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Abstract We investigate the strategy-proof provision and financing of indivisible
club good facilities when individuals are subject to congestion costs that are non-
decreasing in the number of other club members and in a private type parameter.
An allocation rule specifies how the individuals are to be partitioned into clubs and
how the costs of the facilities are to be shared by club members as a function of
the types. We show that no allocation rule is strategy-proof and cost efficient (i.e., it
always minimizes the aggregate of the financial and congestion costs of the club fa-
cilities) when congestion costs are strictly increasing in the type parameter, but that
these properties are compatible if congestion costs are dichotomous and costs are
equally shared within a club. We also provide examples of strategy-proof allocation
rules with equal cost sharing that are (i) Pareto optimal and (ii) Pareto optimal, non-
dictatorial, and individually rational when the congestion cost is linear in the type
parameter.
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1 Introduction

The degree of publicness of a good lies on a spectrum of possibilities ranging from
the purely private to the purely public. In his theory of clubs, Buchanan (1965) ad-
dressed the problem of determining the optimal number of individuals with whom
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to share the consumption of a good when the benefits and costs of belonging to a
sharing group—a club—depend on both the amount of the good and the number of
individuals the club good is shared with. Buchanan was concerned with the prob-
lem of determining the optimal size of a single club. In contrast, Tiebout (1956)
was interested in investigating the sorting of individuals into communities through
locational choices so as to consume local public goods, which are goods that are
non-rival in consumption within a community but provide no benefits to outsiders.
Communities in Tiebout’s model can be thought of as being clubs in Buchanan’s
sense.1

In this article, we investigate the partitioning of a fixed group of individuals into
clubs so as to share the benefits and costs of a single club good from which non-
members can be excluded. We assume that each club is self-financing, so there is no
cross-subsidization across clubs. The benefits of a club good are public to the mem-
bers of a club, but are subject to congestion costs due to the negative externality that
arises when a club good is shared with other people. Examples include community
swimming pools and parks. As in these examples, we regard a club good as being
some form of infrastructure, what we henceforth call a facility. We consider the case
in which each facility is indivisible and is produced with a common fixed cost. The
congestion cost experienced by an individual depends on both the number of indi-
viduals in his club and on his own characteristics. The latter is his type, which is
private information.

An allocation rule specifies how the individuals are to be partitioned into clubs
and how the costs of the facilities are to be shared by club members as a function
of the types of the individuals. We are interested in determining which allocation
rules, if any, are strategy-proof and satisfy one or more additional desirable proper-
ties when the congestion cost is non-decreasing in both the number of individuals
a club is shared with and the value of the type parameter. Strategy-Proofness is the
requirement that everybody always has an incentive to report his true type. By as-
suming that the size of a facility is fixed, we are able to focus on how the design
of allocation rules that satisfy the properties that we consider depend on congestion
effects in isolation from any facility size considerations.

In addition to Strategy-Proofness, we consider four other desirable properties for
an allocation rule: Cost Efficiency, Pareto Optimality, Nondictatorship, and Individ-
ual Rationality. Cost Efficiency requires the partition of individuals into clubs to
minimize the sum of the total financial cost of the club facilities and the aggregate
congestion cost. Pareto Optimality requires that allocations be strictly Pareto op-
timal. Nondictatorship requires that nobody always has one of his most preferred
allocations chosen. Individual Rationality requires that nobody is ever worse off
being assigned to a multi-member club than being in his own single-member club.

We prove that no allocation rule can satisfy Strategy-Proofness and Cost Effi-
ciency if the congestion cost function is strictly increasing in the type parameter.
However, if congestion costs can only take on two values, we show that a serial
dictatorship satisfies both of these properties if each club’s financial cost is shared

1 An introduction to the literature on club goods and local public goods may be found in Cornes
and Sandler (1996).
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equally among its members. When investigating the compatibility of Strategy-
Proofness with our other three axioms (i.e., excluding Cost Efficiency), we restrict
attention to the case in which members share the cost of a club facility equally and
congestion costs are linear in the type parameter. We show by means of an exam-
ple that these four properties can be satisfied simultaneously. Because an individual
only cares about the number of people he shares a club with, and not who they are,
to ensure that strictly Pareto optimal allocations are chosen by a strategy-proof allo-
cation rule, individual indifferences between club partitions must be properly taken
account of. We illustrate this observation by considering two ways of specifying
a serial dictatorship, only one of which always chooses a strictly Pareto optimal
allocation.2

In Section 2, we discuss some related literature. We present the model in Sec-
tion 3 and the axioms in Section 4. The compatibility of Strategy-Proofness and Cost
Efficiency is considered in Section 5. Section 6 provides an example that demon-
strates the compatibility of Strategy-Proofness with the other axioms when the are
three individuals. In order to illustrate the difficulty of satisfying all of these axioms,
we consider some further examples in Section 7. Finally, in Section 8, we offer some
concluding remarks.

2 Related Literature

While there is an extensive literature on club formation, little attention has been de-
voted to this issue when individuals have private information about the benefits and
costs of a club. As a consequence, little is known about the incentive issues involved
when determining club membership. To the best of our knowledge, there are only
three other papers that examine the strategy-proof provision of club goods. Jackson
and Nicolò (2004) and Long (2019) have considered the problem of determining the
membership of a single club, while Bogomolnaia and Nicolò (2005) have consid-
ered the problem of partitioning the individuals into a fixed number of clubs. For
Long, the club good has a fixed size, whereas for Jackson and Nicolò and Bogo-
molnaia and Nicolò, the location of the club good in [0,1] (which can be interpreted
as the quantity of the good) must also be determined. In each of these articles, the
private information is about the preferences of the individuals. Like Bogomolnaia
and Nicolò, we are concerned with the problem of partitioning the individuals into
clubs, but we allow the number of clubs to be endogenously determined. Like Long,
we assume that the club good is of fixed size.

Jackson and Nicolò (2004) assumed that an alternative is characterized by two
attributes—the location of a club good facility in [0,1] and the number of individu-
als sharing it. An individual only cares about a facility’s location if he belongs to the
club. Preferences over possible locations are single-peaked, with the peak being in-
dependent of the club membership. An individual also has preferences over the size

2 A serial dictatorship is strategy-proof and always chooses a weakly Pareto optimal allocation.
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of the club (but not its composition) if he is a member and the option of not being
in the club, with preferences over group size assumed to be single-peaked. Jackson
and Nicolò considered four alternative restrictions on the club size preferences in
addition to the requirement that they be single-peaked. In three of them, everybody
agrees on the most preferred club size: (i) a single-member club (the congestion ef-
fect dominates), (ii) a club with everybody in it (the cost-sharing effect dominates),
or (iii) some intermediate-sized club. In their fourth preference domain, there are
two possible most-preferred club sizes. They have established a number of possibil-
ity and impossibility results for a strategy-proof allocation rule when various other
desirable properties are required. The nature of the results depends on which of
the four preference domains is considered. Of particular note is their finding that
strategy-proofness and Pareto optimality imply that the number of club members
must be independent of the locational preferences. When the location of the club
good is required to depend only on the preferences of the individuals who are mem-
bers of the club, then the club has only one member in case (i) and consists of the
whole group in case (ii). In the former case, this person—a dictator—chooses the
facility location; in the latter case, it is chosen using a generalized median rule. In
case (iii), the location must coincide with the peak of one of the club members, and
so any member whose locational peak diverges sufficiently from this value might
prefer not to be in the club, which is inconsistent with voluntary participation.

