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Abstract

We consider an attribute-based model of stochastic choice with variable

attention to different attributes. We characterize stochastic choice rules with

attributes and limited attention (SCRALA). Under SCRALA, the probability

with which an alternative (say, x) is chosen is the product of the probabilities

with which attention is drawn by the attributes where x is ranked highest and

the (weighted) probability with which attention is not drawn by the attributes

under which x is not the highest ranked. Our results are characterized by

axioms defined on observable choice data and all the attention parameters are

uniquely identified.
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1 Introduction

Attributes often help in making choices as rationales to what may be relevant to

the decision maker (Manzini and Mariotti (2007)). The consumer may also choose

according to the salience of various attributes. However, in many cases, the decision

maker (DM) may not pay full attention to each attribute. For example, an individual

who wants to buy a car may be more focused on buying a sports car than a car with

extra airbags. Her varying attention to the various attributes may affect how she

chooses the alternative. In this paper, we characterize a choice rule that takes into

account the role played by different attributes in drawing the DM’s attention.

We provide some examples from consumer behaviour where attention paid to various

attributes plays an important role:

(i) Consider a consumer who wants to buy a box of breakfast cereal. She may be

more focused on nutritional attributes and less on the type of fruit that comes

with it. The difference in attention probabilities to the two attributes may affect

the choice probability of a specific cereal box. In our model, we assume that

the attention paid to the attributes is independent. 1

(ii) Consider a consumer who wants to buy a smartphone. She may pay more

attention to buying a phone based on screen size instead of the number of

megapixels in its camera. These two attributes are independent so the attention

paid to them is assumed to be independent. We also assume that the DM is

generally attentive, i.e., the attention paid to any attribute is greater than or

equal to half.

We assume that choice probabilities are observable for any given subset of the set of

alternatives and any subset of the set of attributes. This is a reasonable assumption

since in most online and offline markets the planner can observe the set of available

alternatives and their attributes. In fact, in most online shopping platforms the

alternatives can be displayed on the basis of attributes as “filters”. Our choice rule

intends to capture the effect of varying attention to different attributes.

We characterize Stochastic Choice Rule with Attributes and Limited Attention (SCRALA)

according to which the probability of an alternative x is the product of the proba-

bilities with which the DM pays attention to the attributes under which x is ranked

highest and the weighted probability with which attention is not drawn by those at-

tributes under which x is not the highest ranked. The ranking over alternatives is an

antisymmetric ordering. We provide an example of the rule with three alternatives

and two attributes.

1Bialkova and van Trijp (2010) identifies the factors affecting the attention paid to different
nutritional labels in an experimental setting.
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Example 1 Suppose X = {x, y, z} and A = {a1, a2}. Let the two orderings with

respect to the attributes a1 and a2 be x ≻a1 y ≻a1 z and y ≻a2 x ≻a2 z respectively.

Let γ(a1) = 0.51 and γ(a2) = 0.8 be the two attention probabilities of the attributes.2

The choice probabilities of the three alternatives from the set S = {x, y, z} according

to SCRALA, pS are as follows:

(i) pS(x, S,A) = γ(a1)

(
1− γ(a2)

|S| − 1

)
= 0.51

(
1− 0.8

3− 1

)
= 0.51(0.1) = 0.051.

(ii) pS(y, S,A) = γ(a2)

(
1− γ(a1)

|S| − 1

)
= 0.8

(
1− 0.51

3− 1

)
= 0.8(0.245) = 0.196

(iii) pS(z, S, A) =

(
1− γ(a2)

|S| − 1

)(
1− γ(a1)

|S| − 1

)
=

(
1− 0.8

3− 1

)(
1− 0.51

3− 1

)
= 0.0245.

Note that the choice probability of alternative y is the highest since the attention

paid to the attribute (a2) in which it is ranked first is much higher than the attention

paid to the attribute (a1) where it is not (0.8 as compared to 0.51). Moreover, the

probability of ignoring the attribute a1 in which it is not ranked first is also relatively

high (0.49). Also note that the choice probability of the default alternative is the

residual probability given by pS(x∗, S, A) = 1− 0.0245− 0.196− 0.051 = 0.7285.

An observation from the above example is the high probability of the default alter-

native. An interpretation of this property in the example is the fact that DM pays

attention to both attributes which have different top-preferred alternatives. This ‘con-

fuses’ the DM since she does not choose according to the relative positions of x and

y which are similar across the two attributes. Even though she pays higher attention

to the second attribute the choice probability of y is discounted by the probability

of not paying attention to the first attribute (weighted by 1
2
) which is high (0.49).

This drags down the choice probability of alternative y in the set resulting in the DM

choosing the default.

We use seven axioms to characterize SCRALA. We describe them briefly. The first

axiom is Independence (IN) which is a standard one in many works on stochastic

choice. IN requires that the probability with which an alternative is chosen from a

given set of alternatives S and attribute set (A∪B) is the product of the probabilities

of that alternative from the same set of alternatives over two sets of attributes A and

B. Therefore, this captures the fact that the probability of choosing an alternative

across two set of attributes is independent.

The second axiom is Full Support (FS) which states that the sum of choice proba-

bilities for a given set of alternatives S (consisting of two or more elements) when

only a single attribute is considered must add up to one (the default alternative is

2Note that the attention paid to attributes need not sum to one since they are assumed to be
independent.

3



chosen with probability zero). This implies that when there is only one attribute the

DM distributes the choice probabilities over alternatives in the set of alternatives and

does not give any consideration to the default alternative.

The third axiom is Invariance to Singletons (IS) which states that the probability

of choosing any alternative x from the singleton set {x} under a singleton attribute

set {a} must be the same as the choice probability of any other alternative y from

the singleton set {y} under the same singleton attribute set. This implies that the

choice probability of any alternative is dependent only on the attribute that is being

considered when the set of alternatives and the set of attributes are both singleton

sets.

The fourth axiom is Uniformity of Inferior Alternatives (UIA) which states that for

any set of alternatives S and attribute set A if there exists a triple of alternatives

x, y, z which belong to S such that the choice probability of x from the set {x, y}
under the attribute set {a} is strictly greater than that of y from {x, y} under the

same attribute, and if the choice probability of x from {x, z} under the attribute set

{a} is strictly greater than that of z from {x, z} under the same attribute then the

choice probability of the dominated alternatives i.e. y and z must be the same from

S under a single attribute set {a}.

The fifth axiom is Dominance (DOM) which states that if an alternative, x, is chosen

with a strictly higher probability than y from the binary set {x, y} given a single

attribute a for any such y which belongs to the set S\{x}, then the choice probability

of x is unchanged when any such y is removed from the set S.

The sixth axiom is Binary Difference (BD) which states that the probability of x

from {x, y} under a single attribute a must not be equal to the probability of y from

{x, y} under the same attribute. This implies that the DM can differentiate between

two alternatives from a binary set when only one attribute is considered.

The seventh axiom is Stochastic Transitivity (ST) which is the probabilistic version

of the standard transitivity axiom defined for deterministic choice functions: If x has

a strictly greater choice probability than y from {x, y} under the attribute a and if y

has a strictly greater choice probability than z from {y, z} under the attribute a, then

x must have a strictly greater choice probability than z from {x, z} under attribute

a. This is an axiom that has been used in the literature on stochastic choice (see

Fishburn (1973) and Manzini and Mariotti (2014).

