no longer obtain the potential

game property. The method of evolutionary implementation is then not applicable, which necessi-

tates the more conventional dominant strategy implementation approach. As noted earlier, such a

dominant strategy implementation approach has also been applied by Lahkar and Mukherjee [11]
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in their large population public goods model. If, similar to that paper, our objective had also been

restricted to implementing just µ∗, we could have done so using the equal redistribution transfer

T (µ̃∗). But because we are also concerned with inequality, we have to suitably modify our dominant

strategy implementation approach to also characterize and implement the inequality minimizing

transfer vector t∗.

5 Rawlsian Outcome

Our focus in this paper has been on minimizing inequality at efficiency subject to incentive com-

patibility and budget balance (Theorem 4.1). As a byproduct of minimizing inequality, Proposition

3.4 also shows that our solution maximizes the lowest payoff at efficiency, again subject to incen-

tive compatibility and budget balance. This suggests a connection between our problem and the

problem of implementing the Rawlsian social choice function. The Rawlsian social choice function

would seek to implement an outcome that maximizes the lowest payoff. In our model, if incentive

compatibility is not a concern, then the Rawlsian outcome is simply the efficient state µ∗ and the

transfer vector that ensures perfect equality.16 But as we argued, such perfect equality at efficiency

is not incentive compatible. Instead, by Proposition 3.4, if we restrict ourselves to the efficient

state µ∗, then the best feasible solution to the Rawlsian problem is the transfer vector t∗.

But suppose we are willing to sacrifice efficiency while still requiring incentive compatibility

and budget balance. Then, can we find an outcome (µ, t), where µ 6= µ∗ is a social state in F and

t is a transfer vector satisfying budget balance and incentive compatibility, that ensures a higher

“minimum payoff” than (µ∗, t∗)? If so, then that will imply the Rawlsian outcome over all possible

social states will be different from (µ∗, t∗). We explore this question in this section. We do not

attempt a general characterization of the solution. Instead, we provide a numerical example that

shows that the Rawlsian outcome is not necessarily (µ∗, t∗). The example will also allow us to

illustrate our characterization of (µ∗, t∗).

Example 5.1 Consider the model described in Section 2 with strategy set S = (0,∞). Let the set

of populations or types be P = {1, 2, 3} and the type distribution be (m1,m2,m3) = (0.2, 0.3, 0.5).

Suppose the type specific cost functions are cp(x) = kpx
2 where {k1, k2, k3} = {1, 2, 3} and the

production function is π(α) = 10
√
α. The average product is, therefore, 10

√
α

α = 10√
α

. Hence, given

a social state µ with aggregate strategy A(µ) = α, the payoff of a type p ∈ {1, 2, 3} agent in the

tragedy of the commons F defined by (2) is

Fx,p(µ) =
10x√
α
− kpx2. (32)

Applying Proposition 2.3, we can characterize the Nash equilibrium µN of Example 5.1. The

Nash equilibrium involves type p agents playing strategy αNp with (αN1 , α
N
2 , α

N
3 ) = (3.644, 1.822, 1.215).

16See the discussion preceding Section 3.1.
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The marginal product is π′(α) = 5√
α

. Therefore, the externality (7) an agent playing strategy x

generates is −5x√
α

. Hence, from (32), we obtain the externality adjusted payoff (8) in our example,

F̂x,p(µ) =
5x√
α
− kpx2. (33)

Proposition 2.4 then yields the efficient state of Example 5.1, which is µ∗ = (m1δα∗1 ,m2δα∗2 ,m3δα∗3)

where

(α∗1, α
∗
2, α
∗
3) = (2.2956, 1.1478, 0.7652). (34)

The aggregate strategy level at the efficient state is α∗ =
∑

p∈P mpα
∗
p = 1.186. The efficient state,

therefore, involves every agent of type p paying a tax
5α∗p√
α∗

so that the total tax revenue (13) raised

by the planner is T (µ∗) =
5
∑

pmpα∗p√
α∗

= 5
√
α∗ = 5.4453.