Bogomolnaia and Nicolò (2005) also assumed that an alternative is characterized
by the location of a club good facility in [0,1] and the number of individuals sharing
it. Their allocation rule specifies the locations of a fixed number of club good facil-
ities and partitions the individuals among them. Unlike Jackson and Nicolò (2004),
there is no option of not joining a club. Individual preferences over locations are
single-peaked. Conditional on club size, being closer to the locational peak is pre-
ferred, and conditional on the facility location, having a smaller club is preferred.
When there are only two club good facilities, Bogomolnaia and Nicolò have shown
that it is possible to find allocation rules that are strategy-proof, Pareto optimal, and
satisfy a stability property that requires no individual to want to change the club
he is assigned to. However, with more than two club facilities, these conditions are
incompatible.

Long (2019) considered the problem of selecting which individuals are to form a
club out of a group of n individuals. Each individual has strict, single-peaked pref-
erences over being in a club with k ∈ {0,1, . . . ,n}members, where 0 is the option of
not joining any club. Long focused on the construction of strategy-proof rules satis-
fying Pareto optimality and a voluntary participation constraint that ensures that no
one is forced to join the club if that is worse than not joining.3 She identified two
interesting classes of rules satisfying these properties, both of which satisfy some
form of group strategy-proofness. One involves individuals who wish to do so join-
ing a club in a fixed priority order until someone who has already joined objects. The
other involves individuals voting on club group size in ascending order subject to a
stopping rule. In Section 7, we define an iterative version of this procedure that re-

3 Not joining any club is not an option in our model.
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sults in a partition of the individuals into clubs and show that it is not strategy-proof
when costs are shared equally.

Strategy-proofness is not the only way to model individual incentives in the pres-
ence of private information. For the problem of determining which of a finite set of
possible levels of a single club good to provide and who is to share it, Massó and
Nicolò (2008) have studied which collective choice rules are Nash or Subgame Per-
fect Nash implementable when individuals prefer larger groups in the sense of set
inclusion. They have shown that Subgame Perfect Nash implementability is com-
patible with Pareto optimality and a stability property that requires that nobody can
be excluded from access to the good or forced to consume it against his wishes,
whereas Nash implementability is not.

Finally, we note that our problem of partitioning individuals into clubs con-
tributes to the more general literature on coalition formation.4 As we have already
mentioned, communities in the Tiebout (1956) problem can be thought of as being
clubs that are not subject to congestion effects. With models of hedonic coalition
formation, an individual’s preferences only depend on the composition of the coali-
tion that he belongs to. See, for example, Bogomolnaia and Jackson (2002). Clubs
are coalitions and its members’ preferences only depend on group size rather than
on their identities, and so are non-hedonic. The model of group activity selection
studied by Darmann (2019) in which individuals are to be assigned to at most one
of a set of possible activities is also closely related. In Darmann’s model, individuals
have preferences over pairs consisting of an activity and the number of individuals
participating in it. In our model, individuals do not care about which club they be-
long to, only how many members it has.

3 The Model

There is a group N = {1, . . . ,n} consisting of n ≥ 2 individuals. Individuals form
clubs (subgroups of N) so as to self-finance indivisible club good facilities whose
benefits are public to the members of a club but from which outsiders are excluded.
There is a fixed cost of producing a facility, which we normalize to equal 1. Individ-
uals in a club do not care about the identities of its members, only their number and
how the costs of their facility is shared.

Let P denote the set of all partitions of N, with typical element P. Given P∈P ,
Si(P) is the element of P that contains i; Si(P) is i’s club. The number of other indi-
viduals who are in i’s club is ni, where ni ∈ N◦ = {0, . . . ,n−1}. We write ni(Si(P))
when we want to explicitly note the dependence of ni on which club in the partition
P that i belongs to. Thus, Si(P) contains ni(Si(P))+1 individuals.

Club good facilities are congestible. The congestion cost experienced by individ-
ual i depends on both the number of individuals in i’s club and on i’s own charac-
teristics, which we assume can be summarized by a scalar αi. This is i’s type. It can

4 For a survey, see Bloch and Dutta (2011).
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take on any non-negative value. The value of αi is private information to individual
i. We let α = (α1, . . . ,αn) denote a vector of types.

Individual i’s congestion cost i is f (αi,ni), where f (αi, ·) is non-decreasing in
ni and f (·,ni) is non-decreasing in αi. In other words, the congestion cost is non-
decreasing in both club size and an individual’s type. There is no congestion cost if a
club only has one member, so f (αi,0) = 0 for all types. Note that it is assumed that
the function f is the same for all individuals; all person-specific congestion effects
are captured by the type parameters.

Congestion costs are measured in monetary units, so f (αi,ni) can be interpreted
as being the amount by which an individual of type αi who shares a facility with
ni other individuals must be compensated in order to be indifferent to being the
only person in the club. With this interpretation of congestion costs, the function f
represents an individual’s preferences for sharing a facility. Measuring congestion
costs in monetary units permits us to compare these costs with the monetary cost of
providing a facility.

We further assume that (i) there is a value of the type parameter a∗ such that
f (a∗,1) > 1 and (ii) f (0,ni) = 0 for all ni ∈ N◦. The first assumption requires the
congestion cost to be larger than the financial cost of producing the facility for suf-
ficiently high values of the type parameter even if there is only one other club mem-
ber. The second assumption simply says that if an individual does not care about
how many people the facility is shared with (i.e., his type is 0), then there is no
congestion cost.

Two kinds of congestion cost functions that are of particular interest here are
those with linear congestion costs and those with dichotomous costs.

Linear Congestion Costs. For all i ∈ N, all αi ∈ R+, and all ni ∈ N◦, f (αi,ni) =
αini.

With linear congestion costs, the congestion cost experienced by any individual
is proportional to the number of other people the facility is shared with, with the
factor of proportionality given by his type.

Dichotomous Congestion Costs. For all i∈N, all αi ∈R+, and all ni ∈N◦, f (αi,ni)=
c > 1 if ni > αi and f (αi,ni) = 0 otherwise.

With dichotomous congestion costs, i’s type αi specifies a threshold. If the num-
ber of other members of his club falls below this threshold, then he does not experi-
ence any congestion cost. However, if the threshold is met, then the congestion cost
is some fixed value c that exceeds the cost of the facility regardless of by how much
αi exceeds the threshold. In keeping with our assumption that αi can be any non-
negative number, the threshold need not be an integer. This is of no consequence
because the value of f is constant in αi for all αi in an interval of the form [ j, j+1),
where j is a non-negative integer.

