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Abstract

We exploit seasonal crop residue burning as a source of pollution and use exogenous year-
to-year variation in wind direction to estimate the impact of rural sources of air pollution
on crime in India. We find that short term pollution exposure leads to an increase in violent
crime, public order offenses, and most worringly, violent crimes against women. Estimates
suggest an unaccounted social cost of USD 600 million just from pollution exposure in
the rice harvest season. We explore three channels: (i) pollution induced aggression
and weakened impulse control, (ii) reduced visibility leading to poor deterrence, and (iii)
income distress from reduced earnings. Heterogeneity by crime type and spatial variation
in law enforcement capacity support these mechanisms. Our findings highlight the need to
account for issues of public safety and social instability in environmental and agricultural
policy in developing countries.
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1 Introduction

Air pollution persistently reaches dangerously high levels in many parts of the world, posing
severe risks to public health (Amann et al., 2013; Rentschler and Leonova, 2023). At the same
time, several regions around the world continue to experience social unrest manifested through
violent crime, civil disturbances, and armed conflicts (Institute for Economics & Peace, 2022;
Van Dijk et al., 2021). While air pollution is widely recognized for its health and productivity
costs, much less is known about the impact of rural pollution sources such as biomass burning
on public safety and social stability in low and middle income countries. Such downstream
externalities are especially concerning given that social instability and heightened criminal
activity are likely to disproportionately affect the most vulnerable populations, particularly

women and children in low-income settings (Deryugina et al., 2021).

In this paper, we study the causal effect of pollution on crime in India. We exploit a major
pollution source specific to rural agricultural regions: crop residue burning during the rice
harvest season. Using high resolution satellite data on particulate matter (PM 2.5) and district
level crime records, we estimate the impact of short term air pollution exposure on criminal
activity in downwind districts. Our identification strategy exploits year-to-year random wind
direction changes to determine which districts would be downwind and potentially exposed to

pollution from major rice producing areas during the rice harvest and residue burning season.

We first show that districts downwind of major rice producing regions exhibit elevated PM
2.5 levels during the rice harvesting season. We find that downwind exposure leads to a 1.8%
increase in overall crime rates. This increase is driven primarily by violent interpersonal crimes,
public disorder events such as arson and rioting, and crimes against women. We also observe
a rise in property crimes, while economic offenses, such as fraud and counterfeiting, remain
unaffected. Back-of-the-envelope calculations suggest that pollution exposure during the rice
harvest season generates an unaccounted social cost of approximately USD 600 million. These

results are robust across a range of specification checks.

To understand how pollution influences crime, we explore several plausible mechanisms.

First, pollution may increase aggression by impairing cognitive function and reducing impulse



control. Second, pollution reduces visibility due to haze, weakening deterrence, and enabling
opportunistic crimes in public spaces. Third, pollution, by depressing earnings, can create
economic distress and create incentives for property crime. We empirically test these channels
using heterogeneity by crime type, law enforcement capacity, and local income indicators. Our
findings show that stronger law enforcement infrastructure attenuates the pollution-crime link
for property crimes but not for violent crimes suggesting different underlying drivers. The

implication is that institutional deterrence may mediate some but not all channels.

Our findings contribute to two strands of the literature. First, we show that rural pollution
sources carry substantial social costs through their adverse effects on public safety and social
stability. While previous studies have demonstrated that short term urban pollution shocks
increase violent behavior in high income settings (Bondy et al., 2020; Burkhardt et al., 2019;
Herrnstadtetal., 2021), relatively little is known about the existence of such behavioral responses
in lower income contexts where the spatial and seasonal distribution of pollution sources differ
substantially. Among the few studies from developing countries, Ayesh (2023) shows that crop
residue burning increases crime in Pakistan, while Batkeyev and DeRemer (2023) find higher
crime elasticities with respect to PM 2.5 in Kazakhstan but no effects on violent crime. Li and
Meng (2023) find that air pollution increases social conflict in China. On the contrary, in the
context of Bihar, India, Singh and Visaria (2021) find that high pollution days reduce property

crimes by discouraging outdoor activities.

Second, we contribute to the literature examining the relationship between weather and
crime. While prior studies have documented that weather induced agricultural shocks can
influence criminal activity (Blakeslee et al., 2021; Blakeslee and Fishman, 2018; Mehlum
et al., 2006; Miguel, 2005), we extend this literature by highlighting a novel link between
weather, agricultural practices, and crime, mediated by wind-driven pollution exposure. This
link emphasizes the role of environmental spillovers across space where pollution generated by

agricultural burning in one region can affect criminal behavior in distant downwind areas.

Relatedly, we contribute to the literature on the gendered impacts of environmental factors

by documenting that pollution exposure also leads to an increase in crimes against women.



A growing body of evidence suggests that extreme environmental conditions can increase
gendered crimes directly by increasing psychological stress and aggression, and indirectly by
imposing economic strain through income shocks particularly in informal or rural agriculture-
dependent contexts (Blakeslee and Fishman, 2018; Burke et al., 2015; Iyer and Topalova, 2014;
Sekhri and Storeygard, 2014). We add to this literature by identifying air pollution as a salient

environmental risk factor with gendered consequences.

While our empirical context is India, the challenges of excessive agricultural specialization
and crop residue management are global (Lin and Begho, 2022). Many countries implement
agricultural support programs targeted at reducing income volatility and rural poverty (Ander-
son et al., 2013). An unintended consequence is that large volumes of agricultural residue
are generated annually, and in the absence of alternatives, open burning remains a common
practice (Liu et al., 2021). This is a critical policy issue as major economies devote substantial
public resources to agriculture while often ignoring the environmental and social externalities

associated with these support programs (Anderson et al., 2013).

2 Background and Context

Studies find that elevated levels of pollution, such as PM 2.5 and ozone, can lead to a rise in
aggression driven crimes (Bondy et al., 2020; Burkhardt et al., 2019; Herrnstadt et al., 2021).
The underlying mechanism is found in the medical literature, which documents that air pollution
impairs cognitive function, alters serotonin levels, and increases physiological stress, all of which
can elevate aggression and reduce impulse control. Exposure to air pollution has been shown to
affect serotonin pathways linked to aggression (Coccaro et al., 2011; Gonzdlez-Guevara et al.,
2014; Murphy et al., 2013), reduce frustration tolerance (Anderson and Bushman, 2002; Rotton,
1983), and contribute to symptoms such as lethargy, fatigue, and headaches (Winquist et al.,
2012). Pollution exposure may also lead to neuroinflammation and elevated stress responses

(Levesque et al., 2011; Rammal et al., 2008).