We now introduce transfer vectors t = (t1, t2, t3). To characterize the transfer vector t∗ that

minimizes inequality at the efficient state µ∗, we write the payoff (18) of a type p agent who reports

type to be q at µ∗ in Example 5.1 as

φp(q, µ
∗, t) = α∗qMP (α∗)− kp(α∗q)2 + tq

=
5α∗q√
1.186

− kp(α∗q)2 + tq

= 4.5911α∗q − kp(α∗q)2 + tq. (35)

Notice that in Example 5.1, k1 < k2 < k3. Hence, by Proposition 3.4, the binding IC (incentive

compatibility) constraints for t∗ are φ1(1, µ
∗, t1) = φ1(2, µ

∗, t2) and φ2(2, µ
∗, t2) = φ2(3, µ

∗, t3). In

addition, we have the budget balance condition
∑

p∈P mptp = T (µ∗), which we have previously

calculated to be 5.4453. By (35) and the values of mp, kp in Example 5.1, these constraints take

the form

4.5911α∗1 − (α∗1)
2 + t1 = 4.5911α∗2 − (α∗2)

2 + t2, (36)

4.5911α∗2 − 2(α∗2)
2 + t2 = 4.5911α∗3 − 2(α∗3)

2 + t3, (37)

0.2t1 + 0.3t2 + 0.5t3 = 5.4453, (38)

with (36) and (37) being the IC constraints for types 1 and 2 respectively, and (38) being the

budget balance condition. Solving these equations, we obtain the desired transfer vector t∗ to be

(t∗1, t
∗
2, t
∗
3) = (4.245, 5.5624, 5.8551). (39)

Thus, (µ∗, t∗) as characterized in (34) and (39) implements the planner’s objective of achieving

efficiency with minimum inequality consistent with incentive compatibility and budget balance. By
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(35), the resulting payoffs at the efficient state following redistribution for the three types are

(φ1(1, µ
∗, t∗), φ2(2, µ

∗, t∗), φ3(3, µ
∗, t∗)) = (9.5146, 8.1972, 7.6117). (40)

The aggregate payoff of agents at this outcome is
∑n

p=1mpφ1(1, µ
∗, t∗) = 8.1679 which, by definition

of the efficient state µ∗, is the highest possible in Example 5.1. As implied by Proposition 3.4, type

3 agents, who have the highest cost of effort, have the lowest payoff in (40).

We now consider the Rawlsian social choice function. Thus, instead of minimizing inequality at

the efficient state, the planner wishes to implement an outcome that maximizes the lowest payoff

across all social states in F . To explore this possibility, it suffices to consider states in monomorphic

population states. This would ensure that within each population at least, payoffs would be equal.

Thus, let µ = (m1δα1 ,m2δα2 ,m3δα3) be such a social state in Example 5.1. The aggregate strategy

is, therefore, α =
∑3

p=1mpαp. Further, let t = (t1, t2, t3) be a transfer vector. Analogous to (18),

denote as

φp(q, µ, t) = αqAP (α)− cp(αq) + αq(MP (α)−AP (α)) + tq

= αqMP (α)− cp(αq) + tq

=
5αq√
α
− kpα2

q + tq, (41)

the post redistribution payoff of a type p agent who reports type to be q at the social state

µ and the transfer vector t. Unlike (35), (41) is defined at all social states of the form µ =

(m1δα1 ,m2δα2 ,m3δα3). Thus, an agent claiming to of type q is assigned the strategy and transfer

(αq, tq), pays the tax αq(AP (α) −MP (α)) and plays the tragedy of the commons (32). We will

focus on the incentive compatible solution where every agent will reveal type truthfully. Hence,

analogous to (13), the aggregate tax paid by the agents in (41) would be

T (µ) =

3∑
p=1

mpαp(AP (α)−MP (α)) = 5
√
α = 5

√
0.2α1 + 0.3α2 + 0.5α3. (42)

Maximizing the minimum payoff means that for every possible m, the planner wishes to im-

plement the Rawlsian social choice function m 7→ (µR, tR) where (µR, tR), called the Rawlsian

outcome, solves

max
(µ,t)

[min {φ1(1, µ, t), φ2(2, µ, t), φ3(3, µ, t)}]

subject to µ = (m1δα1 ,m2δα2 ,m3δα3)

φp(p, µ, t) ≥ φp(q, µ, t) for all p, q ∈ P

m1t1 +m2t2 +m3t3 = 5
√

0.2α1 + 0.3α2 + 0.5α3. (43)

The constraints φp(p, µ, t) ≥ φp(q, µ, t) are the IC constraints, with φp(q, µ, t) being as defined in
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(41). The last constraint in (43) is the budget balance condition arising from (42).