We assume that each club is responsible for fully financing its own facility, so
there is no cross-subsidization of a facility’s cost between clubs. An allocation
(P,r) = (P,r1, . . . ,rn) consists of a partition P of the individuals into clubs and the
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amount ri ≥ 0 that each individual i ∈ N contributes to the cost of the facilities, with
∑i∈S ri = 1 for all S ∈ P. An allocation rule specifies an allocation as a function of
the individuals’ types. Formally, an allocation rule is a function A : Rn

+→P×Rn
+,

where for all α ∈Rn
+, A(α) = (P(α),r(α)) = (P(α),r1(α)), . . . ,rn(α)). In this def-

inition, P(·) is the partition chosen and ri(·) is how much i must pay towards the cost
of i’s club good facility as a function of the type vector.

An allocation rule has equal cost sharing if the cost of a facility is always shared
equally among the club members.

Equal Cost Sharing. An allocation rule A has equal cost sharing if for all α ∈ Rn
+

and all i ∈ N, ri(α) = 1/|Si(P(α))|.

Given α , the aggregate cost associated with a partition P ∈P is given by

C(P,α) = |P|+ ∑
i∈N

f (αi,ni(Si(P))).

The first term is the financial cost of building the |P| facilities associated with the
partition P, while the second term is the aggregate congestion cost associated with
it.

Each individual wants to minimize the sum of the amount paid towards the cost
of the club facility and the congestion cost associated with it. Thus, individual i with
type αi and cost share ri who belongs to a club with ni other members has utility

U(αi,ri,ni) =−[ri + f (αi,ni)].

A person’s type captures all person-specific effects on utility, so the functional form
of the utility function is not indexed by the names of the individuals. If there are
linear congestion costs and the cost of a club good facility is shared equally among
the club members, then

U(αi,ri,ni) =−
[

1
ni

+αini

]
.

4 The Axioms

We are interested in strategy-proof allocation rules. These are rules for which type
misrepresentation is never advantageous.

Strategy-Proofness. An allocation rule A is strategy-proof if for all α ∈ Rn
+, all

i ∈ N, and all α ′i ∈ R+,

U(αi,ri,ni(Si(P)))≥U(αi,r′i,ni(Si(P′))),

where (P,r) = A(α) and (P′,r′) = A(α−i,α
′
i ).
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It is a simple matter to construct strategy-proof allocation rules. For example,
an allocation rule with equal cost-sharing is strategy-proof if the choice of parti-
tion is independent of the type vector. This is clearly an unsatisfactory allocation
rule. Hence, Strategy-Proofness must be supplemented with one or more additional
properties to be of interest. We consider four such properties.

A partition P ∈P is cost efficient at α if there is no other partition P′ ∈P such
that C(P′,α) < C(P,α). A cost efficient partition minimizes aggregate cost. Note
that cost efficiency does not depend on how the facility costs are shared among the
individuals.

Cost Efficiency. An allocation rule A is cost efficient if for all α ∈Rn
+, P(α) is cost

efficient at α .

An allocation (P,r) ∈P×Rn
+ is Pareto optimal at α if there is no other alloca-

tion (P′,r′) ∈P×Rn
+ such that for all i ∈ N,

U(αi,r′i,ni(Si(P′)))≥U(αi,ri,ni(Si(P)))

and there exists an i ∈ N such that

U(αi,r′i,ni(Si(P′)))>U(αi,ri,ni(Si(P))).

In other words, an allocation is Pareto optimal if there is no other allocation that
makes everybody as least as well off and one or more individuals strictly better off.

Pareto Optimality. An allocation rule A is Pareto optimal if for all α ∈ Rn
+, A(α)

is Pareto optimal at α .

Individual d ∈ N is a dictator for the allocation rule A if for all α ∈ Rn
+ and any

allocation (P,r) ∈P×Rn
+,

U(αd ,rd(α),ni(Sd(P(α)))≥U(αd ,rd ,nd(Sd(P))).

That is, there is some individual d—the dictator—for whom for each type vector
α , the allocation rule A selects a partition of the individuals into clubs and assigns
facility cost shares so as to minimize the sum of d’s congestion cost and d’s cost
share. A dictator never contributes to the cost of a club facility if someone other
than the dictator is in his club.

Nondictatorship. An allocation rule A is nondictatorial if there is no dictator.

An allocation (P,r) ∈P×Rn
+ is individually rational at α if for all i ∈ N,

U(αi,ri,ni(Si(P)))≥U(αi,1,0).

With an individually rational allocation, nobody can be made worse off by being in
a club with one or more other members instead of having his own single-member
club. When this condition is satisfied, club membership is voluntary.

Individual Rationality. An allocation rule A is individually rational if for all α ∈
Rn
+, A(α) is individually rational at α .
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5 Strategy-Proofness and Cost Efficiency

We begin our analysis by considering the compatiblity of Strategy-Proofness and
Cost Efficiency. We have assumed that the congestion cost function f is non-
decreasing in the type parameter for a given number of club members. We show
that if f is strictly increasing in the type parameter, then it is not possible for an
allocation function to be both strategy-proof and cost efficient.

Theorem 1. If f (·,ni) is strictly increasing in its first argument for all ni ∈ N◦, then
there is no allocation rule that satisfies Strategy-Proofness and Cost Efficiency.

Proof. (i) We first consider the case in which n = 2.
Let R = {α ∈ R2

+ | f (α1,1)+ f (α2,1) < 1}. Note that for all α ∈ R, Cost Ef-
ficiency implies that the allocation rule must assign both individuals to the same
club.

We begin by showing that for all α,α ′ ∈ R, r(α) = r(α ′). There are three cases
to consider.

First, suppose that αi > α ′i and α j < α ′j, where i ∈ {1,2} and i 6= j. Let ᾱ be
such that ᾱi = α ′i and ᾱ j = α j. Note that ᾱ ∈ R, and so both individuals must be
in the same club at ᾱ . If ri(α) > ri(ᾱ), then i can manipulate at α by reporting
α ′i . Conversely, if ri(α) < ri(ᾱ), then i can manipulate at ᾱ by reporting αi. Thus,
by Strategy-Proofness, we must have r(α) = r(ᾱ). For analogous reasons, we must
have r(α ′) = r(ᾱ). Hence, r(α) = r(α ′).

Second, suppose that αi > α ′i for i = 1,2. Let ᾱ be such that ᾱi = αi and ᾱ j = α ′j.
Then, r(α ′) = r(ᾱ), for otherwise i can manipulate. Similarly, r(α) = r(ᾱ), for
otherwise j can manipulate. Hence, r(α) = r(α ′).

Third, suppose that αi ≥ α ′i for i = 1,2 with just one strict inequality. The proof
for this case is almost identical to the proof of the preceding case.