Our main result states that a stochastic choice rule satisfies the above seven axioms

if and only if it is a SCRALA. The proof of the result proceeds from binary sets in

singleton attributes. The preference ordering over the set of alternatives is first de-

rived for an attribute. We show that preference ordering is complete, transitive, and
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antisymmetric, where the latter is proved using BD. The IN axiom is used to derive

the choice probability from a bigger set of attributes keeping the set of alternatives

fixed. FS is used to derive the expression that captures the probability of not con-

sidering attributes where the alternative is not top-ranked. DOM is used to obtain

the invariance of the choice probability of an alternative when removing dominated

alternatives under a singleton attribute set. IN is used again to obtain the main

expression of the definition of SCRALA.

We show Section 4.1 that all the parameters in SCRALA are uniquely identifiable

from the choice data. BD plays an important role in this by ensuring the difference

in the choice probabilities from binary sets. This leads to the attention parameters

being distinct for a given choice data since no two data sets would generate the same

attention parameters and preference orderings. In the next Section 4.2 we show that

SCRALA satisfies a well-known property Regularity with respect to alternatives (for

a fixed set of attributes), and also satisfies regularity with respect to attributes (for

a fixed set of alternatives). The former requires that the choice probability of an

alternative from a subset of alternatives S ⊆ T be weakly greater than from T when

the set of attributes is fixed. The latter requires that the choice probability of an

alternative from a subset of attributes A ⊆ B be weakly greater than that from B

when the set of alternatives is fixed. This is the standard regularity axiom defined

over alternatives as in Fudenberg et al. (2015), McFadden and Richter (1990) and

Aguiar and Kimya (2019). A violation of regularity can also be captured when the

set of attributes and the set of alternatives are allowed to vary. A justification for this

is the Attraction Effect as introduced in Huber et al. (1982) which causes a reversal

in the choice probabilities.

We show in 4.4 that our framework can also be applied to a social choice setting. The

set of alternatives can be seen as the set of candidates and the set of attributes can

be interpreted as the set of voters. In such a setting, SCRALA can be interpreted as

assigning consideration probabilities to the voters (analogous to attention probabili-

ties over attributes) and the choice probability of a candidate is the product of the

probability with which the voters who rank that candidate the highest are considered

and the (weighted) probability with which the voters who do not rank that candidate

the highest are not considered. Therefore, Theorem 1 can also be applied to this

setting with different voters being considered with limited attention.

SCRALA can also be interpreted as a Random Utility Model (RUM) as studied in

Aguiar et al. (2023) where the attributes are ‘different states of the world’ and the

attention probabilities over the set of attributes are the probability distribution over

the different states of the world. The orderings over the set of alternatives for each

attribute can be interpreted as the different preference orderings in different states of
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the world.

Many papers have studied the salience of attributes in stochastic individual choice.

Bordalo et al. (2012) models the salience of differences in expected payoffs in a model

of risk, Bordalo et al. (2013) and Bordalo et al. (2020) model the role of memory in

decision-making which explains many behavioural biases including inattention to hid-

den product attributes. Manzini and Mariotti (2012) shows that a choice rule which

takes into account different categories before choosing an alternative satisfies weak

WARP in a deterministic setting. The choice rule characterized in our setting can vi-

olate weak WARP and can even violate independence of irrelevant alternatives.

We contribute to the literature on Multiple Attributes (or Criteria) based Decision

Making, Limited Attention, and Stochastic Choice. Lancaster (1966) introduced a

model with multiple attributes being associated with each alternative. There are

papers which study the case where the criteria can be interpreted as multiple selves

or rationales, e.g. Kalai et al. (2002), Manzini and Mariotti (2007), Cherepanov et al.

(2013), and Hara et al. (2019). In the limited attention literature, Masatlioglu et al.

(2012) provides conditions for revealed preference, while Lleras et al. (2017) provides

a choice theoretic foundation of limited attention and consideration sets. A good

starting point for the literature on stochastic choice is Luce (1959).

Manzini and Mariotti (2014) is closely related to our paper due to the similarity in the

formulation of the stochastic choice rule. However, they model limited attention over

different alternatives and the attention parameters are defined for alternatives. In our

paper, a DM uses consideration probabilities for different attributes and the set of

alternatives can vary as well. Another closely related paper to ours is Bhattacharya

et al. (2021). They use a model concerning frames with a different Stochastic Choice

Rule. Our Stochastic Choice Rule uses a different partitioning of the attribute sets

with respect to each alternative. Due to this, the formulation of our rule, SCRALA,

takes a functional form and the distribution of the choice probabilities to ‘domi-

nated’ alternatives is different from the one in both these papers. In Bhattacharya

et al. (2021), frames do not provide any additional information that helps the DM in

the rational evaluation of alternatives (as in Salant and Rubinstein (2008)). In our

model, the attributes are informative and help the DM in the rational evaluation of

alternatives. Also, we make an additional reasonable assumption that each relevant

attribute is more likely to be considered than not. A limitation of our model is that

it requires a larger observable data set than these papers, which requires that choice

probabilities for the alternatives are known for every set of alternatives and every

given set of attributes.

Gul et al. (2014) uses attributes in a stochastic choice setting. Their axioms and

the structure of the choice rule are very different as compared to ours. They seek
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to explain the problem of duplicates infested in the Luce Rule (Luce (1959)). An

interesting model is provided by Honda (2021) where stochastic choices are made

when each alternative can be associated with a category. The stochastic choice rule

that is used has two terms (in a product form). The first term is representative of

the probability of the categories in which there are better alternatives (than the said

alternative) not being considered. The second term is the probability of consideration

of the category containing the said alternative multiplied by its Luce weight with

respect to the other alternatives in the same category. The weight (on the probability

of not considering the attributes in which there are better alternatives, in contrast)

in our paper just depends on the cardinality of the menu (of alternatives) and the

cardinality of the attributes (in which the said alternative is dominated) set.

Cattaneo et al. (2020) provides a model where attention is both limited and random.

They have an axiom that states that the probability of an alternative being considered

weakly decreases as the menu of alternatives expands. Our model on the other hand

satisfies a different but related form of monotonicity: Regularity in Attributes. The

situation is similar: If no new alternatives are added but the relevant attribute set

expands, there is a case of diminishing attention. Hence, each alternative is less

likely to be considered (according to their model) and its choice probability also

decreases.

Kovach and Tserenjigmid (2022) is another stochastic choice model with limited at-

tention where some alternatives have more attention associated with them; which are

known as the Focal Alternatives. Kovach and Suleymanov (2023) presents a model

where reference points direct attention and show how stochastic choices are made

when the attention is reference-dependent and random. Ahumada and Ülkü (2018)

explains a model where a DM uses the Luce Rule on a consideration set. Kimya

(2018) gives a detailed model of consideration set formation in the presence of at-

tributes and limited attention. However, his model is based on a deterministic choice

setup with thresholds unlike ours. Also, for various forms of Stochastic Transitivity

see Fishburn (1973).

The paper is divided into sections. Section 2 describes the Model, while section 3

provides the axioms required for the main result. Section 4 provides the results and

properties satisfied by SCRALA. An application to social choice theory is provided

in Section 4.4. Section 5 concludes while the Appendix provides proof of the inde-

pendence of the axioms.
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2 Model

Let X be the set of all alternatives and X be the set of all finite non-empty subsets of

X. Let A be the set of all attributes and A be the set of all finite non-empty subsets

of A. We define stochastic choice rules which provide the choice probability of an

alternative for every S ∈ X and A ∈ A.