Through arguments similar to those leading up to Proposition 3.4, we can show that to satisfy

the IC constraints, it suffices to make φp(p, µ, t) = φp(p + 1, µ, t) for all p ∈ P. To characterize

(µ∗, t∗), these equalities along with the budget balance condition sufficed, as can be seen from

(36)–(38). But in the present scenario where (α1, α2, α3) are unknown, these four equations by

themselves will not be enough. Instead, we need to explicitly solve the maximization exercise (43).

The numerical solution that we obtain is

(
αR1 , α

R
2 , α

R
3

)
= (2.4264, 0.9099, 0.6066), (44)(

tR1 , t
R
2 , t

R
3

)
= (3.0358, 5.3356, 5.8876). (45)

Thus, the social state at the Rawlsian outcome is µR = (m1δαR
1
,m2δαR

2
,m3δαR

3
). The aggregate

strategy at this outcome is αR =
∑

p∈P mpα
R
p = 1.0616. Inserting (44) and (45) in (41) and

using {k1, k2, k3} = {1, 2, 3} from Example 5.1, we obtain the type specific payoffs at the Rawlsian

outcome to be

(
φ1(1, µ

R, tR), φ2(2, µ
R, tR), φ3(3, µ

R, tR)
)

= (8.9233, 8.0953, 7.7274). (46)

The calculation in (46) is based on the fact that due to incentive compatibility, all agents reveal

their type truthfully. Therefore, the payoff of type p agents is φp(p, µ
R, tR).

Like in (40) and as is to expected given the cost disadvantage, type 3 agents have the lowest

payoff in (46). But their payoff is higher in (46). Therefore, the Rawlsian outcome (µR, tR) achieves

a higher minimum payoff in the society than the outcome (µ∗, t∗) that minimizes inequality at the

efficient state. As is also evident from (34) and (44), µ∗ 6= µR. Hence, implementing the Rawlsian

social choice function involves a sacrifice of efficiency. This can also be seen from fact that the

aggregate payoff in (46),
∑3

p=1mpφp(p, µ
R, tR) = 8.0769 < 8.1679, the aggregate payoff at the

efficient state. Thus, Example 5.1, while not providing a general characterization of the Rawlsian

outcome, does show that subject to incentive compatibility and budget balance, implementing

efficiency with minimum inequality is not equivalent to implementing the Rawlsian social choice

function.

We have not provided any detailed description of the mechanism the planner can use to im-

plement (µR, tR). Briefly, however, the mechanism would largely be as in Section 4. The planner

asks for reports of type. Suppose the reported distribution is m̃. The planner calculates the cor-

responding Rawlsian outcome (µ̃R, t̃R) by maximizing (43) but with respect to the distribution m̃.

He then assigns the corresponding strategy (α̃Rq , t̃
R
q ) to any agent who reports type q. Arguments

akin to Proposition 3.4 and Theorem 4.1 will then imply that truthful revelation is dominant for all

agents. Finally, we point out that just as the optimal payment (26) that implements efficiency with

minimum inequality, we could also have presented our calculation of the Rawlsian outcome in terms

of an optimal payment vector βR = (βR1 , β
R
2 , · · · , βRn ) where βRp = αRp (MP (αR) − AP (αR)) + tRp .

But fixing the tax at the externality level αRp (AP (αR) −MP (αR)) and then characterizing the
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unique tRp allows for a more direct comparison with our approach to implementing efficiency with

minimum inequality. It is important to note that such algebraic manipulations will have no affect

on the Rawlsian social state µR or the Rawlsian payoffs (46), which are what we are most interested

in this section.

6 Conclusion

We have considered the implementation of efficiency with minimum inequality in a large population

model of negative externalities. Agents are of different types which are distinguished by cost

functions that are private information. Total output is a function of aggregate strategy which

is shared among agents according to individual strategy. The model is, therefore, equivalent to a

tragedy of the commons. Imposition of externality equivalent taxes restores efficiency in the model.