However, these studies largely focus on urban contexts in high-income countries. Much



less is known about how rural pollution sources, such as crop residue burning, may influence
crime and public safety in developing countries. This is particularly important because rural
air pollution can reach distant downwind areas, is seasonally concentrated, and often directly

linked to policy choices in agriculture.

In India, subsidies and price support policies have led to excessive specialization in rice
and wheat cultivation (Liu et al., 2021). While price supports have existed in India since the
colonial period, they were used in a major way to incentivize farmers to adopt new high-yielding
varieties in the 1970s to achieve national food security (Saini and Gulati, 2016). Although these

objectives were achieved long ago, the incentives still remain (Liu et al., 2021).

Rice and wheat alone account for nearly 30% of global food consumption, and India ranks
as the world’s second largest producer after China (Rada, 2016). Yet India’s agricultural intensi-
fication, originally intended to achieve food security, now generates environmental externalities
with widespread spillover effects (Negi, 2024). The result is excessive rice cultivation and large

volumes of agricultural residue during the harvest season (Gottipati et al., 2021).

Due to labor constraints, farmers increasingly rely on mechanized harvesting followed by
residue burning to rapidly clear fields for the next crop (Shyamsundar et al., 2019). Approxi-
mately 63.6% of crop residues are burned annually with Punjab and Haryana being the major
contributors (Gupta and Dadlani, 2012; Hill et al., 2024; Parihar et al., 2023; Singh et al.,
2021). This widespread practice triggers sharp seasonal spikes in particulate matter (PM 2.5)
leading to some of the worst air quality episodes observed across Northern India (Cusworth
et al., 2018). Studies estimate that open residue burning contributes nearly half of regional PM
2.5 concentrations and accounts for 40-65% of the annual elemental and organic carbon levels

(Jiang et al., 2024; Mehmood et al., 2022).



3 Data and Summary Statistics

3.1 Data
3.1.1 Crime data

We source crime data from the Socio Economic Database of the Centre for Economic Data and
Analysis (CEDA) at Ashoka University (CEDA, 2023). This data is collated by CEDA from the
annual reports of the National Crime Records Bureau (NCRB). The NCRB annually aggregates
data from the State Crime Records Bureau. The NCRB publishes this district level aggregated
data under the "Crimes in India" report annually. The CEDA crime data aggregates and matches
NCRB crime data to the 2011 Census district boundaries and is available up to 2020. Crimes are
recorded either under the Indian Penal Code (IPC) or Special and Local Laws (SLL), where the
former includes serious offenses such as rape, murder, arson, and dacoity, and the latter relates
to violations of specific legal provisions prohibiting certain social practices. We specifically
focus on the district level IPC crime rate (number of crimes per 100,000 population), which is

calculated based on the mid year population projections of each state.

Crimes are classified into broad categories. Violent interpersonal crimes include murder,
assault, and kidnapping. Property crimes cover robbery, burglary, and theft. Economic crimes
include breach of trust, cheating, and counterfeiting. Crimes against public order include rioting
and arson. Finally, crimes against women cover rape, sexual harassment, dowry deaths, cruelty
by the husband or relatives, and assault on women. We will follow this classification in our

analysis.

3.1.2 Weather data

We extract weather data from ERAS, the fifth generation reanalysis dataset produced by the
European Center for Medium Range Weather Forecasts which covers the period from 1940
to the present (Mufioz Sabater et al., 2021). The ERAS provides daily estimates of multiple

atmospheric variables and is updated daily. The dataset is available at a 0.25 degree latitude



and longitude grid. We primarily use data on wind, temperature, and precipitation. We use
10-meter U and V wind components. The U-component represents the East-West (horizontal
axis) movement while the V-component represents the North-South (vertical axis) movement
of wind at 10 meters above the Earth’s surface. These components can be combined to derive

wind speed and direction.

3.1.3 Fire and pollution data

We extract PM 2.5 data from the Atmospheric Composition Analysis Group (ACAG) at Wash-
ington University in St. Louis (Van Donkelaar et al., 2021). ACAG provides monthly ground
level fine particulate matter (PM 2.5) for the period 1998-2023 based on NASA’s satellite in-
struments. These estimates are calibrated using actual ground based measurements. This data

is available at a relatively high spatial resolution of 0.01 degrees latitude and longitude grid.

We extract time and geo coded active biomass fire data from NASA’s Fire Information
for Resource Management System (FIRMS) which is available from 2000 to 2022 (NASA,
2023). FIRMS detects thermal anomalies or active fires within 1 km pixels using satellite
measurements based on the Moderate Resolution Imaging Spectroradiometer (MODIS) Fire
and Thermal Anomalies algorithm. This dataset provides pixel level information on fire events
and also categorizes them as vegetation fires, active volcanoes, other static land sources, or
offshore fires. FIRMS also provides a confidence score for each detected fire event which
ranges from 0 to 100%. We focus only on vegetation based fires and exclude data points that

are assigned a confidence level of zero.

3.1.4 Other data

We also use data on district-level average nightlight intensity and agricultural production.
The nightlight data comes from the Socioeconomic High Resolution Rural Urban Geographic
Platform for India (SHRUG) (Asher et al., 2021). SHRUG provides aggregated and gridded
night light intensity data for the period 2000-2020 which we use as a proxy for economic

activity. We collect district-level seasonal crop-wise cultivated area and production from



the International Crop Research Institute for Semi-Arid Tropics and Tata Cornell Institute’s
(ICRISAT-TCI) district-level data for India (ICRISAT-TCI, 2023). This database is compiled

from official government sources and covers the period from 1990 to 2019.

The visibility data is sourced from the Integrated Surface Hourly dataset of the National
Oceanic and Atmospheric Administration (NOAA). NOAA provides global daily visibility data
from 1929 to the present for around 9000 geo-coded weather stations. Visibility is defined as
the horizontal distance at which an object can be seen and identified from a height of 2 meters.

We use these observations to calculate average monthly visibility at the district level for India.

We also compile data on the number of police stations across districts by scraping mul-
tiple official government sources, including state statistical abstracts, district profiles, district
statistical handbooks, and States at a Glance reports. Due to limited data availability, we were
unable to compile historical records of police stations at the district level. However, such data
is available for more recent years. We therefore construct measures of police station density for

the endline years of 2019 and 2020.

3.1.5 Dataset and variable construction

We use the 2011 district boundaries to construct the district monthly count of fire events and
average monthly PM 2.5 levels for the entire period. We construct monthly district temperature
and precipitation measures in a similar fashion. Based on data availability and consistency
across different data sources, we retain data on 532 districts across 19 major Indian states over

a 20 year period from 2001 to 2020.