Definition 1 (Stochastic Choice Rule (SCR)) An SCR, p : X×X ×A → [0, 1]

for any x ∈ X, S ∈ X and A ∈ A provides p(x, S,A) which is the probability that

alternative x ∈ X is chosen from a menu S ∈ X and the set of relevant attributes

A ∈ A.

We denote a default alternative as x∗ which can also be interpreted as not choosing

any alternative or any other fixed alternative that is pre-determined.

The choice probabilities over the set of alternatives and the default alternative sum

to one, i.e.,
∑

x∈S p(x, S,A)+p(x∗, S, A) = 1, where x ∈ X, S ∈ X , and A ∈ A. Note

that p(x, S,A) = 0 if x ̸∈ S.

Before we define the choice rule, we introduce some notations. Suppose that ⪰a is a

linear ordering over X according to the attribute a ∈ A.3 This is also the preference

of the DM on the given attribute a ∈ A. We say that an alternative x dominates

another alternative y via an attribute a if x ⪰a y. For any A ∈ A, S ∈ X and x ∈ S,

the set

Ax(S) = {a ∈ A : x ⪰a y,∀y ∈ S}

denote the attributes in which x dominates all the alternatives in S and let

Ac
x(S) = {a ∈ A : ∃y ∈ S\{x}, y ⪰a x}

be the set of alternatives where x is dominated by some alternative y ∈ S\{x}. We

now define Stochastic Choice Rule with Attributes and Limited Attention (SCRALA).

Definition 2 (SCRALA) An SCR, pS is a SCRALA if for all A ∈ A there exists

a linear ordering ⪰a on X and attention parameters γ(a) ∈ (1
2
, 1] for all a ∈ A such

that for any S ∈ X and x ∈ S,

pS(x, S,A) =



∏
a∈Ax(S)

γ(a)

∏
b∈Ac

x(S)
(1− γ(b))

(|S| − 1)|Ac
x(S)|

, if Ax(S) ̸= ∅, Ac
x(S) ̸= ∅;∏

a∈Ax(S)
γ(a), if Ax(S) = A;∏

b∈Ac
x(S)

(1− γ(b))

(|S| − 1)|Ac
x(S)|

, if Ac
x(S) = A.

3We say that R is a linear ordering if it is (i) complete: xRy or yRx for all x, y, (ii) antisymmetric:
xRy and yRx implies that x = y, and (iii) transitive: xRy and yRz implies xRz for any x, y, z.
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According to SCRALA, the probability of an alternative x from a set of alternatives S

and given a set of attributes A is the product of the probability of paying attention to

the set of attributes in which x ranks first and the probability with which attention

is not paid to other attributes in which x is not ranked first where the latter is

weighted by 1
|S|−1

. Therefore, the choice probability is weighted down by the attributes

in which it does not rank first and the number of alternatives in S. Note that

γ(a) is the probability that the relevant attribute a is considered or the attention

probability of attribute a. The rule also considers high attention to the attributes,

i.e., γ(a) > 1
2
, for all a ∈ A where A is the relevant set of attributes. This assumption

means that each relevant attribute is more likely to be considered than not. Another

implication of this assumption is that if there is only one attribute then it selects

the highest-ranked alternative in that attribute with a greater probability than the

default alternative.

3 Axioms

We introduce the Axioms required to characterize SCRALA:

Axiom 1 (Independence (IN)) An SCR p satisfies IN if for any S ∈ X and

C,D ∈ A such that C ∩D = ∅, we have p(x, S, C ∪D) = p(x, S, C)p(x, S,D).

IN states that whenever two relevant attribute sets are disjoint, the choice probability

for the union of the two sets is equal to the product of the choice probabilities given

the two sets separately. The next Axiom applies to cases with a singleton attribute

set.

Axiom 2 (Full Support (FS)) An SCR p satisfies FS if for any S ∈ X , |S| ≥ 2

and any a ∈ A,
∑

x∈S p(x, S, {a}) = 1.

FS states that under a single attribute and any set of alternatives, with at least

two alternatives, the choice probabilities over the alternatives excluding the default

alternative sum to one.

When there are two or more alternatives and a single attribute, the DM prefers

flexibility in the menu of alternatives and the default alternative x∗ is not chosen at

all. However, if there is only one alternative and one attribute, then the DM may not

choose that alternative with full support and the default alternative has a positive

choice probability. This is due to the fact that there is no other alternative to compare

with other than the default alternative which enhances the choice probability of the

latter.

Axiom 3 (Invariance of Singletons (IS)) An SCR p satisfies IS if for any a ∈ A

and x, y ∈ X, p(x, {x}, {a}) = p(y, {y}, {a}).
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IS states that if there is only one relevant attribute and only one alternative is avail-

able, then the choice probability of that alternative is independent of the alternative.

In this case, the choice probability of the alternative is driven by the relevant at-

tribute.

Axiom 4 (Uniformity in Inferior Alternatives (UIA)) An SCR p satisfies UIA

if for all S ∈ X , a ∈ A,

[
∃ x, y, z ∈ S s.t. p(x, {x, y}, {a}) > p(y, {x, y}, {a})

and p(x, {x, z}, {a}) > p(z, {x, z}, {a})
]

=⇒
[
p(y, S, {a}) = p(z, S, {a})

]
.

This Axiom states that (when a single attribute is considered) if there is an alternative

x that has a higher choice probability than two other alternatives y, z when offered

in two menus {x, y} and {x, z} respectively, then the choice probabilities of the latter

two alternatives are equal in the menu S whenever x, y, z ∈ S. Since the choice

probability of x is higher than those of y and z in the binary sets {x, y} and {x, z}
respectively, y and z are inferior to x according to the choice probability in a binary

comparison. This Axiom states that the inferior elements in a menu are uniform in

terms of choice probability.

Axiom 5 (Dominance (DOM)) An SCR p satisfies DOM if for all a ∈ A and

for all S ∈ X such that x, y ∈ S,

[
p(x, {x, y}, {a}) > p(y, {x, y}, {a}) for all y ∈ S \ {x}

]
=⇒

[
p(x, S, {a}) = p(x, S\{y}, {a}) for all y ∈ S \ {x}

]
.

DOM states that for any menu S and any alternative x when only one attribute is

considered if the choice probability of x is strictly greater than that of y when offered

in the menu {x, y} for any y ∈ S\{x} then the choice probability of x does not change

when y is removed from S with the same attribute being considered.

Axiom 6 (Binary difference (BD)) An SCR p satisfies BD if for all a ∈ A and

for all x, y ∈ X, x ̸= y, p(x, {x, y}, {a}) ̸= p(y, {x, y}, {a}).

This Axiom rules out equality of choice probabilities when the menu consists of two

alternatives and a single attribute. In such situations, the DM chooses one of the two

distinct alternatives with a strictly higher probability than the other.

Axiom 7 (Stochastic Transitivity (ST)) An SCR p satisfies ST if for all a ∈ A
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and for all x, y, z ∈ X,[
p(x, {x, y}, {a}) > p(y, {x, y}, {a}) and p(y, {y, z}, {a}) > p(y, {y, z}, {a})

]
=⇒ p(x, {x, z}, {a}) > p(y, {x, z}, {a}).

This Axiom is a variation of Weak Stochastic Transitivity in Fishburn (1973) with

strict inequalities and holds when a single attribute is considered. It is a straightfor-

ward version of transitivity modified for the attribute setting.

4 Results

We are now ready to state our main result.

Theorem 1 An SCR satisfies IN, FS, IS, UIA, DOM, BD and ST if and only

if it is a SCRALA.