For α ∈ R, we have shown that the individual cost shares are independent of the
types. Because the cost shares are non-negative and sum to 1, it then follows that
for every α ∈ R, either 1 pays at least 1/2 or 2 pays at least 1/2. Without loss of
generality, suppose that 1 pays at least half the cost of the club. Now, choose α̂1
such that 1/2 < f (α̂1,1) < 1. Because f (0,ni) = 0 and there exists an a∗ ∈ R+

such that f (a∗,1) > 1, the strict increasingness of f in its first argument implies
that such an α̂ exists. Let α̂ = (α̂1,0). By construction, α̂ is in R. We have that
U(α̂1,r1(α̂),n1(S1(P(α̂))) =U(α̂1,r1(α̂),1)<−3/2.

If individual 1 announces α ′1 = a∗, then α ′ = (α ′1,0) /∈ R and the cost ef-
ficient partition puts 1 and 2 in separate clubs. With this partition, 1 does not
suffer any congestion cost, but pays the full cost of a club good facility. Thus,
U(α ′1,r1(α

′),n1(S1(P(α ′)))) = U(α ′1,1,0) = −1. Hence, 1 can manipulate at α

by reporting α ′1. Therefore, when n = 2, it not possible to satisfy both Strategy-
Proofness and Cost Efficiency.

(ii) We now consider the case in which n > 2. Let R′ = {α ∈ Rn
+ | f (αi,1) ≥

1 for all i > 2}. Then, for all α ∈ R′ such that (α1,α2) ∈ R, Cost Efficiency and the
non-decreasingness of f in its second argument imply that individuals 1 and 2 share
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a facility, while everybody else forms a singleton club. For such an α , by applying
the preceding argument for n = 2, we conclude that Strategy-Proofness and Cost
Efficiency are inconsistent with having a two-person club. ut

For some values of the type vector α , it is optimal to have a two-person club.
One of the members of this club, say i, must pay at least half of the cost of this club
facility. The proof of Theorem 1 shows that by reporting a sufficiently large value of
αi (i.e., by claiming to be strongly negatively affected by the presence of other club
members), Cost Efficiency requires i to instead form his own single-member club,
which is beneficial for him because his increased facility charge is more than offset
by the absence of any congestion cost. But if that is the case, Strategy-Proofness is
violated.

Further intuition for this result may be obtained by considering what i considers
when deciding what to report when his true type is αi. Suppose that i misrepre-
sents by, say, reporting α ′i . If this results in the same club partition, then the only
difference in aggregate cost is due to the change in the sum of i’s congestion and
facility costs, which i takes account of when deciding what type to report. However,
if the membership of i’s club differs when α ′i is reported, then the aggregate cost
also differs due to the change in the costs that the other individuals experience. The
failure to take account of this externality underlies the incompatibility of Strategy-
Proofness and Cost Efficiency, much like the failure to take account of a negative
externality underpins the Tragedy of the Commons (Hardin, 1968).

In Theorem 1, no restrictions are placed on how the costs of the club facilities
are shared except for the maintained assumptions that the payments are non-negative
and that club members pay for their own facility themselves. If we further suppose
that club members share the cost of their facility equally, the incompatibility of
Strategy-Proofness and Cost Efficiency is preserved. Indeed, the preceding proof
also establishes this impossibility result.

Corollary. If f (·,ni) is strictly increasing in its first argument for all ni ∈ N◦, then
there is no allocation rule with equal cost sharing that satisfies Strategy-Proofness
and Cost Efficiency.

If there are dichotomous congestion costs, then the congestion cost function f
is weakly, but not strictly, increasing in the type parameter, and so the preceding
results do not apply.5 When congestion costs are dichotomous, it is possible to find
allocation rules that are both strategy-proof and cost efficient. We show that this is
so in Theorem 2 for the case in which there is equal cost sharing.

Theorem 2. If there are dichotomous congestion costs, then there is an allocation
rule satisfying Strategy-Proofness, Cost Efficiency, Individual Rationality, and Non-
dictatorship.

5 In the proof of Theorem 1, strict increasingness (rather than weak increasingness) of f in the type
parameter is only used to show the existence of an α̂1 ∈ (0,a∗) for which 1/2 < f (α̂1,1)< 1. This
is not possible with dichotomous congestion costs.
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Proof. First, we remark that in the presence of dichotomous costs, Cost efficiency
implies Individual Rationality. To see this, recall that with dichotomous congestion
costs, i’s type αi serves a threshold. If the number of other club members exceeds
this threshold, then f (αi,ni) = c > 1; otherwise f (αi,ni) = 0. By Cost Efficiency,
when the type vector is α , i must be assigned to a club with no more than bαi +1c
club members, where bac denotes the largest integer that does not exceed a. To see
why, suppose on the contrary that |Si(P(α))| > bαi + 1c. By partitioning Si(P(α))
into two clubs, one of which only includes i, the total financial cost of the facilities
increases by 1. Individual i’s congestion cost decreases by c > 1. The congestion
costs of the other original members of Si(P(α)) either do not change or are reduced
by c. Nobody else’s congestion cost changes. Thus, the sum of the congestions costs
declines more than the increase in the financial cost of the facilities, contradicting
the cost efficiency of P(α). Thus, if a partition is cost efficient, there are no conges-
tion costs, and so Individual Rationality is satisfied.

We construct an allocation rule that has equal cost sharing. Let� be a linear order
of the partitions in P , with P� P′ interpreted as meaning that P precedes P′ in this
order. For any type vector α , let E (α) denote the set of cost efficient partitions.
The allocation rule is a serial dictatorship using the natural order of the individuals,
1, . . . ,n, in which the partition choices are restricted to the cost efficient partitions.
More precisely, for all α ∈ Rn

+, the partition P(α) is determined sequentially as
follows. First, individual 1 chooses his utility maximizing partitions E1(α) in E (α).
Second, individual 2 chooses his utility maximizing partitions E2(α) in E1(α). Each
person gets to choose a set of cost efficient partitions in turn until the set En(α) is
identified. P(α) is the first partition in this set according to �. Note that if a unique
partition is identified at any stage in this process, then it is P(α). By construction,
the allocation rule that chooses partitions in this way and shares costs equally among
club members satisfies Cost Efficiency.

The allocation rule satisfies Non-dictatorship. For suppose there is i for whom
αi > n− 1. Then, i prefers to be in a club with all other individuals. However, this
may not be cost efficient since some other individual j may have α j < n−1.

We now show that it also satisfies Strategy-Proofness.
Consider any type α ∈ Rn

+ and any individual i ∈ N. To show that the allocation
rule is strategy-proof, we need to show that any reported type α ′i different from i’s
true type αi does not make him better off. Let α ′ = (α1, . . . ,αi−1,α

′
i ,αi+1, . . . ,αn).