The planner would like to redistribute the tax revenue as transfers so as to reduce inequality,

as measured by the variance of payoffs, at the efficient state while being subject to incentive

compatibility and budget balance.

We first characterize the inequality minimizing vector of type specific transfers. We then de-

scribe a mechanism that would enable the planner to implement both the efficient state and the

inequality minimizing transfer vector in dominant strategies. The planner asks agents to report

their types and calculates the efficient state, externality tax and inequality minimizing transfers

based on reported types. Due to the large population characteristic of the model, it then becomes

weakly dominant for all agents to report the type truthfully thereby implementing the desired ob-

jective of the planner. Finally, while minimizing inequality at efficiency also ensures maximization

of minimum payoff at the efficient state, it is not equivalent to implementing the Rawlsian social

choice function. There may exist other states which are not efficient but where, through appropri-

ate transfers, it is possible to further improve the welfare of the most disadvantaged agents in an

incentive compatible manner while satisfying budget balance.

An important research question that arises is a more general characterization of the Rawlsian

social state in a large population model. In the present paper, we have only provided a counterex-

ample because that suffices to show that the inequality minimizing efficient outcome is not the

Rawlsian outcome. But independent of efficiency, the Rawlsian outcome is interesting on its own

and a more rigorous analysis of this outcome is worth exploring. We have also only sketched out

the mechanism for implementing the Rawlsian outcome in the last paragraph of Section 5. The

question of establishing the details of this mechanism remain. Generalizing the present analysis of

efficiency with minimum inequality to models other than the tragedy of the commons also remains

an unexplored question.
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A Appendix

A.1 Appendix to Section 2

Proof of Proposition 2.3: In the discussion preceding Proposition 2.3, we have argued that bp(α)

is the unique best response of type p agents to any state µ such that A(µ) = α. The additional

assumption that c′p(0) = 0 then implies that for every p ∈ P, this unique best response in (2)

satisfies

AP (α) = c′p(bp(α)), (47)

with bp(α) ∈ (0,∞) for all α ∈ (0,∞).

Proposition 3.1 in Lahkar [9] shows that in large population aggregative games such as (2), all

Nash equilibria can be characterized as solutions to (3). Due to our assumptions that AP (α) is

strictly declining and cp is strictly convex, we conclude from (47) that bp(α) is strictly declining

for all p. Hence, (3) has a unique solution, which we denote as αN . By Proposition 3.1 in Lahkar

[9], we then obtain the unique Nash equilibrium µN as defined in (4) where all type p agents play

bp(α
N ). The aggregate strategy level at µN is, therefore, αN =

∑
p∈P mpα

N
p and condition (5)

follows from (47). �

Proof of Proposition 2.4: We first establish that (10) has a unique solution. The assumptions

of our model imply that the unique best response b̂p(α) in F̂ is characterized by

MP (α) = c′p

(
b̂p(α)

)
. (48)

Due to the strict concavity of π, MP (α) is strictly declining. Hence, by a similar argument as in

Proposition 2.3, b̂p(α) is strictly declining. This establishes uniqueness of the solution to (10). The

argument in the proof of Proposition 2.3 then implies that µ∗ is the unique Nash equilibrium of F̂ .

The remaining conclusions follow from the discussion preceding Proposition 2.4. Proposition 5.6 in

Lahkar and Mukherjee [11] shows this Nash equilibrium of F̂ is also the efficient state of F defined

by (2). The conclusion α∗p < αNp follows from (5), (11), the strict convexity of cp and the fact that

MP (α) < AP (α). Condition (11) follows from (48). �

Proof of Corollary 2.5: Since µ∗ is the unique Nash equilibrium of the game F̂ characterized by

(8) and every agent has a unique best response to every state, α∗p is the unique best response to µ∗

for a type p agent. Therefore,

α∗pMP (α∗)− cp(α∗p) > α∗qMP (α∗)− cp(α∗q). (49)

