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Abstract

We propose and study a model of strategic network design and exploration where
the hider, subject to a budget constraint restricting the number of links, chooses a
connected network and the location of an object. Meanwhile, the seeker, not observing
the network and the location of the object, chooses a network exploration strategy
starting at a fixed node in the network. The network exploration follows the expanding
search paradigm of Alpern and Lidbetter (2013). We obtain a Nash equilibrium and
characterize equilibrium payoffs in the case of linking budget allowing for trees only.
We also give an upper bound on the expected number of steps needed to find the hider
for the case where the linking budget allows for at most one cycle in the network.

1 Introduction

Operation of modern businesses and institutions, such as military agencies, hospitals, or
universities involves storing and giving access to important and, often times, sensitive
data. This access exposes the data to the threat of malicious attacks aiming at stealing or
damaging the data. Attacks such as data theft or ransomware attacks (attacks in which
the attacker encrypts the crucial data of a company or an institution making it unusable
until a ransom is paid) constitute a large fraction of cyber attacks and bear a significant
cost to economy. According to European Parliament News European Parliament News
(2023), “in 2022 ransomware attacks continued to be one of the main cyberthreats...” and
“...it is estimated that in 2021 global ransomware reached €18 billion worth of damages”,
“... they are also getting more complex”.

A sophisticated attack tactic that is increasingly being used in data breach attacks such
as ransomware, data exfiltration, and espionage is network lateral movement CrowdStrike
(2023); Cloudflare (—); Lenaerts-Bergmans (2023). Using network lateral movement, the
attacker spreads from an entry point through the network. The objective is to explore the
network, learn the network topology, steal credentials and move through the network until
valuable assets are found. Hence, executing the attack, the attacker searches through the
network in an expanding fashion. Based on the knowledge of the network discovered so far,
she chooses the next node to move to. Move to subsequent nodes exposes the attacker to
the risk of being discovered (as it takes time and also requires the attacker to perform risky
actions such as compromising subsequent credentials in the network). Therefore, to make
these attacks harder to execute, apart from following good security practices, the network
owners can use deception such as decoys to make the attacker easier to discover before the
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target of attack is reached. In particular, the choice of the network topology affects the
speed with which the attacker is able to explore the network. This defence strategy comes
at a cost, as larger networks consisting of many nodes are harder to maintain and long
sequences of security procedures required to access the data stored in the network require
additional time and, possibly, effort from the users.

Another example of situations where threats to network security involve network ex-
ploration and where network design can be used to complicate and slow down exploration
are situations of infiltration of covert networks, such as criminal, terrorist, or underground
movements networks. In these situations, the authorities exert surveillance over the known
members of the organization, to learn their contacts and gradually discover new individu-
als within the organization. The objective of the authorities is to discover the key actors
in the organization (e.g. the head of the organization). The objective of the network
organizer is to slow down the authorities in order to detect surveillance on time and flee.
Again, larger networks are more costly to maintain and longer “chains of command” affect
negatively the efficiency such covert organizations.

1.1 Our contribution

Motivated by these considerations, we propose and study a stylized game theoretic model
of network design and exploration where the hider designs a network and chooses a hiding
place while the seeker (who is the attacker), aware only of the access point to the network,
designs a network exploration strategy that proceeds through the network, gradually dis-
covering new nodes, until the hiding place is found. The model of network exploration
follows the expanding search paradigm of Alpern and Lidbetter (2013). The payoff of the
hider balances two objectives: he wants to keep the hiding place as close as possible to
the entry point, but also wants to maximize the expected number of steps needed by the
seeker to find the target. The objective of the seeker is to minimize the expected number
of steps to reach the target. We find an equilibrium of this game in the case where the
linking budget of the hider allows for constructing trees only. In this equilibrium, the
seeker uses a randomized depth first search strategy (DFS) while the hider chooses a tree
that consists of a line of optimal length, starting at the entry point, and ending with a
star of the remaining nodes. We also show that all Nash equilibria are payoff equivalent
for the hider and that the equilibrium strategy that we find guarantees at least the hider’s
equilibrium payoff against any strategy of the seeker. Under an additional assumption of a
unique optimal hiding distance from the source for the hider, we show that Nash equilibria
are payoff equivalent to the seeker. Moreover the DFS strategy is a best response to any
equilibrium strategy of the hider.