To identify the primary sources of winter air pollution caused by seasonal crop fires, we
first determine the top rice producing districts by calculating their average total Kharif season
(June to October) rice production from 2001 to 2019.! We rank districts by their average annual
rice production from 2001 to 2019 and classify the top 25% as primary rice producers. This
results in 135 districts being identified as top rice producers and the source of crop residue

burning-based air pollution.

I'The seasonal crop production data is available for that time frame only.



We construct a dyadic dataset by pairing each of these 135 top rice producing districts
with every other district in the sample for each year. We also compute the linear distance
between each district pair. We then use the average monthly U and V wind components and
the geographic location of districts relative to the major rice producers to identify the districts

downwind of pollution sources.

3.2 Summary Statistics

Since our focus is on rice residue burning during October, November, and December, we focus
on rice cultivation in the main rice growing season. The Kharif season typically spans June
to October and aligns with the South Western monsoon. Rice is one of the main crops of the

2

Kharif season.” Rice sowing begins with the onset of monsoon rains around June and July,

while harvesting occurs between September and October.

We begin by examining the spatial distribution of rice production across India. To do so,
we first calculate the average district-level Kharif rice production from 2001 to 2019. Appendix
Figure Ala plots the average rice production at the district level. Rice cultivation is widespread
across the country with production concentrated in the Northern states of Punjab, Haryana, and
Uttar Pradesh. The South Eastern region and several districts along the Eastern coastal belt also

cultivate rice during the Kharif season.

Based on the average rice production patterns, Appendix Figure Alb highlights the top
25% rice-producing districts, which we identify as the primary source of crop residue burning.
To verify whether these districts are the main contributors to biomass burning, Figure la plots
the average monthly fire events in both the top rice producing and other districts. Coinciding
with the Kharif rice harvest, we observe a sharp rise in fire activity in the top rice producing
districts during October, November, and December. Moreover, Figure 1b shows that the average

PM 2.5 levels are also elevated during these months.

We conjecture that pollution exposure from rice residue burning will essentially depend on

2While some rice is also cultivated in the winter (Rabi) season, around three-quarters of the rice is produced
in the monsoon season.



Figure 1: Seasonal Variation in Fires and Air Pollution
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Notes: Monthly averages for 2001 to 2020 with 95% confidence intervals. These figures are based on
district monthly averages.

wind direction from top rice producers to downwind areas. Hence, wind patterns play a crucial
role in our empirical framework. Appendix Figure A2 visualizes wind vectors as red arrows
originating from rice producing districts during October, November, and December for 2001,
2010, and 2020 respectively. In the rice growing regions of North Western and North Eastern
India, winds predominantly flow Eastward, whereas in Central and Western regions, they tend
to move Southward or Westward. In the Southern districts, winds primarily flow seaward. More

importantly, Figure 2 shows that there is substantial variation in wind direction patterns and the

likelihood of being downwind of the pollution sources.

Figure 2: Proportion of Downwind Districts Based on Wind Direction in Winter Months
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Notes: A district is coded as downwind if it was downwind of a rice-producing district in any of

the three months of October, November, or December. Vertical lines indicate 95% confidence
intervals.

Table 1 presents summary statistics of key variables for top rice producing districts and

10




Table 1: Summary Statistics

ey @
Others Top rice producers
Mean SD N Mean SD N
Violent interpersonal crimes (per 100000 individuals) 46.74  34.65 1035686 40.79  25.65 341943
Property crimes (per 100000 individuals) 32.02  30.82 1035686 26.29 19.83 341943
Crime against women (per 100000 individuals) 16.19 1233 1035686  12.46 9.41 341943
Economic crimes (per 100000 individuals) 7.19 7.49 1035686 6.95 5.46 341943
Crimes against public order (per 100000 individuals) 7.05 9.37 1035686 3.57 3.51 341943
Total crimes (per 100000 individuals) 109.19  65.23 1035686  90.05 47.47 341943
Downwind dummy 0.36 0.48 1061280 0.33 0.47 356440
Wind speed Oct-Dec (meters/second) 0.98 0.43 1053240 1.13 0.42 353780
Temperature Oct-Dec (kelvin) 288.23 5.10 1053240 289.23 3.04 353780
Rainfall Oct-Dec (meters) 0.13 0.18 1053240 0.17 0.22 353780
Nightlight intensity index 6.39 6.71 1061280 7.50 4.48 356440
Distance (kilometers) 1006.58 523.62 1061280 935.40 560.42 356440
Rice production kharif (000 tons) 35.05 38.41 1061280 336.86 188.56 356440
Fire events Oct-Dec 2.25 6.56 1061280 39.29 101.52 356440
PM 2.5 % Oct-Dec 62.42 3895 1061280 81.25 46.75 356440
Dummy for PM 2.5 > 1 SD mean 0.16 0.36 1061280 0.16 0.36 356440
Police station (100000 people) 1.20 1.05 1055920 0.96 0.49 356440
Dummy for police station density > 1 SD mean 0.08 0.28 1055920 0.03 0.17 356440

other districts in our dataset. We find that overall crime rates are slightly higher in other districts
with an average of 109 crimes per hundred thousand individuals compared to 90 in top rice
producing districts. However, average weather conditions during the winter months are similar
across both groups. Nightlight intensity is slightly higher in top rice producing districts. Fire
activity is 20 times greater in the rice producing districts yet PM 2.5 levels are only marginally
higher. This suggests that pollution from crop residue burning may be dispersed by wind
affecting air quality in surrounding areas beyond the immediate source. In comparison to rice

producing districts, police station density is also slightly higher in downwind districts.

4 Empirical Framework

As observed earlier, top rice producing districts exhibit very high biomass based fire activity
during the harvest months of October, November, and December. Since multiple districts act as
pollution sources, any given district can be downwind of one or more sources. Moreover, source
districts can themselves be downwind of other sources. Conceptually, we can think of the top

rice producers as the origin and senders of pollution, and the downwind districts as receivers.

11



Wind direction essentially acts as the mechanism by which air pollution is transported from
senders to receivers. To empirically model this wind mediated sender-receiver relationship, we

estimate the following specification using the dyadic panel:

Yi(j)t = 51 Downwindij, + Xi(j)t,Bl + i + Mjt + €jt (1)

where Y;( ), either represents the PM 2.5 levels or the crime rates in downwind district i in
year ¢t. The subscript () indicates that outcome Y for a downwind district i will be repeated
j times each year to form pairs with the j source districts.> The variable Downwind, ALK
dummy that equals one if district i is downwind of source district j in either October, November
or December for year . Note that, i # j implying that a downwind district i will always be

distinct from the upwind source district j.

We include the district pair fixed effects, a;;, to control for time-invariant differences in
district pairs. We also include rice producing district-specific year fixed effects, u;, to account
for factors such as weather variations, differential trends, and macroeconomic policy changes

in the origin districts that could influence rice production, fire activity, and pollution levels.