Proof. ( =⇒ ) Let p be an SCR that satisfies all the Axioms stated in the statement

of Theorem 1. We define a binary relation on X for each attribute a ∈ A and denote

it as ⪰a as follows:

x ⪰a y ⇐⇒ p(x, {x, y}, {a}) ≥ p(y, {x, y}, {a}).

We show that ⪰a is a well-defined linear ordering. We first show that ⪰a is complete.

Take any x, y ∈ X. If x = y, then p(x, {x, y}, {a}) = p(y, {x, y}, {a}). There-

fore, [x = y] =⇒ [x ⪰a y and y ⪰a x]. If x ̸= y, by BD, p(x, {x, y}, {a}) ̸=
p(y, {x, y}, {a}). Therefore, either p(x, {x, y}, {a}) > p((y, {x, y}, {a}) which implies

x ⪰a y or p(y, {x, y}, {a}) > p(x, {x, y}, {a}) which implies that y ⪰a x. Therefore,

⪰a is complete.

We show that ⪰a is antisymmetric. Let x ⪰a y and y ⪰a x for some x, y ∈ X. By

definition of ⪰a, [
x ⪰a y

]
=⇒ [p(x, {x, y}, {a}) ≥ p(y, {x, y}, {a})]

[y ⪰a x] =⇒
[
p(y, {x, y}, {a}) ≥ p(x, {x, y}, {a})

]
Above two statements imply that p(x, {x, y}, {a}) = p(y, {x, y}, {a}). However, by

BD this can only be true if x = y. Hence, ⪰a is antisymmetric. The strict component

of ⪰a can be derived as follows: x ≻a y ⇐⇒ p(x, {x, y}, {a}) > p(y, {x, y}, {a}) for
any x, y ∈ X and a ∈ A.

For transitivity, let x ⪰a y and y ⪰a z for some x, y, z ∈ X. Therefore, p(x, {x, y}, {a}) ≥
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p(y, {x, y}, {a}) and p(y, {y, z}, {a}) ≥ p(z, {y, z}, {a}). As x, y, z are distinct, by

BD, the two aforementioned inequalities are strict. By ST,

[
p(x, {x, y}, {a}) > p(y, {x, y}, {a}) and p(y, {y, z}, {a}) > p(z, {y, z}, {a})

]
=⇒

[
p(x, {x, z}, {a}) > p(z, {x, z}, {a})

]
.

Hence, x ⪰a z which establishes that ⪰a is transitive. Thus, ⪰a is a linear order.

Using the above binary relation ⪰a, for any S ∈ X , A ∈ A, and x ∈ S, we define

Ax(S) := {a ∈ A : x ⪰a y,∀y ∈ S}

and

Ac
x(S) := {a ∈ A : ∃y ∈ S\{x} such that y ⪰a x}.

Using BD, it can be verified that Ax(S) ∩ Ac
x(S) = ∅. Since A = Ax(S) ∪ Ac

x(S), by

IN, we have

p(x, S,A) = p(x, S,Ax(S))p(x, S,A
c
x(S)) for all x ∈ S.

We now decompose the terms, p(x, S,Ax(S)) and p(x, S,Ac
x(S)) separately. By re-

peatedly applying IN,

p(x, S,Ax(S)) =
∏

a∈Ax(S)

p(x, S, {a}) and p(x, S,Ac
x(S)) =

∏
b∈Ac

x(S)

p(x, S, {b}).

Therefore,

p(x, S,A) =
∏

a∈Ax(S)

p(x, S, {a})
∏

b∈Ac
x(S)

p(x, S, {b}).

Let S\{x} = {y1, y2, · · · , y|S|−1}. Suppose a ∈ Ax(S). By definition of Ax(S),

p(x, {x, yk}, {a}) ≥ p(yk, {x, yk}, {a}) for all k ∈ {1, 2, · · · , |S| − 1}. Moreover,

since x /∈ {y1, · · · , y|S|−1}, by BD, p(x, {x, yk}, {a}) > p(yk, {x, yk}, {a}) for all

k ∈ {1, 2, · · · , |S| − 1}. Therefore, x ≻a yk for all k ∈ {1, 2, · · · , |S| − 1}. By

repeatedly applying DOM,

p(x, S, {a}) = p(x, S\{y1}, {a}) = p(x, S\{y1, y2}, {a}) = · · · = p(x, {x}, {a}). (∗)

By IS, for any a ∈ A, we can define γ(a) as γ(a) := p(w, {w}, {a}) for any w ∈ X.
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Therefore, by IN and Equation (∗),

p(x, S,Ax(S)) =
∏

a∈Ax(S)

p(x, {x}, {a}) =
∏

a∈Ax(S)

γ(a).

Suppose Ac
x(S) = {a1, a2, · · · , a|Ac

x(S)|}. Let y1 = max(⪰a1 , S) be the most preferred

alternative in S according to ⪰a1 , i.e., y ⪰a1 y′ for all y′ ∈ S. Similarly, let yk =

max(⪰ak , S) for all k ∈ {1, 2, · · · , |Ac
x(S)|}. Applying FS,

p(y1, S, {a1}) +
∑

z∈S\{y1}

p(z, S, {a1}) = 1

By UIA, for any x, z ∈ S, [y1 ≻a1 x and y1 ≻a1 z] =⇒ [p(x, S, {a1}) = p(z, S, {a1})].
Therefore,

p(y1, S, {a1}) + (|S| − 1)p(x, S, {a1}) = 1.

This implies that for x ∈ S \ {y1} such that y1 ≻a1 x, we have

p(x, S, {a1}) =
1− p(y1, S, {a1})

|S| − 1
.

Similarly, we can show that

p(x, S, {ak}) =
1− p(yk, S, {ak})

|S| − 1
for all k ∈ {1, 2, · · · , |Ac

x(S)|}.

Therefore,

p(x, S, {ak}) =
1− γ(ak)

(|S| − 1)
, for all ak ∈ Ac

x(S). (†)

By IN and the above equation (†),

p(x, S,Ac
x(S)) =

∏
b∈Ac

x(S)
(1− γ(b))

(|S| − 1)|Ac
x(S)|

.

Therefore,

p(x, S,A) = p(x, S,Ax(S))p(x, S,A
c
x(S)) =

∏
a∈Ax(S)

γ(a)

∏
b∈Ac

x(S)
(1− γ(b))

(|S| − 1)|Ac
x(S)|

.

13



If A = Ax(S), by IN,

p(x, S,A) = p(x, S,Ax(S)) =
∏

a∈Ax(S)

γ(a).

Similarly, if A = Ac
x(S), by IN,

p(x, S,A) = p(x, S,Ac
x(S)) =

∏
b∈Ac

x(S)
(1− γ(b))

(|S| − 1)|Ac
x(S)|

.

We now show that γ(a) > 1
2
for all a ∈ A. By BD, for any x, y ∈ X with x ̸= y,

we have p(x, {x, y}, {a}) ̸= p(y, {x, y}, {a}). W.l.o.g. suppose p(x, {x, y}, {a}) >

p(y, {x, y}, {a}). By FS, p(x, {x, y}, {a}) = 1 − p(y, {x, y}, {a}) > 1
2
. Therefore,

γ(a) > 1
2
for all a ∈ A. Moreover, we have shown that p = ps is a SCRALA with ⪰a

and γ(a) as parameters for any a ∈ A. This completes the proof for the “Only If”

part of the theorem.