By Observation 2.2, as p < q, cp(α
∗
q) < cq(α

∗
q). Therefore,

α∗qMP (α∗)− cp(α∗q) > α∗qMP (α∗)− cq(α∗q). (50)

Combining (49) and (50) and using (12), we obtain F̂α∗p,p(α
∗) > F̂α∗q ,q(α

∗). For the relationship
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between α∗p and α∗q , note from (11) that c′p(α
∗
p) = c′q(α

∗
q) = MP (α∗). By Assumption 2.1, if p < q,

then c′p(α
∗
p) < c′q(α

∗
p). The strict convexity of cost functions then imply that α∗p > α∗q . �

A.2 Appendix to Section 3

Proof of Lemma 3.1: We start with type n − 1 and proceed in reverse order. For type n − 1,

(24) doesn’t apply but suppose (23) holds. Thus,

φn−1(n− 1, µ∗, t) = φn−1(n, µ
∗, t)

⇒α∗n−1MP (α∗)− cn−1(α∗n−1) + tn−1 = α∗nMP (α∗)− cn−1(α∗n) + tn. (51)

Now consider type n− 2. Suppose (23) holds. Hence, φn−2(n− 2, µ∗, t) = φn−2(n− 1, µ∗, t) or

α∗n−2MP (α∗)− cn−2(α∗n−2) + tn−2 = α∗n−1MP (α∗)− cn−2(α∗n−1) + tn−1. (52)

Then, to show (24), we need to show φn−2(n− 2, µ∗, t) > φn−2(n, µ
∗, t). For this, we can use (52)

and show φn−2(n− 1, µ∗) > φn−2(n, µ
∗) or

α∗n−1MP (α∗)− cn−2(α∗n−1) + tn−1 > α∗nMP (α∗)− cn−2(α∗n) + tn (53)

Notice that we can derive (53) from (51) by adding cn−1(α
∗
n−1)−cn−2(α∗n−1) and cn−1(α

∗
n)−cn−2(α∗n)

to the LHS and RHS of (51) respectively. But α∗n−1 > α∗n (Corollary 2.5). Hence, Assumption 2.1,

cn−1(α
∗
n−1)− cn−2(α∗n−1) > cn−1(α

∗
n)− cn−2(α∗n). But then, this establishes (53).

For type n− 3, we need to argue that if φn−3(n− 3, µ∗, t) = φn−3(n− 2, µ∗, t), then φn−3(n−
3, µ∗, t) > φn−3(n − 1, µ∗, t) and φn−3(n − 3, µ∗, t) > φn−3(n, µ

∗, t). To show φn−3(n − 3, µ∗, t) >

φn−3(n−1, µ∗, t), we proceed as before for type n−2 and show φn−3(n−2, µ∗, t) > φn−3(n−1, µ∗, t).

This follows from (52) if we add cn−2(α
∗
n−2)− cn−3(α∗n−2) and cn−2(α

∗
n−1)− cn−3(α∗n−1) to the LHS

and RHS of (52) respectively and then note that because α∗n−2 > α∗n−1, cn−2(α
∗
n−2)−cn−3(α∗n−2) >

cn−2(α
∗
n−1)− cn−3(α∗n−1).

To show φn−3(n − 3, µ∗, t) > φn−3(n, µ
∗, t), the above argument means it suffices to show

φn−3(n − 1, µ∗, t) > φn−3(n, µ
∗, t). For that, we use (53), which we have established. Note that

φn−3(n− 1, µ∗, t) > φn−3(n, µ
∗, t) is equivalent to

α∗n−1MP (α∗)− cn−3(α∗n−1) + tn−1 > α∗nMP (α∗)− cn−3(α∗n) + tn (54)

We can obtain (54) by adding cn−2(α
∗
n−1)− cn−3(α∗n−1) and cn−2(α

∗
n)− cn−3(α∗n) to the LHS and

RHS of (53) respectively. The desired conclusion then follows by noting that because α∗n−1 > α∗n,

cn−2(α
∗
n−1)− cn−3(α∗n−1) > cn−2(α

∗
n)− cn−3(α∗n).

For the remaining types p ∈ {1, 2, · · · , n − 4}, we can proceed similarly through an inductive

argument. For each type p, we use the arguments established for type p + 1 and prove the claim.