There are two cases: (i) α ′i < αi and (ii) α ′i > αi.
(i) Suppose that α ′i < αi. If α ′i < ni(Si(P(α))), then P(α) is not cost efficient for

α ′ because Cost Efficiency requires i to be in a club with no more than bα ′ic other
members. As with the partition P(α), i has no congestion cost with the partition
P(α ′). However, because i is in a smaller club when he changes his reported type
from αi to α ′i , his share of the facility cost increases. Hence, reporting α ′i is not ben-
eficial for him. If, however, αi > α ′i ≥ ni(Si(P(α))), then the original partition P(α)
is cost efficient when the reported type vector is α ′. Moreover, E (α ′) ⊆ E (α). As
a consequence, the serial dictatorship chooses the same partition when the reported
type profile is α ′ as it does when it is α .
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(ii) Suppose that α ′i > αi. Increasing αi raises the threshold at which i’s conges-
tion cost becomes positive. Consequently, reporting α ′i instead of α does not change
the aggregate cost associated with any of the partitions in E (α). There are four cases
to consider.

First, suppose that ni(Si(P(α))) > ni(Si(P(α ′))). In this case, by reporting α ′i
instead of αi, there is no change in i’s congestion cost (it remains 0), but his share
of the facility’s financial cost increases, so reporting α ′i makes i worse off.

Second, suppose that ni(Si(P(α))) = ni(Si(P(α ′))). In this case, i is indifferent
between P(α) and P(α ′), and so has no incentive to misreport.

Third, suppose that ni(Si(P(α ′)))> bαi+1c. In this case, by reporting α ′i instead
of αi, i’s congestion cost increases to c from 0. Because c > 1, the increase in his
congestion cost exceeds the reduction in his share of the financial cost of the facility,
and therefore he is worse off if he reports α ′i .

Finally, suppose that ni(Si(P(α))) < ni(Si(P(α ′))) ≤ bαi + 1c. In this case, be-
cause ni(Si(P(α ′))) ≤ bαi + 1c, i’s congestion cost remains at 0 if he reports α ′i
instead of αi. Because the congestion costs of the other individuals do not depend
on i’s type and P(α ′i ) minimizes aggregate costs when the type vector is α ′i , it then
follows that the aggregate cost when the partition is P(α ′i ) is the same as it is with
P(αi). Thus, P(α ′i ) ∈ E (α) ⊆ E (α ′). Because P(α ′i ) ∈ E (α) but is not chosen by
the serial dictatorship when α is reported, it is not chosen when α ′i is reported either.
Hence, it is not possible for this case to occur. ut

6 Strategy-Proofness and the Other Axioms

In the preceding section, we have shown that a strategy-proof allocation rule cannot
be cost efficient if the congestion cost function is strictly increasing in the type pa-
rameter. In this section, we provide an example that demonstrates the possibility of
constructing an allocation rule that satisfies all of our axioms except for Cost Effi-
ciency when n = 3. To simplify the discussion, we suppose that congestion costs are
linear and that the cost of a club facility is shared equally among the club members.6

In Example 1, we show that it is possible for an allocation rule to satisfy both
Nondictatorship and Individual Rationality in addition to Strategy-Proofness and
Pareto Optimality.

Example 1. Let N = {1,2,3} and suppose that there are linear congestion costs and
equal cost-sharing.

To define the allocation rule, we first partition the type space. The cube
[
0, 1

2

]3
is

split into five subsets. The set
[
0, 1

2

)3
obtained by removing the upper faces of this

cube is subdivided into two sets, T1 and T2. One of upper edges of this cube is the
set T4 and two of the other upper edges constitute the set T5. The set T3 consists of

6 In the examples in this and the following section, it does not matter if the congestion cost function
is strictly increasing in the type parameter or if, instead, it is merely non-decreasing.
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the rest of the three upper faces. The rest of the parameter space is subdivided into
the sets T6 and T7. Letting i, j, and k with i 6= j 6= k 6= i be any relabelling of the
three individuals, this partition is formally defined as follows.

T1 =

{
α ∈ R3

+ | 0≤ α1 ≤
1
6
, 0≤ α2 ≤

1
3
, and 0≤ α3 ≤

1
6

}
;

T2 =

{
α ∈ R3

+ | 0≤ α1 <
1
2
,0≤ α2 <

1
2
, and 0≤ α3 <

1
2
,

}
\T1;

T3 =

{
α ∈ R3

+ | 0≤ αi <
1
2
, 0≤ α j <

1
2
, and αk =

1
2

}
;

T4 =

{
α ∈ R3

+ | α1 = α3 =
1
2

and 0≤ α2 ≤
1
2

}
;

T5 =

{
α ∈ R3

+ |
[

α1 = α2 =
1
2

and 0≤ α3 ≤
1
2

]
or

[
α2 = α3 =

1
2

and 0≤ α1 ≤
1
2

]}
;

T6 =

{
α ∈ R3

+ | 0≤ αi ≤
1
2
, 0≤ α j ≤

1
2
, and

1
2
< αk

}
;

T7 =

{
α ∈ R3

+ |
1
2
< αi and

1
2
< α j

}
;

The allocation rule A is defined by setting:

P(α) = {{1,2,3}} if α ∈ T1;
P(α) = {{1,3},{2}} if α ∈ T2;
P(α) = {{k},{i, j}} if α ∈ T3;
P(α) = {{1,2},{3}} if α ∈ T4;
P(α) = {{1,3},{2}} if α ∈ T5;
P(α) = {{k},{i, j}} if α ∈ T6;
P(α) = {{1},{2},{3}} if α ∈ T7;

We now show that A satisfies Strategy-Proofness, Pareto Optimality, Nondicta-
torship, and Individual Rationality.

Strategy-Proofness. First, suppose that α ∈ T1. In this case, {1,2,3} is an optimal
club for both 1 and 3, so they have no incentive to misreport their types. The same is
true for 2 if 0≤ α2 ≤ 1

6 . If 1
6 < α2 ≤ 1

3 , 2 would only be better off in a two-member
club. This outcome only occurs if the type report is in T3 with k 6= 2, T4, or T6 with
k 6= 2. Each of these three situations requires someone other than 2 to announce a
type weakly greater than 1

2 . But this is not possible with a non-truthful report on the
part of 2 alone.

Second, suppose that α ∈ T2. There are two cases to consider.
(i) Suppose that 0≤ α2 ≤ 1

3 . Then, at least one of α1 or α3 must be greater than
1
6 , otherwise α would be in T1. Without loss of generality, suppose that 1

6 < α1 <
1
2 .

For 1, {1,3} is an optimal club. If it is the case that 1
6 < α3 ≤ 1

2 , then {1,3} is also
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an optimal club for 3. If, however, 0 ≤ α3 < 1
6 , 3 can only be made better off by

switching to the three-person club, which requires the reported type vector to be
in T1. Because 1

6 < α1 <
1
2 , this is not possible using a unilateral deviation from a

truthful report by 3. As far as 2 is concerned, he either strictly or weakly prefers
being in the three-member club or in a two-member club to being in his own single-
member club. It is not possible for 2 to report a type that results in the type vector
being in T1 because 1

6 < α1 < 1
2 , and so the three-member club is not achievable.

Individual 2 is assigned to a two-member club only if the reported type is in T3 with
k 6= 2, T4, or T6 with k 6= 2. As in the case of T1, it is not possible for the reported
type vector to be in any of these three sets with a unilateral deviation from a truthful
report by 2.