( ⇐= ) Now, we prove the “If” part for each Axiom separately. We show that any

SCR, ps which is a SCRALA satisfies all the Axioms mentioned in the statement of

Theorem 1.

Claim 1 SCRALA satisfies IN.

Proof. Let ps be a SCRALA. Suppose A,B ∈ A and A∩B = ∅. Assuming Ax(S) ̸= ∅
and Bx(S) ̸= ∅, for any x ∈ S, we have

ps(x, S,A ∪B) =
∏

a∈(A∪B)x(S)

γ(a)

∏
b∈(A∪B)cx(S)

(1− γ(b))

(|S| − 1)|(A∪B)cx(S)|

=
∏

a∈Ax(S)

γ(a)
∏

a∈Bx(S)

γ(a)

(∏
b∈Ac

x(S)
(1− γ(b))

(|S| − 1)|Ac
x(S)|

)(∏
b∈Bc

x(S)
(1− γ(b))

(|S| − 1)|Bc
x(S)|

)

=

 ∏
a∈Ax(S)

γ(a)

∏
b∈Ac

x(S)
(1− γ(b))

(|S| − 1)|Ac
x(S)|

 ∏
a∈Bx(S)

γ(a)

∏
b∈Bc

x(S)
1− γ(b)

(|S| − 1)Bc
x(S)|


= ps(x, S,A)ps(x, S,B)

The other cases (Ax(S) = A or Ac
x(S) = A) are much simpler and easy to verify.

Claim 2 SCRALA satisfies FS.

Proof. Let ps be a SCRALA. Since S has finitely many elements, we can list S

as S = {x1, · · · , x|S|}. As ⪰a is a linear order over S, w.l.o.g we can order S as

x1 ⪰a x2 ⪰a · · · ⪰a x|S|. Then, a ∈ Ax1(S) and a ∈ Ac
xi
(S),∀i ∈ {2, · · · , |S|}. By the

14



definition of SCRALA,

ps(x1, S, {a}) = γ(a)

and

ps(xi, S, {a}) =
1− γ(a)

|S| − 1
, for all i ∈ {2, · · · , |S|}.

Therefore,

∑
x∈S

ps(x, S, {a}) = ps(x1, S, {a}) +
|S|∑
i=2

ps(xi, S, {a})

= γ(a) +

|S|∑
i=2

1− γ(a)

|S| − 1

= γ(a) + (|S| − 1)
1− γ(a)

(|S| − 1)

= γ(a) + 1− γ(a)

= 1

Claim 3 SCRALA satisfies IS.

Proof. Let ps be a SCRALA. Let x, y ∈ X and a ∈ A. Letting A = {a}, we have

Ax({x}) = A since x ⪰a x and Ay({y}) = A since y ⪰a y. By the definition of

SCRALA,

ps(x, {x}, {a}) = γ(a) = ps(y, {y}, {a}).

Claim 4 SCRALA satisfies UIA.

Proof. Consider any S ∈ X and x, y, z ∈ S such that,

[ps(x, {x, y}, {a}) > ps(y, {x, y}, {a}) and ps(x, {x, z}, {a}) > ps(z, {x, z}, {a}).

By the definition of SCRALA, ps(x, V, {a}) ∈ {γ(a), 1 − γ(a)}, where V ∈ X and

|V | = 2. Since, γ(a) > 1
2
,∀a ∈ A, ps(x, {x, y}, {a}) = γ(a) = ps(x, {x, z}, {a}).

Similarly, ps(y, {x, y}, {a}) = 1− γ(a) = ps(z, {x, z}, {a}).

This implies that x ≻a y and x ≻a z. Therefore, by definition of SCRALA,

ps(y, S, {a}) = γ(a)

|S| − 1
= ps(z, S, {a}).

Claim 5 SCRALA satisfies DOM.

Proof. Let ps be a SCRALA. Consider any a ∈ A, S ∈ X and x ∈ S such that

ps(x, {x, y}, {a}) > ps(y, {x, y}, {a}) for all y ∈ S \ {x}. This implies by SCRALA
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that x ≻a y for all y ∈ S \ {x}. Therefore,

ps(x, S, {a}) = γ(a) = ps(x, S\{y}, {a}).

Claim 6 SCRALA satisfies BD.

Proof. Let ps be a SCRALA. Consider any a ∈ A and x, y ∈ X with x ̸= y. Since

⪰a is a linear order over X, either x ≻a y or y ≻a x. W.l.o.g. suppose x ≻a y. By

the definition of SCRALA,

ps(x, {x, y}, {a}) = γ(a) >
1− γ(a)

2− 1
= 1− γ(a) = ps(y, {x, y}, {a}).

Therefore, ps(x, {x, y}, {a}) ̸= ps(y, {x, y}, {a}).

Claim 7 SCRALA satisfies ST.

Proof. Let ps be a SCRALA. Suppose for some x, y, z ∈ X,

ps(x, {x, y}, {a}) > ps(y, {x, y}, {a}) and ps(y, {y, z}, {a}) > ps(y, {y, z}, {a}).

Since ps is a SCRALA with respect to ⪰a for any a ∈ A, the above two strict

inequalities imply (as shown earlier) that x ≻a y and y ≻a z. Since ≻a is transitive,

x ≻a z which implies that p(x, {x, z}, {a}) > p(z, {x, z}, {a}).

4.1 Uniqueness Of Parameters

We now establish the uniqueness of parameters in the model which concern the

salience of attributes and the (attributes) family of preferences over the alternatives,

namely, (γ(a))a∈A and (⪰a)a∈A.

Proposition 1 The parameters ((γ(a))a∈A, (⪰a)a∈A) for a SCRALA ps are unique

for any given choice data.

Proof. Let ps be a SCRALA that represents a choice data p. Suppose the family

of parameters ((γ(a))a∈A, (⪰a)a∈A) and ((γ
′
(a))a∈A, (⪰

′
a)a∈A) both represent p under

SCRALA ps. We show that ((γ(a))a∈A, (⪰a)a∈A)= ((γ
′
(a))a∈A, (⪰

′
a)a∈A). For any

x ∈ X, by definition of SCRALA, we have

p(x, {x}, {a}) = γ(a) = γ
′
(a) = p(x, {x}, {a}), ∀ a ∈ A.

Thus, (γ(a))a∈A = (γ
′
(a))a∈A.

Now, suppose that (⪰a)a∈A ̸= (⪰′
a)a∈A. Then, ∃x, y ∈ X with x ̸= y and ∃ a ∈ A

such that x ⪰a y and y ⪰′
a x. By SCRALA and by the fact that γ(a) is unique, we
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have

p(x, {x, y}, {a}) = γ(a) =
1− γ(a)

2− 1
= 1− γ(a).

This implies that γ(a) = 1
2
. However, this is a contradiction to the definition of

SCRALA since γ(a) > 1
2
for all a ∈ A. Hence, (⪰a)a∈A = (⪰′

a)a∈A.

4.2 Regularity in Alternatives and in Attributes

We first show that SCRALA is regular in attributes.

Definition 3 (Regular in Attributes) An SCR p is said to be Regular in At-

tributes if p(x, S,A) ≥ p(x, S,B), whenever A,B ∈ A with A ⊆ B, and x ∈ S.

An interpretation of regularity in attributes is as follows. As more attributes become

relevant, the choices become more difficult and the probability that an alternative

is chosen weakly decreases (hence the probability that the empty set or the default

alternative is chosen weakly increases) when the set of alternatives is fixed.

Proposition 2 SCRALA satisfies Regularity in Attributes.