Vector X has weather related controls, including precipitation, temperature, and wind
speed, to account for environmental conditions that may affect both pollution exposure and
criminal activity in the downwind districts. Vector X also includes nightlight intensity for
downwind districts to control for changes in economic activity which could simultaneously

impact air pollution levels and crime rates.

Our key coefficient of interest is 67 which captures the average effect of being downwind
of a pollution source district on crime in district i. We hypothesize that if being downwind of
a top rice producing district increases exposure to crop residue based PM 2.5 and subsequently

drives crime, then 61 > 0.

To explore whether better law enforcement infrastructure moderates the pollution induced

criminal activity, we extend our previous specification by interacting the Downwind indicator

3Standard errors will be clustered at j level to account for this repetition.
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with a measure of law enforcement infrastructure available in the downwind district. We
estimate:
Y;(j): = 62 Downwind;j; + 62 Police; X Downwind,

)

+ Xi()Be + @ij + Wji + Eiji

Where Police; is an indicator equal to one if the police station density per person in
downwind district i is greater than one standard deviation of the mean density across downwind
districts. The coeflicient 8, captures heterogeneity in the pollution-crime relationship based on
policing capacity. If greater policing capacity mitigates the effect of pollution on crime, then

we expect 6, < 0.

To account for potential differences in underlying crime trends between districts with
varying levels of policing capacity, we also include the interactions between high police density
dummy and year dummies as controls. This helps ensure that the estimated coefficient 6,

captures only the mediating role of policing capacity, rather than picking up spurious trends.

Given the structure of our data, we report two-way clustered standard errors at both the
origin (j) and destination (7) district group levels. Clustering at the origin group accounts for
spatial and general correlation inherent in the dyadic nature of the data, and clustering at the
destination district level accounts for serial correlation and heteroscedasticity in the destination

district time series.

5 Results

5.1 Rice production and downwind pollution

We begin by looking at the relationship between air pollution levels in districts located downwind
of major rice producing areas. Figure 3a presents the estimated coefficients from equation (1)
using standardized PM 2.5 levels as the dependent variable. The coefficients are estimated from

sub samples that vary based on the distance between the pollution source and the downwind
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district (see Appendix Table A1 for estimates).

Figure 3: Air Pollution in Downwind Districts
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Notes: The figures display estimated coeflicients from separate regressions on the downwind dummy for
district sub-samples located between 100 and 2,900 kilometers from the top rice-producing districts. In
Figure 3a, the dependent variable is standardized PM 2.5 levels. In Figure 3b, the dependent variable
is a binary indicator equal to one if a district’s annual PM 2.5 level exceeds its mean by one standard
deviation, capturing extreme positive deviations. All regressions include district-pair fixed effects and top
rice-producing district-by-year fixed effects. 95% confidence intervals are based on standard errors clustered
by both downwind and top rice-producing districts.

For subsamples within 500 kilometers of the source districts, we find a positive but
statistically insignificant coeflicient estimate. However, the estimate rises to 0.09 around the
900 to 1000 kilometer band before declining. In terms of magnitude, around the 900-kilometer

distance band, downwind districts experience an increase of 4 ng/m? (or a 5% increase) in

winter PM 2.5 levels.

Figure 3b shows a similar pattern where the dependent variable is an indicator for PM 2.5
levels going above one standard deviation of the district mean. The probability of experiencing
extremely high PM 2.5 levels peaks at approximately 4-5% around the 900-1000 kilometer
band before declining. This pattern suggests that while pollution levels are higher in downwind

4 Given that the downwind

districts, pollution exposure downwind declines with distance.
pollution exposure is highest at the 900 kilometer band, we will present estimates for districts

within 900 kilometers of the top rice producers.

“As the distance between a source district and a downwind district increases, potential exposure from that
specific source declines. However, we observe that the probability of being downwind of other source districts
increases with distance, peaking at around 900 kilometers.

14



5.2 Criminal activity in downwind districts

Having established that being downwind of the rice production regions does increase PM 2.5
levels, we move on to explore the impact of downwind pollution exposure on criminal activity in
downwind districts. Table 2 presents the estimates of equation (1) for different crime categories
and overall crime rates.

Table 2: Crimes in Downwind Districts

Crime rate per 100000 individuals

)] @) 3 “ () (6)
Violance Property Economic Women Public Total
Downwind 0.81%* 0.59*** -0.07 0.21** 0.31%** 1.85%*
(0.30) (0.14) (0.06) (0.09) (0.08) (0.38)
Windspeed 1.65 —-1.52* 0.97** -0.34 —0.94*** -0.18
(2.22) (0.87) (0.39) (0.49) (0.35) (2.61)
Temperature -0.27 -0.61** 0.60*** 0.05 —0.32%** -0.55
(0.56) (0.25) (0.09) (0.13) (0.08) (0.70)
Rainfall —5.75** 1.83 -1.39"* 0.22 -0.14 -5.22
(2.59) (1.33) (0.50) (0.74) (0.57) (3.70)
Nightlight 1.22%* 1.00*** 0.04 0.13** 0.07** 2457
(0.25) (0.29) (0.05) (0.06) (0.03) (0.37)
Observations 654200 654200 654200 654200 654200 654200
Mean of Dep. Var. 45.18 31.00 6.93 15.27 5.65 104.03

Notes: All regressions include district-pair fixed effects and top rice-producing district-by-year fixed effects. Each column reports

estimates from a separate regression. The sample is restricted to downwind districts located within 900 kilometers of the top rice-

producing districts. Standard errors, clustered by both downwind district and top rice-producing district, are reported in parentheses.

*#k % and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

We find that being downwind leads to an additional 1.9 crimes per 100,000 individuals.
In terms of numbers, this translates into approximately 24000 to 26000 additional crimes in
2020.> This effect appears to be primarily driven by increases in violent and property crimes.
Additionally, we observe a higher incidence of crimes against women and public order offenses

such as arson and rioting. In percentage terms, the largest increase is observed for public order

offenses.

Based on our estimates, we do back-of-the-envelope calculations to approximate the eco-
nomic costs of increased criminal activity. Estimates of economic costs per crime are not
readily available for India. To approximate this figure, we draw on estimates from the Institute
for Economics and Peace, which report that India lost approximately 6% of its annual GDP to
violence and crime in 2022 (Institute for Economics & Peace, 2022; Raj and Kalluru, 2023).

Based on this estimate, we calculate the average annual cost per crime to be approximately USD

> According to World Bank projections, India’s population would be around 1.4 billion people in 2020.
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25000. Total additional crimes (assuming 24000) due to being downwind times cost per crime

(USD 25000) gives us a number of USD 600 million.