(ii) Now, suppose that 1
3 <α2 <

1
2 . The optimal club size for both 1 and 3 is either

two or three. They are in the same two-person club. Because α2 > 1
3 , a unilateral

change in the reports of either 1 or 3 cannot result in a reported type vector in T1,
which is what is required to obtain the three-member club. Hence, neither of them
has a beneficial manipulation. Individual 2 prefers being in his own single-member
club to the three-person club, so can only be made better off by misreporting so
that the reported type vector is in T3 with k 6= 2, T4, or T6 with k 6= 2, which is not
possible with a unilateral deviation from a truthful report by 2.

Third, suppose that α is in either T3 or T6. In both of these cases, k is in an optimal
club. If 1

6 ≤ αi ≤ 1
2 , then i is also in an optimal club. If 0 ≤ αi <

1
6 , i would only

prefer being in the three-member club, which requires the reported type vector to be
in T1. Because αk ≥ 1

2 , it is not possible for the reported type vector to be in T1 by
a unilateral deviation from a truthful report by i. The same reasoning shows that j
cannot beneficially manipulate the outcome either.

Fourth, suppose that α is in either T4 or T5. In this case, everybody is in an optimal
club except for any individual i for which 0 ≤ αi <

1
6 . If that is the case, i is in a

two-member club and only prefers being in the three-member club. That outcome
requires the reported type vector to be in T1, which is not possible with a unilateral
deviation from a truthful report by i because the types of the other two individuals
are both equal to 1

2 .
Finally, suppose that α ∈ T7. In this case, both i and j are assigned their opti-

mal clubs. The allocation is independent of k’s report, so k has no opportunity to
manipulate the allocation.

Pareto Optimality. First, suppose that α ∈ T1. In this case, {1,2,3} is the unique
optimal club for anybody whose type is less than 1

6 , in which case the allocation is
Pareto optimal. If α1 =α3 =

1
6 , then both individuals 1 and 3 are indifferent between

being in the club {1,2,3} and being in a two-member club, which is only possible
if the partition is {{1,3},{2}}. But with the club {3}, 2 is worse off if α2 6= 1

3 and
indifferent to the change if α2 =

1
3 . So, no Pareto improvement is possible.

Second, suppose that α ∈ T2. We consider two cases.
(i) Suppose that 0≤ α2 ≤ 1

3 . Then, at least one of α1 or α3 must be greater than
1
6 , otherwise α would be in T1. Without loss of generality, suppose that that this is
the case for 1. Then, {1,3} is an optimal club for 1. He is indifferent between being



Strategy-proof club formation 15

in {1,3} or {1,2}. However, in the latter case, 3 is in the single-member club {3},
which makes him worse off than with the club {1,3} because 0≤ α3 <

1
2 .

(ii) Now, suppose that 1
3 < α2 < 1

2 . In this case, 2 strictly prefers his single-
member club {2} to {{1,2,3}}. The other partitions are {{1,2},{3}}, {{2,3},{1}},
and {{1},{2},{3}}, all of which make either 1 or 3 worse off.

Third, suppose that α ∈ T3. Then, the partition is {{k},{i, j}}. Individual k is in
an optimal club and is indifferent between being a single-member or two-member
club. Thus, in order not to make him worse off, the partition can only be changed to
{{i},{ j},{k}}, {{k, i},{ j}}, or {{k, j},{i}}. In all of these partitions, either i or j
is worse off than in {{k},{i, j}}.

Fourth, suppose that α is in either T4 or T5. In this case, everybody is in an
optimal club except for any individual i for which 0 ≤ αi <

1
6 . If that is the case,

i is only better off with the three-member club, but that would make the other two
individuals worse off.

Fifth, suppose that α ∈ T6. In this case, {k} is k’s unique optimal club, so the
allocation is Pareto optimal.

Finally, suppose that α ∈ T7. In this case, both i and j are assigned their unique
optimal clubs, so the allocation is Pareto optimal.

Nondictatorship. Consider any individual i. If i were a dictator and 0 ≤ αi <
1
6 , then the partition would be {{1,2,3}}. However, if the other two individuals
have types that exceed 1

2 , the type vector is in T7 and the partition that is chosen is
{{1},{2},{3}}. Hence, nobody is a dictator.

Individual Rationality. We only need to consider clubs with two or three mem-
bers. If α ∈ T1, then αi ≤ 1

3 for all i, and so nobody is better off in his own single-
member club than with the partition {{1,2,3}}. If α ∈ T2, then 0 ≤ α1 < 1

2 and
0 ≤ α1 < 1

2 and, therefore, neither 1 nor 2 prefer being in his own single-member
club to the partition {{1,3},{2}}. The same argument holds for i and j in T3 and
T6, for 1 and 2 in T4, and for 1 and 3 in T5. Hence, A satisfies Individual Rationality.

7 Further Examples

We have not been able to find a way to extend the rule constructed in Example 1
for n > 3. This raises the issue of whether there are other more transparent rules
that satisfy Strategy-Proofness, Pareto Optimality, Individual Rationality, and Non-
dictatorship. An obvious candidate is a serial dictatorship. A serial dictatorship is
strategy-proof and always chooses a weakly Pareto optimal allocation (i.e., there
is no other allocation that makes everyone better off). Unfortunately, it need not
choose allocations that are strictly Pareto optimal. To illustrate this claim, Exam-
ple 2 describes an allocation rule that employs a form of serial dictatorship but does
not satisfy Pareto Optimality. It also does not satisfy either Nondictatorship or Indi-
vidual Rationality.
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Example 2. Assume that congestion costs are linear and that costs are shared equally.
For each type vector, the allocation is constructed as follows. First, individual 1’s
optimal club size is determined. Using the natural order of individuals, individuals
are assigned to a club that includes individual 1 until this optimal size is achieved.
Once this is done, if there are unassigned individuals, the process is sequentially
repeated using the optimal club size of the next person in line until everybody is in
a club. If there are two optimal club sizes at any step in this procedure, the tie is
broken in favor of the smaller one.

Individual i’s preferences are only taken into account if they are used to determine
the size of i’s club. Because this size is optimal for i, this allocation rule satisfies
Strategy-Proofness.

To show that our other axioms are violated, consider the case in which n= 3.7 Be-
ing a serial dictatorship, the chosen allocations are weakly Pareto optimal. However,
as we now show, this allocation rule does not satisfy Pareto Optimality. Suppose that
1’s unique optimal group size is two, so that the clubs {1,2} and {3} are formed.
Further suppose that 2’s unique optimal club size is one, whereas for 3 it is two.
Then, the partition {{1,3},{2}} Pareto dominates {{1,2},{3}}. If 0 ≤ α1 < 1

6 ,
only a single club is formed. If, however, α2 and α3 both exceed 1

2 , they would
prefer to be in their own single-member clubs. Hence, this rule violates Individual
Rationality. It clearly violates Nondictatorship.