This would establish the lemma. �
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Proof of Lemma 3.2: By (23), we have φp(p, µ
∗, t) = φp(p+ 1, µ∗, t) for all p ∈ {1, 2, · · · , n− 1}.

Moreover, according to our assumption we have cp(α
∗
p+1) < cp+1(α

∗
p+1). So we have

φp(p, µ
∗, t) = α∗pMP (α∗)− cp

(
α∗p
)

+ tp

= α∗p+1MP (α∗)− cp
(
α∗p+1

)
+ tp+1

> α∗p+1MP (α∗)− cp+1

(
α∗p+1

)
+ tp+1 = φp+1(p+ 1, µ∗, t)

This establishes part 1. For part 2, again from (23), we have α∗pMP (α∗) − cp
(
α∗p
)

+ tp =

α∗p+1MP (α∗) − cp
(
α∗p+1

)
+ tp+1. Rearrangement gives us tp+1 = tp + cp+1

(
α∗p+1

)
− cp

(
α∗p
)
−

MP (α∗) [α∗p+1 − α∗p]. From (11) and Proposition 2.4, we know that MP (α∗) = c′p(α
∗
p). Thus we

can write tp+1 = tp + cp+1

(
α∗p+1

)
− cp

(
α∗p
)
− c′p(α∗p)[α∗p+1−α∗p]. The strict convexity of c(·) implies

cp
(
α∗p+1

)
− cp

(
α∗p
)
− c′p(α∗p)[α∗p+1 − α∗p] > 0. But by Observation 2.2, cp+1

(
α∗p+1

)
> cp

(
α∗p+1

)
.

Hence, cp+1

(
α∗p+1

)
− cp

(
α∗p
)
− c′p(α∗p)[α∗p+1 − α∗p] > 0, which gives us the desired result that

tp+1 > tp for any p = 1, 2, . . . , n− 1. �

Proof of Lemma 3.3: Recall from (18) that if the transfer vector is t, then φp(p, µ
∗, t) =

α∗pMP (α∗)−cp
(
α∗p
)
+tp and φp(q, µ

∗, t) = α∗qMP (α∗)−cp
(
α∗q
)
+tq. The fact that α∗p is the unique

best response to µ∗ for a type p agent in the game F̂ defined by (8) implies α∗pMP (α∗)− cp
(
α∗p
)
>

α∗qMP (α∗)− cp
(
α∗q
)
.

Moreover, as p > q, tp > tq by Lemma 3.2(2). Combining these arguments, we obtain

α∗pMP (α∗)− cp
(
α∗p
)

+ tp > α∗qMP (α∗)− cp
(
α∗q
)

+ tq, or φq(q, µ
∗, t) > φq(p, µ

∗, t).

Thus, (23) ensures that agents of type p do not have the incentive to claim to be of types p+ 1,

p + 2 etc (Lemma 3.1). That same condition also implies t1 < t2 < · · · < tn, i.e. Lemma 3.2(2),

which then implies the present result that such agents will also not claim to be q < p. Therefore,

if (23) is satisfied, no agent has any incentive to misrepresent type. �

Proof of Proposition 3.4: Consider an arbitrary transfer scheme t̂ 6= t∗ that satisfies the IC

constraints (19) and the budget balance condition. By (18), the payoff of an agent of type p who

claims to be of type q under the transfer scheme t̂ is φp(q, µ
∗, t̂) = α∗qMP (α∗)− cp

(
α∗q
)

+ t̂q. It is

easy to see that only difference between payoffs under t̂ and t∗ is the transfers, i.e. φp(p, µ
∗, t̂) >

(=) < φp(p, µ
∗, t∗) if and only if t̂p > (=) < t∗p.