5.3 Downwind districts and types of criminal activity

While we do see an increase in overall criminal activity in the downwind districts, we now
explore the effects by individual crimes. Table 3 panel A shows the estimated effects by
individual crimes within the property crime category. We observe an increase in burglaries
and thefts in downwind districts. In terms of magnitude, thefts increase by around 1.6% and
burglaries increase by around 3%.

Table 3: Pollution and Type of Crimes in Downwind Districts

Panel A. Property crimes per 100000 individuals

Y] 2 3) )
Burglary Dacoity Robbery Theft
Downwind 0.24%** -0.01** 0.00 0.35%*
(0.06) (0.00) (0.01) (0.11)
Observations 654200 654200 654200 654200
Mean of Dep. Var. 7.11 0.38 1.72 21.77

Panel B. Public and economic crimes per 100000 individuals

€] 2 3 “ ®)

Arson Riots Cheating Counterfeiting ~ Breach of trust
Downwind 0.07*** 0.24** —-0.05 —-0.00** -0.01
(0.03) (0.06) (0.05) (0.00) (0.01)
Observations 654200 654200 654200 654200 654200
Mean of Dep. Var. 0.85 4.79 5.78 0.10 1.06

Panel C. Crime against women per 100000 individuals

(€] (@) 3 “ (&)

Assult Cruelty by husband =~ Dowry deaths Insult Rape
Downwind 0.20"** -0.03 0.01* -0.02 0.05**
(0.05) (0.04) (0.00) (0.01) (0.02)
Observations 654200 654200 654200 654200 654200
Mean of Dep. Var. 5.09 6.27 0.73 0.69 2.50

Panel D. Violent crimes per 100000 individuals
M (@) 3 “ ) 6

Murder attempt ~ Culpable homicide  Death by negligence Hurt Kidnapping Murder
Downwind 0.11% -0.01"** 0.07* 0.55* 0.10"** -0.00
(0.03) (0.00) (0.04) (0.30) (0.03) (0.01)
Observations 654200 654200 654200 654200 654200 654200
Mean of Dep. Var. 3.05 0.31 7.97 26.91 3.98 2.97

Notes: All regressions include district-pair fixed effects, top rice-producing district-by-year fixed effects, weather
controls, and nightlight intensity. Each column reports estimates from a separate regression. The sample is
restricted to downwind districts located within 900 kilometers of the top rice-producing districts. Standard errors,
clustered by both downwind district and top rice-producing district, are reported in parentheses. ***, ** and *
denote statistical significance at the 1%, 5%, and 10% levels, respectively.

We also explore whether downwind districts experience more crimes related to public

disorder in Table 3 panel B. Consistent with the aggression mechanism, we observe that
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downwind districts show a greater rate of arson and rioting. In terms of magnitude, arson rates

increase by about 8% and rioting incidence rises by around 5%.

A novel feature of our data is that we can specifically look at crimes against women. Table
3 panel C shows the estimates for individual categories of crimes committed where the victim
was a woman. Again consistent with the aggression channel, we observe higher rates of assaults

involving women and rapes.

Finally, we also explore the influence of pollution exposure on subcategories within violent
crimes. We observe a statistically significant increase in murder attempts and kidnappings in
the downwind districts (Table 3 panel D). The aggression channel appears to be the potential
mechanism as we observe a decline in culpable homicides where the perpetrator did not intend
to kill the victim, but a rise in actual attempted murder cases and kidnappings. A similar pattern

is also reported by (Herrnstadt et al., 2021) for crimes in Chicago.

6 Potential Mechanisms

Our findings align closely with the growing body of evidence linking short-term pollution
exposure to increased criminal activity, particularly crimes driven by aggression. The observed
rise in violent crimes such as assaults on women, rape and murder attempts, and kidnappings
is consistent with the aggression channel emphasized in Burkhardt et al. (2019), Herrnstadt
et al. (2021), and Ayesh (2023), all of which document stronger effects of pollution on violent
offenses relative to property crimes. Our findings on increased arson and rioting also reinforce
this behavioral mechanism. In contrast, we find no significant effect on crimes such as cheating,

counterfeiting, and breach of trust, which are generally planned and opportunistic.

While the physiological and psychological effects of PM 2.5 exposure have been associated
with increased aggression and criminal behavior, what can possibly explain the positive effects
on burglary and theft? While there is some evidence that pollution may also elevate property
crimes in certain settings (Ayesh, 2023; Bondy et al., 2020), the underlying mechanisms remain

less well understood.
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One potential mechanism is that pollution exposure may induce criminal behavior through
its adverse effects on livelihoods and earnings. Poor air quality can reduce agricultural produc-
tivity and temporarily depress labor market participation or worker productivity, particularly in
outdoor and informal occupations (see, for example, Chang et al. (2016); Graff Zivin and Nei-
dell (2012)). Prior research has also shown that weather induced income shocks can influence
criminal activity in poor lower income settings (e.g., Blakeslee and Fishman (2018)). These
disruptions can generate economic distress, which in turn can increase the incidence of theft

and property crimes.

To test these possibilities, we check whether the downwind indicator is correlated with
measures of agricultural performance, including crop yields, total agricultural production, and
incomes. Appendix Table A4 presents the results. We do not find evidence that downwind
pollution exposure significantly affects agricultural production or crop yields indicating no
disruption to farm based livelihoods. However, we do find a statistically significant decline in
income from services in districts exposed to downwind pollution (Appendix Table A4 column
5). This pattern is consistent with reduced labor market participation and earnings driven either
by deteriorating air quality or heightened perceptions of public insecurity. While empirically
disentangling the contribution of these two factors is difficult, we cannot rule out the additional
indirect channel of economic distress due to reduced earnings in non-agricultural occupations

linking pollution exposure and crime.

We discuss the heterogeneity results based on police infrastructure here, as they provide
insights into potential mechanisms underlying the observed effects. Table 4 shows that better
law enforcement infrastructure mitigates the impact of downwind pollution exposure on only
property crimes. In fact, the magnitude of the coeflicient suggests that in districts with high
police station density, downwind exposure has no significant effect on property crime rates.
These estimates are consistent with the argument that property crimes are typically premeditated
rather than impulsive, and a stronger police presence may serve as a deterrent to such offenses.
The evidence suggests that violent crimes, which are often more impulsive in nature and
potentially triggered by pollution induced cognitive impairment, may not be effectively deterred

by better law enforcement infrastructure.
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Table 4: Police Infrastructure and Crimes in Downwind Districts

Crime rate per 100000 individuals

6] (@) 3 “ (&) (6)
Violance Property Economic Women Public Total

Downwind 0.79* 0.61"** -0.07 0.21* 0.28™* 1.82%*

(0.32) (0.15) (0.06) (0.09) (0.07) (0.40)
Downwind x Police 0.20 —0.84"* -0.04 -0.15 0.40 -0.43

(0.88) (0.32) (0.18) (0.17) (0.55) (1.04)
Observations 652900 652900 652900 652900 652900 652900
Mean of Dep. Var. 45.22 31.01 6.94 15.29 5.65 104.11

Notes: All regressions include district-pair fixed effects, top rice-producing district-by-year fixed effects, weather controls, and
nightlight intensity. Police is a dummy equal to 1 when police-station density in a district exceeds one standard deviation above
the mean. Regressions also include year dummies interacted with the police-density dummy. Each column reports results from a
separate regression. The sample is limited to downwind districts located within 900 kilometers of the top rice-producing districts.
Standard errors, clustered on both downwind district and top rice-producing district, are shown in parentheses. ***, ** and * indicate
significance at the 1%, 5%, and 10% levels, respectively.