In the remaining part of the paper we consider a case where the linking budget allows
the hider to construct networks with a cycle. This possibility makes the search problem
considerably more complicated, even if the seeker knows the maximal distance from the
source at which the hider hides. In particular, the DFS strategy is not as effective as in
the case of tree networks. We show that the seeker has a seeking strategy that allows her
to find the hider in the expected number of steps that is close to but higher than that
guaranteed by the DFS on trees. The strategy is a combination of the DFS, a variant of
a bounded DFS, and a seeking strategy that adjusts the DFS after the cycle is discovered
in the network. Our findings suggest, in particular, that using cycles as decoys can be
an effective method to increase the expected number of steps the seeker needs to find the
hider.
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1.2 Related literature

The literature on search in networks dates back to the 19th century works of Lucas (1882)
and Tarry (1895), who described a search strategy (nowadays known as Tarry’s traversal
algorithm) that allows for finding a fixed node in an unknown network, starting from any
node without visiting links more than twice. A special case of this search strategy is the
well known depth first search algorithm Even (1979).

Game theoretic analysis of strategic hiding and searching in networks is a part of a
large literature on search games (see Alpern and Gal (2003); Alpern et al. (2013)). Within
this literature, the games that are the closest related to the model studied in this paper
are network games with an immobile hider and a fixed starting point of the seeker Gal
(1979); Alpern and Lidbetter (2013). In these games, the hider chooses a fixed location
in a network and aims to maximise the expected time until being captured by the seeker.
The seeker chooses a search strategy starting at the given node with the objective of find
the hider in minimal time. The games are zero-sum and the focus of the literature is
on characterization of optimal seeking and hiding strategies as well as the value of the
game Gal (1979); Reijnierse and Potters (1993); Pavlovic̀ (1993); Reijnierse (1995); Gal
(2001); Alpern and Lidbetter (2013).

Most of the literature in this area considers scenarios where the network is exogenous
and known to both players. A search model most commonly studied in this literature
is the pathwise search model Gal (1979); Reijnierse and Potters (1993); Pavlovic̀ (1993);
Reijnierse (1995); Gal (2001), in which moving from one point in the network to another
requires the seeker to traverse all the links on a path between the two points. Links are
weighted and the weight of a link represents the time needed to fully traverse the link. In
the case when the hider can hide in nodes as well as at any points within the links, an
optimal search strategy must traverse all the links in the network and minimize the total
weight of traversed links when doing so. A solution to this problem is a Chinese postman
tour Edmonds and Johnson (1973), which visits each link at most twice and ends at the
starting point. As was shown in Reijnierse (1995) and Gal (2001), a mixed strategy which
chooses a Chinese postman tour with probability 1/2 in each direction (called randomized
Chinese postman tour) is an optimal search strategy on weakly Eulerian networks.12 On
these graphs, the strategy guarantees that the expected total weight of the links traversed
until the hider is found is equal to at most half of the length of a Chinese postman tour).
On trees, an optimal hiding strategy is a probability distribution on the leaves of the tree,
called equal branch density Gal (1979, 2001). It guarantees that any depth first search of
the tree finds the hider in an expected time equal to half of the length of a Chinese postman
tour which, on trees, is equal to the total weight of the links. This is also the value of the
game in this case. On Eulerian networks, the optimal hiding strategy is mixing uniformly
on the set of all points of the graph. The value of the game is half of the total weight of
the links, which is also the minimal possible value across all connected networks. Finding
an optimal search strategy for general networks is known to be NP-hard von Stengel and
Werchner (1997).

The search paradigm that we adopt in this paper the expanding search introduced
by Alpern and Lidbetter (2013). In this paradigm, moving from a node to an unvisited
node requires traversing a minimal weight link connecting the set of visited nodes and
the unvisited node. Alpern and Lidbetter (2013) studied search games with an exogenous
network that is known to both players. In the case of tree networks, they obtain charac-

1A network is Eulerian when it contains an Euler cycle (which is equivalent to the network being
connected and each node having an even degree). A network is weakly Eulerian when it is obtained by
replacing a subset of nodes in a tree with Eulerian graphs.

2A similar result for weakly cyclic graphs was earlier shown by Reijnierse and Potters (1993).
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terization of optimal hiding and searching strategies. They show that the expected time
to capture the hider is equal to half of the total weights of the links plus half of a mean
distance from the root of the tree to its leaves, weighted according to the equal branch
density. Beyond the tree networks, Alpern and Lidbetter (2013) characterize optimal hid-
ing and searching strategies on 2-edge-connected networks (a network is 2-edge-connected
if it remains connected after a removal of any link.) Using the ear decomposition of such
networks due to Robbins (1939), the authors define a mixed strategy that allows the seeker
to reach the hiding node after traversing half of the links, in expectation. The study of
optimal search strategies under expanding search paradigm was continued by Alpern and
Lidbetter (2019), where strategies that approximate an optimal search time within a factor
close to 1.2 are described. In particular, the authors define a block optimal strategy which
mixes between two different seeking strategies. In general, the problem of constructing an
optimal expanding search strategy, given a graph and a probability distribution over the
nodes representing the hiding strategy, is NP-hard Averbakh and Pereira (2012). In recent
works, Hermans et al. (2021) and Griesbach et al. (2023) study efficient approximation
algorithms for this problem. In particular, Griesbach et al. (2023) propose an algorithm
that obtaine a nearly 2e approximation ratio.