Proof. Suppose ps is a SCRALA and let S ∈ X and A,B ∈ A with A ⊆ B.

By finiteness of B, we can write B = A ∪ {b1, · · · , bk} for some k ∈ N. Denote

B1 = A ∪ {b1}. Therefore,

ps(x, S,B1) =

 γ(b1)p
s(x, S,A) if b1 ∈ B1x(S);(

1−γ(b1)
|S|−1

)
ps(x, S,A) if b1 ∈ Bc

1x(S).

Since γ(b1) ∈ (1
2
, 1], we have ps(x, S,B1) ≤ ps(x, S,A). Similarly, one can show

that

p(x, S,Bk) ≤ · · · ≤ p(x, S,B2) ≤ p(x, S,B1) ≤ ps(x, S,B0) = ps(x, S,A),

where B0 = A and Bi = Bi−1 ∪ {bi},∀i ∈ {1, · · · , k}. Thus,

Bk = Bk−1 ∪ {bk} = A ∪ {b1, · · · , bk−1} ∪ {bk} = B.

Consequently, ps(x, S,A) ≥ ps(x, S,B). This establishes the result.

Definition 4 (Regularity in Alternatives) An SCR p satisfies Regularity in Al-

ternatives if p(x, S,A) ≥ p(x, T,A), for all A ∈ A and for all x ∈ S ⊆ T , where

S, T ∈ X .

This is the standard Regularity postulate which states that the choice probability of

an alternative is weakly greater for a subset of a set when the set of attributes is

fixed.
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Proposition 3 SCRALA satisfies Regularity in alternatives.

Proof. Let S, T ∈ X with S ⊆ T . Assuming Ax(S) ̸= ∅ and Ac
x(S) ̸= ∅, for any

x ∈ S, by SCRALA, we have

ps(x, S,A) =
∏

a∈Ax(S)

γ(a)

∏
a∈Ac

x(S)
(1− γ(a))

(|S| − 1)|Ac
x(S)|

for any A ∈ A. Since, T is finite, we can write T = S ∪ {x1, · · · , xk} for some k ∈ N.

Denote T1 = S ∪ {x1}. By the construction of the sets Ax(·) and Ac
x(·) any attribute

a ∈ A it is possible that a ∈ Ax(S) and a ∈ Ac
x(S ∪ {x1}) (for instance if ∃ a ∈ A

such that x ⪰a y,∀y ∈ S but x1 ⪰a x). However, it is not possible that a ∈ Ac
x(S)

and a ∈ Ax(S ∪ {x1}) (even if x ⪰a x1,∀a ∈ A). Combining the above with the fact

that

γ(a) >
1− γ(a)

|S| − 1
>

1− γ(a)

|S|
=

1− γ(a)

|S ∪ {x1}| − 1
,∀a ∈ A,

(as γ(a) > 1
2
) we have ps(x, S,A) > ps(x, S ∪ {x1}, A). Note that ps(x, S,A) =

ps(x, S ∪ {x1}, A) holds only when x ⪰a x1, ∀a ∈ A and Ac
x(S) = ∅, the latter being

necessary as
1− γ(a)

|S| − 1
>

1− γ(a)

|S ∪ {x1}| − 1
.

Thus, ps(x, S,A) ≥ ps(x, S ∪ {x1}, A) Similarly, one can show that

ps(x, T,A) = ps(x, Tk, A) ≤ · · · ≤ ps(x, T1, A) ≤ ps(x, T0, A) = ps(x, S,A),

where T0 = S and Ti = Ti−1 ∪ {xi},∀i ∈ {1, · · · , k}. Thus,

Tk = Tk−1 ∪ {xk} = S ∪ {x1, · · · , xk−1} ∪ {xk} = T.

Therefore, ps(x, S,A) ≥ ps(x, T,A) whenever S ⊆ T ∈ X .

SCRALA does not satisfy a stronger notion of regularity, which can be defined as

follows.

Definition 5 (Regularity in Alternatives*) An SCR p satisfies Regularity in Al-

ternatives* if p(x, S, ·) ≥ p(x, S, ·) for all x ∈ S ⊆ T ∈ X .

Therefore, this version of regularity allows the attribute sets to be different. We show

an example to show that SCRALA violates this stronger version of regularity in alter-

natives. Let x ⪰a z ⪰a y, y ⪰b x ⪰b z, x ⪰c y ⪰c z and γ(a) = 0.6, γ(b) = 0.7, γ(c) =

0.9. Then by SCRALA, ps(x, {x, y}, {a, b}) = 0.18 < ps(x, {x, y, z}, {a, c}) = 0.54.

In the above example, we can make another observation that SCRALA can explain

Asymmetric Dominance (or Attraction Effect) (see Huber et al. (1982)) which is
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described as follows: when the asymmetrically dominated element z is added to

{x, y}, the choice probability of dominant element x is the highest in {x, y, z} and in

particular there is a reversal in choice probability ordering between x and y as the

following calculations show:

ps(x, {x, y}, {a, b}) = 0.18 < ps(y, {x, y}, {a, b}) = 0.28

and

ps(x, {x, y, z}, {a, c}) = 0.54 > ps(y, {x, y, z}, {a, c}) = 0.01.

Note that in our example, it is crucial that the attributes sets are varied across

contexts when the asymmetrically dominated alternative is added to the initial menu.

One can interpret it as that when the asymmetrically dominated alternative (z) is

added to the menu, {x, y}, it alters the relevant set of attributes (from {a, b} to {a, c})
in favour of the asymmetrically dominant alternative (x).

4.3 Pareto Dominance and SCRALA

In this section, we establish that the deterministic variant of SCRALA satisfies Pareto

Dominance. We first define Pareto Dominance for deterministic choice functions

which is borrowed from the literature on choice functions (Arrow (1959) and Chernoff

(1954)).

Let c : X × A → X be a deterministic choice function such that C(S,A) ∈ S for

any S ∈ X and A ∈ A. Let ⪰a be the preference ordering according to an attribute

a ∈ A. Full attention (FA): SCRALA satisfies FA if the DM pays full attention to

all the attributes, i.e., γ(a) = 1 for all a ∈ A.

Definition 6 Pareto Dominance: A deterministic choice function c satisfies Pareto

dominance if for any S ∈ X and A ∈ A the following holds:

(i) [c(S,A) = {x}] ⇐⇒ [x ≻a y ∀ a ∈ A,∀ y ∈ S\{x}]; and

(ii) [c(S,A) = {x∗}] ⇐⇒ [∀x ∈ S ∃ a ∈ A, y ∈ S\{x} such that y ≻a x].

Pareto dominance requires that a choice is rationalizable by it if and only if the

chosen alternative dominates all the other alternatives in the menu via all the relevant

attributes. If there is no Pareto dominant element, then the choice set is empty. In

terms of stochastic choice, the above translates into the fact that an alternative is

chosen with probability 1 if and only if it dominates all other alternatives in the menu

in all relevant attributes and given that γ(a) = 1 for all a ∈ A (by FA). If there is no

Pareto dominant element the default alternative is chosen with probability 1.

Let cs(S,A) denote the choice function derived from SCRALA as follows: (i) for any

19



x ∈ X, cs(S,A) = {x} if and only if ps(x, S,A) = 1 (ii) otherwise cs(S,A) = {x∗}.
Note that by the definition of SCRALA and FA, p(x, S,A) = 1 if and only if x ≻a y

for all a ∈ A for all y ∈ X \ {x}. Consistent with the above, for any a ∈ A we can

define the attribute orderings ≻a over alternatives in revealed preference terms as:

x ≻a y ⇐⇒ {x} = cs({x, y}, {a}) ⇐⇒ p(x, {x, y}, {a}) = 1,∀x, y ∈ X.