The serial dictatorship in Example 2 fails to satisfy Pareto Optimality because
only one person’s preferences are considered when forming each club. As Exam-
ple 3 demonstrates, it is possible for a serial dictatorship to satisfy both Strategy-
Proofness and Pareto Optimality by taking account of the other individuals’ prefer-
ences. However, the allocation rule we construct violates both Nondictatorship and
Individual Rationality.

Example 3. Let N = {1,2,3}. Suppose that there are linear congestion costs and
equal cost-sharing.

The allocation rule is a serial dictatorship using the individual preferences over
allocations, with individual 1 being the first dictator and indifferences broken by
individuals 2 and 3 in that order. If a unique partition has not been chosen after all
three individuals have been considered, a linear order � of the partitions in P is
used to make a final choice from the partitions that are still under consideration.
For concreteness, we assume that � is given by {{1},{2},{3}} � {{1},{2,3}} �
{{1,3},{2}} � {{1,2},{3}} � {{1,2,3}}.

To state this rule formally, we partition the type space into the following 18 sets.
The values of the type parameter used to define the partition are 1

6 , 1
3 , and 1

2 . These
are the values of the type parameter for which an individual is indifferent between
being in a club with (i) two or three members, (ii) one or three members, and (iii)
one or two members, respectively.

T1 =

{
α ∈ R3

+ | α1 >
1
2

and α2 >
1
2

}
;

7 Our arguments can be adapted to apply to larger values of n.
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T2 =

{
α ∈ R3

+ | α1 >
1
2
, α2 =

1
2
, and α3 ≥

1
2

}
;

T3 =

{
α ∈ R3

+ | α1 >
1
2
, α2 =

1
2
, and 0≤ α3 <

1
2

}
;

T4 =

{
α ∈ R3

+ | α1 =
1
2
, α2 ≥

1
2
, and α3 ≥

1
2

}
;

T5 =

{
α ∈ R3

+ | α1 =
1
2
, α2 >

1
2
, and 0≤ α3 <

1
2

}
;

T6 =

{
α ∈ R3

+ | α1 =
1
2
, α2 =

1
2
, and 0≤ α3 <

1
2

}
;

T7 =

{
α ∈ R3

+ |
1
6
< α1 <

1
2

and α2 >
1
2

}
;

T8 =

{
α ∈ R3

+ |
1
6
< α1 <

1
2
, α2 =

1
2
, and α3 >

1
2

}
;

T9 =

{
α ∈ R3

+ |
1
6
< α1 <

1
2
, α2 =

1
2
, and 0≤ α3 =

1
2

}
;

T10 =

{
α ∈ R3

+ |
1
6
< α1 <

1
2

and 0≤ α2 <
1
2

}
;

T11 =

{
α ∈ R3

+ | α1 =
1
6

and α2 >
1
2

}
;

T12 =

{
α ∈ R3

+ | α1 =
1
6
, α2 =

1
2
, and α3 >

1
2

}
;

T13 =

{
α ∈ R3

+ | α1 =
1
6
, α2 =

1
2
, and α3 ≤

1
2

}
;

T14 =

{
α ∈ R3

+ | α1 =
1
6

and
1
6
< α2 <

1
2

}
;

T15 =

{
α ∈ R3

+ | α1 =
1
6
, α2 =

1
6
, and α3 ≥

1
3

}
;

T16 =

{
α ∈ R3

+ | α1 =
1
6
, α2 =

1
6
, and α3 <

1
3

}
;

T17 =

{
α ∈ R3

+ | α1 =
1
6

and 0≤ α2 <
1
6

}
;

T18 =

{
α ∈ R3

+ | 0≤ α1 <
1
6

}
.

The allocation rule A is formally defined as follows:

P(α) = {{1},{2},{3}} if α ∈ T1∪T2∪T4;
P(α) = {{1},{2,3}} if α ∈ T3∪T6;
P(α) = {{1,2},{3}} if α ∈ T8∪T10∪T12∪T14∪T15;
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P(α) = {{1,3},{2}} if α ∈ T5∪T7∪T9∪T11∪T13;
P(α) = {{1,2,3}} if α ∈ T16∪T17∪T18.

A complete proof of the claim that the informal definition of the allocation rule
is being used to construct A is rather lengthy, and so we only verify it for a few
of the sets in the partition of the type space. The sets considered have been chosen
to illustrate differences in the way that this serial dictatorship operates in different
regions of the type space.

First, suppose that α ∈ T1. Because α1 >
1
2 and 1 is the first dictator, 1 must be

in a single-member club. This individual is indifferent about how 2 and 3 partition
themselves into clubs. Because α2 >

1
2 and 2 is the second dictator, 2 must be in a

single-member club, so that leaves no choice but for 3 to be in a single-member club
as well.

Second, suppose that α ∈ T2. As in the previous case, 1 must be in a single-
member club. Now, however, 2 is indifferent between being in a club with 3 or not,
so we consider 3’s preferences. If α3 > 1

2 , 3 prefers that 2 and 3 be in separate
clubs, so this is chosen. If α3 = 1

2 , 3 is indifferent between the two options. The
final tie-breaking rule then assigns 2 and 3 to separate clubs.

Third, suppose that α ∈ T3. As in the previous case, 1 must be in a single-member
club and 2 is indifferent between being in a club with 3 or not. Because α3 < 1

2 ,
3 strictly prefers being in a two-member club to being in a single-member club.
Consequently, 2 and 3 form a club.

Fourth, suppose that α ∈ T4. Now, 1 is indifferent between a single-member club
and a club with one other member. If α2 >

1
2 , 2 chooses to be in a single-member

club. If α3 >
1
2 , so does 3, with the consequence that there are three clubs. If, instead,

α3 =
1
2 , the last tie-breaking rule also results in three clubs being chosen. If α2 =

1
2

and α3 > 1
2 , then both 1 and 2 are indifferent between a single-member club and

a club with one other member, whereas 3 prefers a single-member club. Individual
3’s choice is implemented, and then the final tie-breaking rule assigns 1 and 2 to
separate clubs. If, however, α1 = α2 = α3 =

1
2 , all three individuals are indifferent

between being in a single-member or a two-member club. Applying the final tie-
breaking rule also results in three separate clubs being chosen.

Finally, suppose that α ∈ T15∪T16. In this case, individuals 1 and 2 are indifferent
between being in a two-member or three-member club. Thus, the partitions 3 gets to
choose from are {{1,2,3}} and {{1,2},{3}}. As previously noted, 3 would choose
the former if α3 <

1
3 and the latter if α3 >

1
3 . If α3 =

1
3 , then 3 is indifferent between

these two partitions, in which case the final tie-breaking rule chooses {{1,2},{3}}.
With the allocation rule A, when an individual chooses, he leaves for further

consideration all of the partitions that he most prefers from among the partitions that
are still available when it is his turn to choose. If there is more than one partition
remaining after he chooses, this is only because he is indifferent between them. As
a consequence, A satisfies Strategy-Proofness and Pareto Optimality. Individual 1 is
a dictator, so A does not satisfy Nondictatorship. If α ∈ T7 and α3 >

1
2 , individual 3
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is assigned to the club {1,3}, but strictly prefers being on his own. Hence, A does
not satisfy Individual Rationality.