The crucial difference between the model of Alpern and Lidbetter (2013) and the
model studied in this paper is that in the former case the network is observed by the
seeker before he chooses the seeking strategy, while in our case it is not. In particular, the
search strategies for 2-edge-connected networks, proposed in Alpern and Lidbetter (2013),
as well as the strategies described in Alpern and Lidbetter (2019) rely on the knowledge
of the network and are not applicable in our case. Lack of knowledge of the network
poses challenges in both formalizing the problem and designing optimal seeking strategies.
The subsequent nodes, visited by the seeker, are based on the fragment of the network
gradually discovered by the seeker. In particular, the seeking strategy, that we propose for
networks with at most one cycle, does not require the knowledge of the network. Another
important difference is that the seeker, knowing that the hider balances between having
the hiding place close and hard to find, at the same time, has to take it into account when
designing a good search strategy. As we illustrate with examples, this poses additional
challenges when the hider’s budget allows him to construct cycles. Lastly, an important
difference is the assumption that time is discrete, the hider hides at nodes only, and the
seeker moves between nodes in one unit of time. Alpern and Lidbetter (2013) consider a
much more general model, allowing for discrete as well as continuous time. In particular,
allowing for continuous time poses significant challenges in formalizing the problem and
the expanding search, even if the network is known to the seeker. Wanting to focus on the
challenge of formalizing hiding and seeking in an unknown network, we restrict attention
to discrete time only.

Other search problems closely related to the model considered in this paper is the search
on an unknown network, studied in Anderson (1981) and Gal and Anderson (1990). In this
problem a network is fixed but is unknown to the seeker and one of the nodes in the network
is the target node (the “exit” of the maze). The links of the network are weighted. The
search model is the pathwise search model. Gal and Anderson (1990) proposed a search
strategy called a fixed permutation search (which is a randomized version of the strategy
proposed by Tarry (1895)). The strategy guarantees finding the target node in expected
time which is at most the total weight of the links. Anderson (1981) proposed a zero
sum game similar to the one considered in this paper. In this game the hider chooses
the network of the given total weight of the links as well as the locations of the starting
node and the target node. His objective is to maximize the total weight of links traversed
by the seeker. The seeker chooses the search strategy aiming to minimize the payoff of
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the hider. As argued by Gal and Anderson (1990), the fixed permutation search strategy
guarantees that the seeker captures the hider in the time not greater than the total weight
of the links. Given this result, the optimal strategy of the hider is immediate. The hider
constructs a graph consisting of a single link of the given total weight. There are two main
differences between the model of Anderson (1981) and the model studied in this paper.
Firstly, the model of Anderson (1981) uses the pathwise search model, while in this paper,
we consider the expanding search model. Secondly, the hider does not face any cost of
locating the target as far from the start as possible. This makes the hiding problem easy
to solve (the hider constructs a line consiting of all the nodes and hides the target at the
end of the line) and the focus is on designing search strategies that would be good on any
networks.

Further, but still related to the problem studied in this paper, is the literature on
the exploration of an unknown network prior to influence maximisation. Motivated by
prohibitive cost of sampling large networks, Wilder et al. Wilder et al. (2018) propose a
network exploration strategy which samples a small subset of nodes in the network and
then performs a random walk of a limited number of steps in the network starting at
these points. The acquired information about the network is then used to determine the
probabilities with which the seeding node will be selected from the initially sampled set of
nodes. Using experiments and theoretical analysis based on random networks, the authors
show that this approach improves upon other influence maximisation methods that do not
involve exploring the network. In a similar vein, Eckles et al. (2022) study the problem
of influence maximisation with one or more seeds in an unknown network. They assume
the independent cascade model and propose a method that first samples the network
by seeding a number of nodes and then exploring the network by following the cascade.
They consider the variant where the number of links that they sample along the cascade
is unbounded as well as a variant where it is bounded. They compare the effectiveness
of the two approaches and obtain results on approximation guarantees for the influence
maximisation problem using these approaches.

Lastly, the problem studied in this paper is related to the problems of defence and
attack in networks Dziubiński et al. (2016). In this literature, the closest related is work
by Bloch et al. (2020) that considers a hide and seek game on a network, where the hiders
chooses a network and the location of the leader in the network. Then, observing the
network but not observing the location of the leader, the seeker chooses a node aiming at
being at distance at most one from the location of the leader. The authors characterize a
Nash equilibrium of the game and show that an optimal strategy for the hider is to either
construct a cycle, a disconnected network, or a core-periphery network. In the two former
cases the node of the leader is chosen uniformly at random from the set of all nodes in the
network while in the latter case it is chosen uniformly at random from the set of periphery
nodes.