Proposition 4 Suppose SCRALA satisfies FA. The deterministic choice function cs,

based on SCRALA, satisfies Pareto Dominance.

Proof. Take any S ∈ X and A ∈ A. We first verify Condition (i) of Definition

6. To this end, suppose x = cs(S,A). By definition of SCRALA, it must be that

ps(x, S,A) = 1. However this is only possible if x ≻a y for all a ∈ A and all y ∈ S\{x}
and γ(a) = 1 for all a ∈ A. Therefore, Ax(S) = A. By definition of SCRALA,

p(x, S,A) =
∏
a∈A

γ(a) = 1,

as γ(a) = 1 for all a ∈ A.

Similarly, one can show that

[x ≻a y ∀ a ∈ A ∀ y ∈ S\{x}] =⇒ [ps(x, S,A) = 1] =⇒ [cs(S,A) = x]

where the first implication holds under FA.

We now verify Condition (ii) of Definition 6. Suppose cs(S,A) = {x∗} for some S ∈ X
and A ∈ A. By definition of SCRALA, cs and FA, we have ps(x, S,A) = 0 for all

x ∈ S. This implies that for each x ∈ S, ∃ a ∈ A, ∃ y ∈ S\{x} such that y ≻a x.

Conversely, assume that ∀x ∈ S,∃ a ∈ A,∃ y ∈ S\{x} such that y ≻a x. This implies

that Ac
x(S) ̸= ∅,∀x ∈ S. By SCRALA and FA,

ps(x, S,A) =
∏

a∈Ax(S)

γ(a)

∏
a∈Ac

x(S)
(1− γ(a))

(|S| − 1)|Ac
x(S)|

=
∏

a∈Ax(S)

γ(a)

∏
a∈Ac

x(S)
(1− 1)

(|S| − 1)|Ac
x(S)|

=
∏

a∈Ax(S)

γ(a)
∏

a∈Ac
x(S)

0

= 0.
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By the definition of SCR,∑
x∈S

ps(x, S,A) + ps(x∗, S, A) = 1.

Therefore, ps(x∗, S, A) = 1 which implies that cs(S,A) = {x∗}.

4.4 Application: A Social Choice Approach

We briefly touch on the heavily researched topic of Social Choice. Our spotlight, thus

far, has been on the individual consumer and how she makes a choice from a set of

alternatives. In the theory of social choice, we usually consider a society where there

are many individuals voting to elect a candidate from a set of candidates. Each voter,

in general, is assumed to have a preference over the contesting candidates. The pref-

erences is then aggregated (sometimes into a social choice function/correspondence)

in some suitable sense. The dominant strand of literature on Social Choice considers

deterministic versions of the above aggregation. There is a strand of literature where

the social choice functions are probabilistic. We seek to show that SCRALA can be

applied to such scenarios.

Let S ∈ X denote the set of candidates, A ∈ A be the set of voters, and ⪰a be the

preference ordering of a voter a ∈ A. In this setting, SCRALA can also be interpreted

as a Probabilistic Social Choice Function, where the attributes are voters, and the

orderings for attributes are viewed as orderings announced by the voters over the

set of candidates. The parameters (γ(a))a∈A can be interpreted as the probability

that voter a’s preference is taken into account for making the social decision. Here

γ(a) ∈ (1
2
, 1] implies that each voter’s preference is more likely to be considered in the

aggregation of preferences than not. We can restate SCRALA in this probabilistic

social choice context as follows:

P S(x, S,A) =



∏
a∈Ax(S)

γ(a)

∏
b∈Ac

x(S)
(1− γ(b))

(|S| − 1)|Ac
x(S)|

, if Ax(S) ̸= ∅, Ac
x(S) ̸= ∅;∏

a∈Ax(S)
γ(a), if Ax(S) = A;∏

b∈Ac
x(S)

(1− γ(b))

(|S| − 1)|Ac
x(S)|

, if Ac
x(S) = A.

where

Ax(S) = {a ∈ A : x ⪰a y,∀y ∈ S}

denotes the voters who prefer candidate x over all the candidates in S and

Ac
x(S) = {a ∈ A : ∃y ∈ S\{x}, y ⪰a x}
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is the set of voters where some candidate y ∈ S\{x} is preferred to candidate x where

x, y ∈ X, S ∈ X , a ∈ A, and A ∈ A. Here, P S(x, S,A) denotes the probability that

candidate x is the winner of the election when the menu of candidates are S and the

set of voters are A. The probability that x∗(a default or status quo candidate or None

Of The Above (NOTA)) is the outcome is: P S(x∗, S, A) = 1−
∑

x∈S P
S(x, S,A).

Example 2 Suppose X = {x, y, z} and A = {a1, a2}. Let the two orderings with

respect to the agents a1 and a2 be x ≻a1 y ≻a1 z and x ≻a2 z ≻a2 y respectively.

Let γ(a1) = 0.9 and γ(a2) = 0.8 be the two opinion consideration probabilities of

the voters. The probabilities of being elected of the three candidates from the set

S = {x, y, z} according to SCRALA, P S are as follows:

(i) P S(x, S,A) = γ(a1)γ(a2) = (0.9)(0.8) = 0.72.

(ii) P S(y, S,A) =

(
1− γ(a1)

|S| − 1

)(
1− γ(a2)

|S| − 1

)
=

(
1− 0.9

3− 1

)(
1− 0.8

3− 1

)
= 0.005.

(iii) P S(z, S, A) =

(
1− γ(a1)

|S| − 1

)(
1− γ(a2)

|S| − 1

)
=

(
1− 0.9

3− 1

)(
1− 0.8

3− 1

)
= 0.005.

(iv) P S(x∗, S, A) = 1−
∑

x∈S p(x, S,A) = 1− 0.72− 0.005− 0.005 = 0.27

Note that the probability of candidate x being elected is the highest by a large mag-

nitude (in comparison with y and z) as it is the most preferred alternative for both

voter a1 and a2. But she is not elected with probability 1 because there is a non-zero

probability that voter a1’s opinion is ignored (= 1− γ(a1) = 0.1) and there is a non-

zero probability that voter a2’s opinion is ignored (= 1 − γ(a2) = 0.2). Hence, the

default (status quo or NOTA) is the outcome with a probability of 0.27.

5 Conclusion

We provide a model of individual stochastic choice where a decision maker is attention-

biased towards different attributes where the attributes are considered with indepen-

dent probabilities. For future work, it would be interesting to explore a framework

where the attention probabilities are dependent. For example, it is possible that if

attention paid to an attribute is high then the attention paid to another complemen-

tary attribute is also high. This can happen when two or more attributes are related,

for example, while buying a box of breakfast cereal, the ‘type of ingredients’ as an

attribute may be linked to another attribute, ‘the sugar content’ of the cereal.
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6 Appendix

6.1 Independence of the Axioms

In this section, we prove the independence of the Axioms. To show this, we provide

an example of an SCR for each Axiom listed in the statement of the Theorem 1 which

satisfies all Axioms except that one.

Claim 8 The following SCR-1 satisfies all the Axioms except IN.