Examples 1, 2, and 3 show that the construction of strategy-proof rules satisfying
Pareto Optimality, Nondictatorship, and Individual Rationality is a nontrivial task.
This may seem to be inconsistent with the fact that Long (2019) has provided two
rules for choosing the membership of a single club that are (weakly group) strategy-
proof, Pareto optimal, and do not force anybody to join the club.8 However, in fact,
there is no inconsistency because, in contrast to Long, we require everybody be in
some club. To show why this matters, we consider her voting on ascending size rule
for choosing a single club’s size. We define an iterative version of this procedure
that partitions the individuals into clubs and show that it is not strategy-proof when
costs are shared equally.

Here is an informal description of Long’s voting rule. Starting with group size 1,
for each club size k ≥ 1 in turn, individuals vote on whether they prefer to be in a
club of that size or to remain on their own. For Long, this is a club of size 0. If more
than k individuals vote in favor of a club with k members, the procedure continues
with a vote for a club of size k+1 unless sufficiently many individuals according to
a priority ordering used to breaks ties over club membership prefer a smaller size.
However, in Long’s framework, only one club forms and individuals are allowed
not to join any club at all. In contrast, everyone must be in a club in our framework.
This turns out to be an important difference.

Our club partitioning rule employs an iterative version of Long’s voting proce-
dure in which, for each type vector, one club at a time selected. Because we do not
permit a club of size 0, voting in our case starts with club size k = 2 and individuals
are asked to vote on whether they prefer to be in a club of size k to one of size 1.

Before formally stating our rule, some further notation is needed. Let σ be a
fixed linear priority ordering on N, where iσ j denotes that i has higher priority than
j. For all α ∈ Rn

+ and all k ∈ {2, . . . ,n}, let ∆Nl ,k(α) be the set of individuals in
Nl ⊆ N who strictly prefer club size k to club size 1. If |∆Nl ,k(α)| ≥ k, let ∆̃ σ

Nl ,k
(α)

be the first k members of ∆Nl ,k(α) according to σ . For k = 1, let ∆̃ σ
Nl ,k

(α) be the first
person in Nl according to σ .

Iterative Voting on Ascending Size for the Priority Ordering σ . A club partition-
ing rule Pσ is Iterative Voting on Ascending Size for the Priority Ordering σ if for
all α ∈ Rn

+, Pσ (α) is obtained using the following two iterative algorithms.
Step l of the refinement algorithm determines the lth club Cl(α) in the parti-

tion Pσ (α) by applying the club size algorithm described below to the set of in-
dividuals Nl = N \ (∪l−1

q=1Cq(α)). The algorithm begins with l = 1 and terminates
when Cl(α) = Nl . For l ≥ 2, at the end of Step l− 1, N has been partitioned into
{C1(α), . . . ,Cl−1(α),Nl}. In Step l, this partition is refined by partitioning Nl into
one or two sets.
8 There is no explicit cost sharing rule. Cost sharing is implicit in the preferences over club size.
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The club size algorithm applied to the nonempty set of individuals Nl ⊆N identi-
fies the club Cl(α)⊆ Nl .9 In Step 1, if |Nl |= 1, set Cl(α) = ∆̃ σ

Nl ,k
(α) (which equals

Nl) and terminate the algorithm; otherwise proceed to Step k = 2. Step k for k ≥ 2
is defined by the following four cases.

Case 1 If |∆Nl ,k(α)|< k, stop and set Cl(α) = ∆̃ σ
Nl ,k

(α).
Case 2 If |∆Nl ,k(α)| ≥ k and at least |∆Nl ,k(α)|− k+1 individuals in ∆Nl ,k(α)∩

∆̃ σ
Nl ,k−1(α) strictly prefer club size k− 1 to size k, then stop and set Cl(α) =

∆̃ σ
Nl ,k−1(α).

Case 3 If |∆Nl ,k(α)|= k and nobody in ∆Nl ,k(α)∩ ∆̃ σ
Nl ,k−1(α) strictly prefers club

size k−1 to size k, then stop and set Cl(α) = ∆ σ
Nl ,k

(α).
Case 4 If |∆Nl ,k(α)|> k and fewer than |∆Nl ,k(α)|−k+1 individuals in ∆Nl ,k(α)∩

∆̃ σ
Nl ,k−1(α) strictly prefer club size k−1 to size k, then go to Step k+1.

In Example 4, we show that if there is equal cost sharing, then choosing club par-
titions using the iterative voting rule described above is not strategy-proof. Hence,
a natural extension of Long’s iterative voting rule for determining the membership
of a single club to the club partitioning problem does not preserve truth-telling as a
dominant strategy.

Example 4. Let N = {1,2,3,4} and suppose that there is equal cost-sharing. Iterative
voting on ascending size for the priority ordering σ given by 1σ2σ3σ4 is used to
determine the partition Pσ (α) for all α ∈R4

+. For individual i of type αi, let k�αi k′

denote that i strictly prefers club size k to k′.
Consider a type vector α ∈ R4

+ for which 2�α1 3�α1 1�α1 4 and 3�α j 2�α j

1�α j 4 for j 6= 1. The club size algorithm for identifying C1(α) terminates in Step
4. Case 1 applies, so the three individuals with the highest priority form the first
club. Hence, C1(α) = {1,2,3}. There is only one person remaining, so Pσ (α) is
completed with the club C2(α) = {4}.

Suppose that individual 4 instead reports a type α ′4 for which 2�α ′4
1�α ′4

3�α ′4
4. Let α ′ = (α1,α2,α3,α

′
4). With this type report, the club size algorithm for iden-

tifying C1(α
′) terminates in Step 3. Case 2 applies, so the two individuals with the

highest priority form the first club. Hence, C1(α
′) = {1,2}. The club size algorithm

is then repeated for N2 = {3,4}. It terminates in Step 2 with Case 3 applying, so
C2(α

′) = {3,4}, which completes the partition.
Because 2�α j 1, at α , individual 4 has an incentive to misreport his type as α ′4.

Hence, this allocation rule is not strategy-proof.

8 Concluding Remarks

We have shown that no allocation rule is strategy-proof and cost efficient when con-
gestion costs are strictly increasing in the type parameter, but that these properties

9 For a discussion of this algorithm, see Long (2019).
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are compatible if congestion costs are dichotomous. We have also shown that when
n = 3, it is possible to construct a strategy-proof allocation rules with equal cost
sharing that is Pareto optimal, nondictatorial, and individually rational when the
congestion cost is linear in the type parameter.

The are a number of possible extensions of our analysis that are worth explor-
ing. For example, it would be interesting to provide characterizations of all of the
allocation rules that satisfy Strategy-Proofness, Pareto optimality, Nondictatorship,
and Individually Rationality, both with and without the assumptions of equal cost
sharing and linear congestion costs. It would also be of interest to allow for the size
of a club good facility to be determined endogenously.
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