Research has shown that individuals with low self-control are more likely to engage in
violent crimes (Pratt and Cullen, 2000). In contrast, property crimes appear to be more
influenced by deterrence mechanisms. For instance, Di Tella and Schargrodsky (2004) and
Klick and Tabarrok (2005) demonstrate that increased police deployment significantly reduces
theft and other property crimes, but not violent crimes. Marvell and Moody (1996) similarly
report substantial declines in offenses such as larceny and auto theft, while noting limited effects
on assault. To the extent that pollution exposure leads to impulsive behavior, these findings
align well with existing evidence showing that police presence generally reduces non violent

and property crimes, but has limited effectiveness in reducing impulsive or violent offenses.

Another possible facilitator could be visibility. Smoke from crop residue burning is also
known to generate haze and significantly reduce visibility (Ravindra et al., 2021). Smog and
haze, by impairing human and CCTV surveillance, can create ideal conditions for property
crimes like theft and burglary. In low-income settings like India, where incentives for burglary
and theft are persistently high, reduced visibility can act as additional motivation for committing
crimes. Evidence suggests that visibility is an important determinant of criminal activity (Jacob
et al., 2007; Tompson and Bowers, 2015). Reduced visibility can decrease the likelihood of
detection, as fewer people may be present to serve as potential witnesses (Tompson and Bowers,
2013, 2015). We observe that average visibility during the three winter months decreases by
3% in downwind districts at the 900-kilometer distance band (Appendix Figure A3). These

estimates account for other weather controls, including rainfall, temperature, and wind speed.
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7 Robustness Tests

Appendix Table A2 presents estimates from equation (1) that include indicator variables for
both downwind and upwind districts. The upwind indicator is constructed analogously to the
downwind indicator but equals one for districts located upwind from major pollution source
regions. If exposure to burnt crop residue pollution is the primary mechanism driving increases
in crime, we should observe effects only in downwind districts, where pollutants are carried over
by prevailing winds. However, no effects should be observed in upwind districts. Consistent
with this prediction, Appendix Table A2 shows that the coefficients on the upwind indicator
are generally statistically insignificant or of the opposite sign. Although we find a positive
coefficient for economic crimes, these offenses are not significantly associated with being
downwind, suggesting that the result is likely driven by other factors. The absence of positive
effects in upwind districts supports the mechanism that pollution exposure from crop burning

elevates crime rates only in downwind areas.

A potential concern with our identification strategy is that pollution from sources other
than crop residue burning may also contribute to elevated crime rates in downwind areas.
However, baseline characteristics of major rice producing districts relative to other districts
suggest that this is unlikely. Top rice producing districts are more reliant on agriculture, with
a larger share of district income derived from agricultural activities, and are less industrialized
with industrial output accounting for only 26% of district GDP compared to around 30% in
other districts. To further address this concern, we conduct a placebo test using a downwind
indicator constructed for the months of June, July, and August. These months correspond to
the sowing and growing season of paddy during which crop residue burning is negligible (as
shown in Figure 1a). Appendix Table A3 presents the results of this placebo test. Consistent
with expectations, the coefficients on the summer downwind indicator are mostly negative and
statistically insignificant, providing additional support for the interpretation that the observed
crime effects are driven specifically by pollution from crop residue burning during the harvest

season.

We also conduct sensitivity checks by varying the procedure used to identify downwind
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districts. In our baseline specification, districts are classified as downwind if they lie within a
30 degrees angular range relative to the source district’s wind direction. To test the robustness
of our results to this threshold, we vary the downwind angle used to define downwind exposure.
Appendix Table AS reports the results from these alternative specifications. Our results remain

consistent across different downwind definitions, further validating our empirical strategy.

We include rice producing districts as potential downwind districts in our main dataset.
Since these districts are both sources of pollution and can themselves be downwind of other
source districts, their inclusion may affect the estimates. To assess the robustness of our
findings, we re-estimate the regressions after excluding rice producing districts from the dyads.
The results, reported in Appendix Table A6, are very close to our original estimates, suggesting

that our main findings are not driven by the inclusion of rice producing districts.

Our main downwind variable is constructed as an indicator variable which may not capture
the extent or duration of a district being downwind. To address this, we construct a continuous
version of the downwind variable that measures the number of days a district was downwind
of the source districts during October, November, and December. We use daily U and V wind
vector data to determine whether a district was downwind of the top rice-producing districts
on each day during October, November, and December. We then count the total number of
downwind days for each district over the three months and calculate the proportion of downwind

days in October, November, and December.

Given that the day based downwind variable also captures exposure at the intensive margin,
we re-estimate our main regressions without the distance restriction. The results presented in
Table A7 are broadly consistent with our earlier findings. However, the estimated coefficients
for crimes against women and public order offenses are not statistically significant in this
specification. In Panel B of Table A7, we present estimates that include a quadratic specification
of the downwind variable. The results indicate that while the linear term of the downwind
variable remains mostly positive but statistically insignificant, the squared term is positive
and statistically significant for most outcomes suggesting a nonlinear relationship. For crimes

against women, the coefficient on the squared term is positive and weakly significant.
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8 Conclusion

In this paper, we study the causal link between seasonal crop residue burning, resultant air
pollution, and criminal activity. The setting is India, widely known to have a policy supported
cereal centric cultivation system. Crop residue management is a major problem, and seasonal
crop fires and resultant spikes in air pollution are recurring phenomena. In the larger policy
relevant context of price support to agriculture, the question we ask is whether crop residue

burning can have the additional social cost of heightened criminal activity.

Our results show that districts downwind of major rice producing regions experience higher
PM 2.5 levels during the rice harvesting season. This pollution increase is associated with a
1.8% rise in overall crimes. Back-of-the-envelope calculations suggest an unaccounted social

cost of approximately USD 600 million just from pollution exposure in the rice harvest season.