First we make a few observations about the relation between t∗ and t̂. Since t̂ is incentive

compatible, it also satisfies the inequality (19). Thus, φp(p, µ
∗, t̂) ≥ φp(p+ 1, µ∗, t̂) or α∗pMP (α∗)−

cp
(
α∗p
)

+ t̂p ≥ α∗p+1MP (α∗) − cp
(
α∗p+1

)
+ t̂p+1 holds for all p ∈ {1, 2, · · · , n − 1}. To simplify

notation, we denote λs,t =
[
α∗sMP (α∗) − cs (α∗s)

]
−
[
α∗tMP (α∗) − cs (α∗t )

]
. The notation λs,t

represents the difference in the payoff of a type s agent at the efficient state when he announces his

type truthfully and the payoff that type s agent would receive when he announces some other type

t. Now using this notation we can then rewrite the preceding inequality φp(p, µ
∗, t̂) ≥ φp(p+1, µ∗, t̂)

as t̂p+1 ≤ t̂p + λp,p+1.
17 We now divide our proof into smaller claims.

17The t∗ transfer vector satisfies this relation with equality, i.e. t∗p+1 = t∗p + λp,p+1 for all p ∈ {1, 2, . . . , n− 1}.
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(i) Claim 1: Suppose t̂k > t∗k for some k ∈ P then t̂p > t∗p for all p ∈ {1, 2, · · · , k − 1}.

Proof : From the above arguments we know that t̂k ≤ t̂k−1 + λk−1,k. Let t̂k = t∗k + εk where

εk > 0. This implies, t∗k + εk ≤ t̂k−1 + λk−1,k. Now substitute the value of t∗k in terms of

t∗k−1. We get t∗k−1 + λk−1,k + εk ≤ t̂k−1 + λk−1,k ⇒ t∗k−1 < t̂k−1. We can apply this argument

inductively to obtain the desired result.

(ii) Claim 2: Suppose t̂k < t∗k for some k ∈ P then t̂p < t∗p for all p ∈ {k + 1, k + 2, . . . , n}.

Proof : We know that t̂k+1 ≤ t̂k + λk,k+1. Let t̂k = t∗k − δk where δk > 0. This implies,

t̂k+1 ≤ t∗k − δk + λk,k+1. Now substitute the value of t∗k in terms of t∗k+1. We get t̂k+1 ≤
t∗k+1−λk,k+1− δk +λk,k+1 ⇒ t̂k+1 < t∗k+1. We can apply this argument inductively to obtain

the desired result.

(iii) Claim 3: If t̂ 6= t∗ then agents can be partitioned into at most three sets L,M and R where

L = {1, 2, . . . , l}, M = {l+1, l+2, . . . , r−1}18 and R = {r, r+1, . . . , n} for some 1 ≤ l < r ≤ n
such that t̂p > t∗p for all p ∈ L, t̂p = t∗p for all p ∈M and t̂p < t∗p for all p ∈ R. The set L and

R are always non-empty.

Proof : Define l̃ = Max{p ∈ P | t̂p > t∗p}. By definition of l̃, there exists no p > l̃ such

that t̂p > t∗p. Moreover, according to Claim 1, for all p = 1, 2, . . . , l̃ − 1 we have t̂p > t∗p.

Hence, l = l̃ and the set L = {1, 2, . . . , l̃}. Similarly, define r̃ = Min{p ∈ P | t̂p < t∗p}. By

definition of r̃ there exists no p < r̃ such that t̂p < t∗p. Moreover, according to Claim 2, for

all p = r̃ + 1, r̃ + 2, . . . , n we have t̂p < t∗p. Hence, r = r̃ and the set R = {r̃, r̃ + 1, . . . , n}. It

is easy to see that l̃ < R̃. Define set M = P \ L ∪R. It is obvious that if p ∈M then t̂p = t∗p

and l̃ < p < r̃. Thus we obtain M = {l̃ + 1, l̃ + 2, . . . , r̃ − 1}.

Now we argue that both sets L and R are non-empty. Without loss of generality, let L = ∅.
This implies that t̂p ≤ t∗p for all p ∈ P and strict inequity must hold for at least some q ∈ P
otherwise t̂ ≡ t∗ which contradicts our hypothesis that t̂ 6= t∗. But this will imply that
n∑
p=1

t̂p <
n∑
p=1

t∗p = T (µ∗) which contradicts our hypothesis that transfer t̂ is budget balanced.

Hence set L is non-empty. Virtually a similar argument can establish that if set R = ∅ then

it implies
n∑
p=1

t̂p >
n∑
p=1

t∗p = T (µ∗). This again contradicts our hypothesis. So, set R is also

non-empty. This completes the proof.