Definition 7 (SCR-1) An SCR, p1 is a SCR-1 if for all a ∈ A there exist an

ordering ⪰a, an attention parameter γ(a) ∈ (1
2
, 1] and an ordering ⋟ on A such that

for any S ∈ X , x ∈ S and A ∈ A,

p1(x, S,A) =

γ(a∗) if a∗ ∈ Ax(S) where a∗ = max(⋟, A);

1−γ(a∗)
|S|−1

otherwise.

For an example, consider A = {a1, a2} with x ⪰a1 y ⪰a1 z, y ⪰a2 x ⪰a2 z, and

a1 ⋟ a2, then for S = {x, y, z},

p1(x, S,A) = γ(a1), p
1(y, S,A) = p1(z, S, A) =

1− γ(a1)

2

while,

p1(x, {x, y}, {a1}) = p1(x, {x}, {a1}) = γ(a1)

and

p1(x, {x, y}, {a2}) = 1− γ(a2), p
1(y, {y}, {a2}) = p(x, {x}, a2) = γ(a2).

It is easy to verify that the rule does not satisfy IN since

p1(x, S,A) = γ(a1) ̸= p1(x, S, {a1})p1(x, S, {a2}) = γ(a1)

(
1− γ(a2)

|S| − 1

)
.

The rule satisfies all the other Axioms.

Claim 9 The following SCR-2 satisfies all the Axioms except FS.

Definition 8 (SCR-2) An SCR, p2 is SCR-2 if for all a ∈ A there exists an

ordering ⪰a and an attention parameters γ(a) ∈ (1
2
, 1] such that for any S ∈ X ,
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x ∈ S and A ∈ A,

p2(x, S,A) =



∏
a∈Ax(S)

γ(a)

∏
b∈Ac

x(S)
(1− γ(b))

2(|S| − 1)|Ac
x(S)|

, if Ax(S) ̸= ∅, Ac
x(S) ̸= ∅;∏

a∈Ax(S)
γ(a), if Ax(S) = A;∏

b∈Ac
x(S)

(1− γ(b))

2(|S| − 1)|Ac
x(S)|

, if Ac
x(S) = A.

Consider S = {x, y} and A = {a} such that x ≻a y. This rule does not satisfy FS

since

p2(x, {x, y}, {a}) = γ(a), p2(y, {x, y}, {a}) = 1− γ(a)

2
, and p2(x∗, {x, y}, {a}) = 1− γ(a)

2
.

It is easy to verify that SCR-2 satisfies all the other Axioms.

Claim 10 The following SCR-3 satisfies all the Axioms except IS.

Definition 9 (SCR-3) An SCR, p3 is SCR-3 if there exists an ordering ⪰a and

attention parameters γ(a) ∈ (1
2
, 1] for all a ∈ A such that for any S ∈ X , x ∈ S, and

A ∈ A,

p3(x, S,A) =



ps(x, S,A), if |S| ≥ 2;∏
a∈Ax(X) γ(a), if Ax(X) = A, |S| = 1;∏
a∈Ac

x(X)(1− γ(a)), if Ac
x(X) = A, |S| = 1;∏

a∈Ax(X) γ(a)
∏

b∈Ac
x(X)(1− γ(b)), if Ax(X) ̸= ∅, Ac

x(X) ̸= ∅, |S| = 1.

Consider X = {x, y} and A = {a} such that x ≻a y. This rule does not satisfy IS

since

p3(x, {x}, {a}) = γ(a), p3(y, {y}, {a}) = 1− γ(a).

It is easy to verify that SCR-3 satisfies all the other Axioms.

Claim 11 The following SCR-4 satisfies all the Axioms except UIA.

Let

A1
x(S) = {a ∈ A : x = max(⪰a, S)}

and

A2
x(S) = {a ∈ A : x = max(⪰a, S\{x∗

a(S)})}.

where x∗
a(S) = max(⪰a, S).

Definition 10 (SCR-4) An SCR, p4 is SCR-4 if for all a ∈ A there exists an

ordering ⪰a and attention parameters γ(a) ∈ (1
2
, 1] such that for any S ∈ X , x ∈ S
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and A ∈ A,

p4(x, S,A) =



∏
a∈A1

x(S)
γ(a)

∏
b∈A2

x(S)
(1− γ(b))

(|S| − 1)|A2
x(S)|

, if A1
x(S) ̸= ∅, A2

x(S) ̸= ∅;∏
a∈A1

x(S)
γ(a), if A1

x(S) = A;∏
b∈A2

x(S)
(1− γ(b))

(|S| − 1)|A2
x(S)|

, if A2
x(S) = A;

0, otherwise.

Consider S = {x, y, z} and A = {a} such that x ≻a y ≻a z. This rule does not satisfy

UIA since

p4(x, S,A) = γ(a), p4(y, S,A) = 1− γ(a) and p(z, S, A) = 0.

It is easy to verify that SCR-4 satisfies all the other Axioms.

Claim 12 The following SCR-5 satisfies all the Axioms except DOM.

Definition 11 (SCR-5) An SCR p5 is SCR-5 if for all a ∈ A there exists an or-

dering ⪰a and attention parameters γ(a) ∈ (1
2
, 1] such that for any S ∈ X , x ∈ S and

A ∈ A,

p5(x, S,A) =

ps(x, S,A), if |S| ≥ 2;

1, if |S| = 1.

SCR-5 is a SCRALA if |S| ≥ 2 and chooses an alternative with probability one from

any singleton set.

Consider S = {x, y, z} and A = {a} such that x ≻a y ≻a z. This rule does not satisfy

DOM since

p5(x, {x, y}, {a}) = γ(a) ̸= p5(x, {x}, {a}) = 1.

It is easy to verify that SCR-5 satisfies all the other Axioms.

Claim 13 The following SCR-6 satisfies all the Axioms except BD.

Definition 12 (SCR-6) An SCR p6 is SCR-6 if for all a ∈ A there exists an or-

dering ⪰a and attention parameters γ(a) ∈ (1
2
, 1] such that for any S ∈ X , x ∈ S and
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A ∈ A,

p6(x, S,A) =



∏
a∈Ax(S)

γ(a)

∏
b∈Ac

x(S)
(1− γ(b))

(|S| − 1)|Ac
x(S)|

, if Ax(S) ̸= ∅, Ac
x(S) ̸= ∅;∏

a∈Ax(S)
γ(a), if Ax(S) = A;∏

b∈Ac
x(S)

(1− γ(b))

(|S| − 1)|Ac
x(S)|

, if Ac
x(S) = A.

SCR-6 is a SCRALA with γ(a) = 1
2
for all a ∈ A.

Consider S = {x, y} and A = {a} such that x ≻a y. This rule does not satisfy BD

since

p6(x, {x, y}, {a}) = p6(y, {x, y}, {a}) = 1

2
.

It is easy to verify that SCR-6 satisfies all the other Axioms.

Claim 14 The following example of an SCR satisfies all the Axioms except ST for

S = {x, y, z} and A = {a}.

Proof. Consider X = {x, y, z} and A = {a}. Let the SCR be as follows:

p(x,X,A) = p(z,X,A) =
1

3
, p(y,X,A) =

1

3
.

p(x, {x, y}, A) = 2

3
, p(y, {x, y, }, A) = 1

3
.

p(y, {y, z}, A) = 2

3
, p(z, {y, z}, A) = 1

3
.

p(z, {x, z}, A) = 2

3
, p(x, {x, z}, A) = 1

3
.

p(x, {x}, A) = p(y, {y}, A) = p(z, {z}, A) = 2

3
.

Note that UIA, DOM and IN are satisfied trivially, while FS, IS and BD are

satisfied by the definition of the SCR above.
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