A more concerning finding is that downwind pollution exposure also leads to an increase
in violent crimes against women. This finding carries broader implications for understanding
the constraints on women’s economic and social participation. While academic discussions on
low female workforce participation often focus on factors like marriage, childcare, and gender
norms, our findings suggest that rising pollution itself may discourage women from leaving
their homes not only due to health concerns but also because it may contribute to a more unsafe

and violent social environment.

Our results support the suggestion to shift the focus of environmental interventions from
targeting the most polluted areas to prioritizing the most vulnerable populations, who may
suffer disproportionately from pollution exposure. The evidence also highlights the importance
of integrating environmental quality into policy discussions on safety, gender equality, and

women’s empowerment.
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Appendix

Figure A1: Spatial Distribution of Top Rice Producing Districts
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Notes: Panel (a) shows the spatial distribution of average rice production in districts from 2001 to 2019,
considering only Kharif (monsoon) season. Panel (b) highlights the top 25% rice-producing districts
based on average Kharif rice production.
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Figure A2: Wind Vectors in Top Rice Producers During Winter Months
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is proportional to wind speed. Vectors are based on average monthly U and V wind components for

winter months.

28



Figure A3: Visibility in Downwind Districts

Estimated coefficient
0
Il
+

100 500 900 1300 1700 2100 2500 2900
Distance (km)
Notes: The dependent variable is average visibility (in meters) during October—December. Coefficients
are from regressions on the downwind dummy across distance bands (100-2,900 km). All regressions
include district-pair fixed effects, top rice-producing district-by-year fixed effects, weather controls,
and nightlight intensity. Confidence intervals are based on standard errors clustered by both downwind
districts and top rice-producing districts.
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Table A1: Air Pollution in Downwind Districts

Distance between top rice producers and downwind districts (kilometers)

) @ 3) “ &) (6) (7 ®)
100 500 900 1300 1700 2100 2500 2900
Downwind 0.02* 0.03** 0.09** 0.09* 0.08** 0.06" 0.06™~ 0.06™~
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Observations 16120 284920 672260 1022120 1248680 1363800 1405080 1407020
Mean PM 2.5 Levels 97.86 80.92 74.66 70.97 69.06 68.02 67.24 67.19
Distance between top rice producers and downwind districts (kilometers)
)] 2 3 “) ®) (6) (N ®)
100 500 900 1300 1700 2100 2500 2900
Downwind 0.02** 0.03"** 0.05™ 0.05* 0.04* 0.03** 0.03** 0.03**
(0.01) (0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01)
Observations 16120 284920 672260 1022120 1248680 1363800 1405080 1407020
Mean of Dep. Var. 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16

0¢

Notes: Dependent variable in panel (a) is district-level standardized average PM 2.5 for October—December. In panel (b), it is an indicator for episodes when PM 2.5 exceeds one standard deviation
above the district mean. All regressions include district-pair fixed effects, top rice-producing district-by-year fixed effects, weather controls, and nightlight intensity. Standard errors, clustered on both
downwind district and top rice-producing district, are shown in parentheses. ***, ** and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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Table A2: Pollution and Crime in Upwind vs. Downwind Districts

Pollution Crime rate per 100000 individuals
ey 2 3) “) &) (6) (N ®)
PM 2.5 Extreme PM 2.5 Violance Property Economic Women Public Total

Downwind 0.08"* 0.04* 0.75™ 0.59* -0.06 0.21™ 0.30" 1.79*

(0.01) (0.00) (0.30) (0.14) (0.06) (0.09) (0.07) (0.38)
Upwind -0.05" -0.03" —0.94* 0.03 0.16" 0.03 -0.08 -0.80"

(0.02) (0.01) (0.29) (0.14) (0.06) (0.09) (0.07) (0.41)
Observations 672260 672260 654200 654200 654200 654200 654200 654200
Mean of Dep. Var. -0.00 0.16 45.18 31.00 6.93 15.27 5.65 104.03

Notes: All regressions include district-pair fixed effects, top rice-producing district-by-year fixed effects, weather controls, and nightlight intensity. Sample restricted to downwind districts
within 900 km of top rice-producing districts. Standard errors, clustered on both downwind district and top rice-producing district, are shown in parentheses. ***, **_ and * indicate significance
at the 1%, 5%, and 10% levels, respectively.
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Table A3:

Crime in Downwind Districts in Summer

Pollution Crime rate per 100000 individuals
ey 2 3) “4) ) (6) (7 )
PM 2.5 Extreme PM 2.5 Violance Property Economic Women Public Total

Downwind (summer) -0.02 0.01 -0.21 -0.19 -0.03 -0.20* 0.21" -0.42

(0.02) (0.01) (0.28) (0.14) (0.06) (0.09) (0.12) (0.37)
Windspeed (summer) 0.15%* 0.05%** 0.26 1.50*** 0.51%* -0.33 0.39*** 2.34**

(0.03) (0.01) (0.63) (0.51) (0.13) (0.21) (0.11) (0.96)
Temperature (summer) 0.26™* 0.04"** 1.16™ 0.38 0.68™* 0.30* 0.32" 2.84%

(0.02) (0.01) (0.58) (0.35) (0.09) (0.16) (0.19) (0.81)
Rainfall (summer) 0.11* 0.07** —5.55"* -0.59 -0.03 0.60* —-0.70* -6.25"

(0.03) (0.02) (1.08) (0.54) (0.18) (0.32) (0.13) (1.58)
Nightlight -0.00 -0.01" 1.23* 1.01* 0.03 0.13* 0.08"** 248"

(0.00) (0.00) (0.25) (0.29) (0.05) (0.06) (0.03) (0.37)
Observations 672260 672260 654200 654200 654200 654200 654200 654200
Mean of Dep. Var. -0.00 0.16 45.18 31.00 6.93 15.27 5.65 104.03

Notes: All regressions include district-pair fixed effects and top rice-producing district-by-year fixed effects. Sample limited to downwind districts within 900 km. Standard errors, clustered on both

downwind district and top rice-producing district, are shown in parentheses. ***, ** and * indicate significance at the 1%, 5%, and 10% levels, respectively.



Table A4: Crop Yields, Agricultural Production, and Income in Downwind Districts

Agricultural outcomes GDP (rupees per person)
) @) 3 “ ()
Production Yield Agriculture Industry Services
Downwind 15.69 86.60"** —-20.88 —66.22** —246.05**
(10.35) (29.87) (35.80) (30.17) (75.56)
Observations 626999 624282 504195 504195 504195
Mean of Dep. Var. 701.38 2394.69 6232.49 8123.68 13846.49

Notes: Dependent variables in columns 1 and 2 are overall crop production and yield at
the district level. Dependent variables in columns 3 to 5 are district-level Gross Domestic
Product (GDP) in rupees per person at constant prices. All regressions include district-
pair fixed effects, top rice-producing district-by-year fixed effects, weather controls, and
nightlight intensity. Sample limited to downwind districts within 900 km. Standard
errors, clustered on both downwind district and top rice-producing district, are shown
in parentheses. *** ** and * indicate significance at the 1%, 5%, and 10% levels,
respectively.