(iv) Claim 4: Transfer t∗ minimizes the variance.

Proof : Suppose not and there exists a budget balanced incentive compatible transfer t̂ at the

efficient state which has a lower variance than t∗. Claim 3 implies that the only possibility

to decrease the variance is to increase payoffs of lower types at the cost of high cost agents.

Define sets L, M and R of agents whose transfers or payoffs have increased, remain same

and decreased in the new transfer t̂ than t∗. Claim 3 again implies that L = {1, 2, . . . , l},
M = {l + 1, l + 2, . . . , r − 1} and R = {r, r + 1, . . . , n} for some 1 ≤ l < r ≤ n.

18Set M could be empty and in that case we have r = l + 1.
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To simplify the notations we define Up = φp(p, µ
∗, t∗) and Ûp = φp(p, µ

∗, t̂) for all p ∈ P.

According to our hypothesis we denote Ûp−Up = εp > 0 for all p ∈ L and Up−Ûp = δp > 0 for

all p ∈ R. Our earlier observations imply that t̂p−t∗p = εp > 0 for all p ∈ L and t∗p−t̂p = δp > 0

for all p ∈ R. Using Claims 1 and 2, it can be easily shown that εl ≤ εl−1 . . . ≤ ε1 and

δr ≤ δr+1 . . . ≤ δn. Budget balance would require that
l∑

p=1
mpεp −

n∑
p=r

mpδp = 0. Now

V (µ∗, t̂) =
∑
p∈P

mp

(
Ûp
)2 − (F̄ (µ∗)

)2
=
∑
p∈L

mp

(
Up + εp

)2
+
∑
p∈C

mp

(
Up
)2

+
∑
p∈R

mp

(
Up − δp

)2 − (F̄ (µ∗)
)2

= V (µ∗, t∗) +
∑
p∈L

mpε
2
p +

∑
p∈R

mpδ
2
p + 2

[∑
p∈L

mpUpεp −
∑
p∈R

mpUpδp

]
> V (µ∗, t∗) +

∑
p∈L

mpε
2
p +

∑
p∈R

mpδ
2
p + 2

[
Ul
∑
p∈L

mpεp − Ur
∑
p∈R

mpδp

]
> V (µ∗, t∗)

The first and second inequality follow from the facts U1 > U2 > . . . > Un and
l∑

p=1
mpεp −

n∑
p=r

mpδp = 0. Thus, it implies that any arbitrary budget balanced and incentive compatible

transfer scheme must produce a higher variance than the transfer scheme t∗.

The order t∗1 < t∗2 < · · · < t∗n follows from Lemma 3.2(2). The order φ1(1, µ
∗, t∗) > φ2(2, µ

∗, t∗) >

· · · > φn(n, µ∗, t∗) follows from Lemma 3.2(1). Hence, individual rationality will be satisfied if

φn(n, µ∗, t∗) > 0. To see why this holds, we now establish another claim.

(v) Claim 5: The transfer vector t∗ maximizes the lowest post redistribution payoff, i.e. the

payoff of type n agents.

Proof : By part 1 of Lemma 3.2, type n has the lowest post redistribution payoff under any

incentive compatible transfer vector t. Now consider vectors t∗ and t̂, both satisfying incentive

compatibility and budget balance. Suppose the claim is not true and transfer vector t̂ can do

better. This is possible only if t̂n > t∗n. But Claim 1 then implies that t̂p > t∗p for all p ≥ 1.

This implies that
n∑
p=1

t̂p >
n∑
p=1

t∗p = T (µ∗), which means transfer t̂ is not budget balanced. We,

therefore, arrive at a contradiction. Hence, the claim is true.

Note that the equal redistribution transfer scheme tp = T (µ∗), for all p ∈ {1, 2, · · · , n} also satis-

fies incentive compatibility and budget balance. Hence, by Claim 5, φn(n, µ∗, t∗) > φn(n, µ∗, T (µ∗)).

But by (16), φn(n, µ∗, T (µ∗)) = α∗pMP (α∗)− cp
(
α∗p
)

+ T (µ∗) > 0. Hence, individual rationality is

satisfied. �
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