Table AS: Sensitivity Based on Different Wind Angle Thresholds for Downwind Districts

Crime rate per 100000 individuals

) (@) 3 ) () (6)
Violance Property Economic ‘Women Public Total
Downwind 20 0.54™ 0.47* -0.07 0.15" 0.26™* 1.35™*
(0.27) (0.14) (0.06) (0.08) (0.10) (0.36)
Observations 654200 654200 654200 654200 654200 654200
Mean of Dep. Var. 45.18 31.00 6.93 15.27 5.65 104.03

Crime rate per 100000 individuals

(1) @) 3) (C)) (5) ©)
Violance Property Economic ‘Women Public Total
Downwind 40 0.97** 0.87** -0.06 0.32%* 0.36™* 2.45%
(0.34) (0.16) (0.06) (0.09) (0.07) (0.42)
Observations 654200 654200 654200 654200 654200 654200
Mean of Dep. Var. 45.18 31.00 6.93 15.27 5.65 104.03

Crime rate per 100000 individuals
(e)) (@) 3 (C)) ) (©)

Violance Property Economic Women Public Total
Downwind 60 1.18% 1.03%** -0.03 0.28** 0.41%* 2.87"*
(0.36) (0.18) (0.07) (0.10) (0.10) (0.47)
Observations 654200 654200 654200 654200 654200 654200
Mean of Dep. Var. 45.18 31.00 6.93 15.27 5.65 104.03

Notes: All regressions include district-pair fixed effects, top rice-producing district-by-year fixed effects,
weather controls, and nightlight intensity. Sample limited to downwind districts within 900 km. Standard
errors, clustered on both downwind district and top rice-producing district, are shown in parentheses. ***,
**_and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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Table A6: Sensitivity Analysis Excluding Pollution Source Districts

Crime rate per 100000 individuals

(0] (@) 3 “ (&) (6)
Violance Property Economic Women Public Total
Downwind 0.92** 0.63*** —-0.08 0.22** 0.35%* 2.04%
(0.38) (0.17) (0.07) (0.11) (0.10) (0.46)
Windspeed 3.50 -2.19* 1.13* —-0.48 -1.01* 0.94
(2.74) (1.11) (0.52) (0.60) (0.44) (3.26)
Temperature -0.27 -0.54* 0.60"** 0.01 —-0.30"** -0.50
(0.64) (0.28) (0.11) (0.15) (0.09) (0.80)
Rainfall —12.63*** 2.03 -1.32* 0.88 -0.53 —11.57**
(3.09) (1.86) (0.66) (0.82) (0.85) (4.31)
Nightlight 1.42% 1.32% 0.01 0.10 0.05 2917
(0.34) (0.37) (0.06) (0.08) (0.04) (0.47)
Observations 481851 481851 481851 481851 481851 481851
Mean of Dep. Var. 47.32 32.92 7.04 16.20 6.48 109.97

Notes: All regressions include district-pair fixed effects, top rice-producing district-by-year fixed effects,
weather controls, and nightlight intensity. The sample excludes source districts and is restricted to
downwind districts located within 900 kilometers. Standard errors, clustered at both the downwind district

and top rice-producing district levels, are shown in parentheses. ***, ** and * denote significance at the
1%, 5%, and 10% levels, respectively.

Table A7: Estimates for Downwind based on Daily Wind Direction Changes

Panel A: Linear Specification

Crime rate per 100000 individuals

1)

()

3) “) (&) (6)
Violance Property Economic Women Public Total
Downwind 7.98" 3,187 0.29 0.39 0.75 12.59%
(1.71) (0.81) (0.29) (0.46) (0.73) (2.61)
Windspeed —-0.62 —1.55" 0.85"* -1.19* -1.01* -3.51
(1.70) (0.81) (0.34) (0.50) (0.48) (2.41)
Temperature —-0.89* —0.53"* 0.61*** -0.02 —0.27* -1.11*
(0.41) (0.20) (0.09) (0.11) (0.07) (0.55)
Rainfall 5.1 1.49 —1.25" —-0.52 -0.06 -5.45
(2.24) (1.20) (0.45) (0.69) (0.50) (3.30)
Nightlight 1.82% 0.97** 0.04 0.17** 0.13* 3.12%
(0.28) (0.25) (0.05) (0.06) (0.04) (0.43)
Observations 1360034 1360034 1360034 1360034 1360034 1360034
Mean of Dep. Var. 45.09 30.35 7.01 15.21 6.21 103.86
Panel B: Quadratic Specification
Crime rate per 100000 individuals
()] 2 3 ()] 5 (6)
Violance Property Economic ‘Women Public Total
Downwind 1.985 —-0.653 3.339 s % —-0.983 -1.115 2.573
(2.68) (1.27) (0.62) (0.87) (0.94) (3.87)
Downwind Square 8.939 x 5.722 % %% —4.552 % % 2.050% 2.782 14.940  #x
(3.76) (1.72) (0.72) (1.12) (2.41) (5.70)
Windspeed -0.623 —1.552x% 0.852 s —1.187 * —1.014 * -3.523
(1.70) (0.81) (0.34) (0.50) (0.49) (2.41)
Temperature —0.880 s —0.528 s s 0.602 s s -0.022 —0.270 s s —1.098 * *
(0.41) (0.20) (0.09) (0.11) (0.07) (0.55)
Rainfall —5.101 = = 1.500 —1.256 # #x -0.516 -0.053 -5.427
(2.24) (1.20) (0.45) (0.69) (0.50) (3.30)
Nightlight 1.817 s s 0.966 s s 0.037 0.166 * *x 0.135 s s 3121 # %%
(0.28) (0.25) (0.05) (0.06) (0.04) (0.43)
Observations 1360034 1360034 1360034 1360034 1360034 1360034
Mean of Dep. Var. 45.09 30.35 7.01 15.21 6.21 103.86

Notes: The downwind variable represents the proportion of days in October, November, and December during which a
given district was downwind of the source districts. All regressions include district-pair fixed effects, top rice-producing
district-by-year fixed effects, weather controls, and nightlight intensity. Regressions are estimated on the full sample without
distance restrictions. Standard errors, clustered at both the downwind district and top rice-producing district levels, are
shown in parentheses. ***, ** and * denote significance at the 1%, 5%, and 10% levels, respectively.
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