2 Preliminaries

Graphs. Throughout the paper we use the following standard graph theoretic notions
and notations. An undirected graph over a set of nodes V is a pair G = ⟨V,E⟩ where
E ⊆

(
V
2

)
is the set of links in G (and

(
V
2

)
denotes the set of all two element subsets of V ).

Given a graph G we use V (G) to denote the set of nodes of G and E(G) to denote the set
of links of G.

Given node v ∈ V we use NG(v) to denote the set of all neighbours (the neighbourhood)
of v in G, i.e. NG(v) = {u ∈ V : uv ∈ E(G)}. We also use NEG(v) to denote the set of
all links between v and its neighbours in G, i.e. NEG(v) = {uv : uv ∈ E(G)}. Similarly,
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given a set of nodes X ⊆ V we use NG(X) to denote the (open) neighbourhood of X
in G, i.e. the set of neighbours of all the nodes in X in G excluding the nodes in X,
NG(X) =

⋃
v∈X NG(v)\X, and we use NEG(X) to denote the set of links between X and

NG(X) in G, NEG(X) =
⋃

v∈X NEG(v).
Given a set of nodes X ⊆ V we use G[X] to denote the subgraph of G induced by

X, i.e. G restricted to the nodes in X and the links between them only. Formally
G[X] = ⟨X,E[X]⟩ where E[X] = E(G) ∩

(
X
2

)
. In addition we use G[X] to denote the

subgraph of G consisting of all the nodes in X and the nodes in the neighbourhood of
X, all the links between the nodes in X and all the links from the nodes in X and
the nodes in the neighbourhood of X. Formally, G[X] = ⟨X ∪ NG(X), E[X]⟩ where
E[X] = E[X] ∪NEG(X). We call such a graph a closed subgraph of G induced by X (c.f.
Figure 1 for an example).

Figure 1: A closed subgraph induced by the set of nodes {v1, v2}.

Given two nodes u, v ∈ V (G) a sequence of nodes v1, . . . , vm such that v1 = u, vm = v
and for all i ∈ {2, . . . ,m}, vi−1vi ∈ E(G) is called a path between u and v in G and and
the length of the path is the number of links on it, i.e. it is m − 1. A path is simple if
every node in V appears at most once in it. Given nodes {s, u} ⊆ V (G) we use

PG(s, t) = {v ∈ V (G) : every path from s to t in G contains v}

to denote the set of nodes that belong to every path from s to t in G.
Node v is reachable from u in G if there is a path from u to v in G. The distance

from u to v in G is the length of the shortest path between them in G and is denoted by
dG(u, v). Graph G is connected if for any two nodes u, v ∈ V (G), v is reachable from u in
G.

Given a set of nodes V we use G(V ) to denote the set of all undirected connected
graphs that can be formed over V . We also use G =

⋃
X⊆V G(X) to denote the set of all

undirected connected graphs that can be formed over V or any of its subsets.

Finite sequences. Given a set V we use V ∗ to denote the set of all finite sequences
over the elements of V , including the empty sequence, ε. Given a sequence z ∈ V ∗ and
an element v ∈ V , v · z denotes the sequence obtained by adding v at the beginning of z
and z · v denotes the sequence obtained by adding v at the end of z. Operator · is the
concatenation operator. Given a sequence of nodes, x ∈ V ∗, and a node v ∈ V in the
sequence, let pos(v,x) denote the position at which v appears first in x. Throughout the
paper we will abuse the notation and, given a sequence z, we will also use z to denote the
set of nodes in z.

3 The model

There are two players, the hider, H, and the seeker, S, and a set of nodes V = {s, v1, . . . , vn−1},
where s is a distinguished source node. The hider wants to construct an undirected con-
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nected graph over V , G ∈ G(V ), and choose a node h ∈ V where he will hide the treasure.
His objective is to have the treasure hidden at a node reachable from the source and his
benefit (if the treasure is not found by the seeker), Φ : G(V )× V → R>0, is a decreasing
function of the distance of the hiding node from the source. Let

Φ(G, h) = A(dG(s, h))

where A : R → R≥0 is a monotonous non-increasing function. The hider faces a limited
linking budget: the network he chooses must contain at most b ∈ {n− 1, . . . , n(n− 1)/2}
links.

Knowing the objectives and the budget of the hider, the seeker wants to find the node
with the treasure. To do so, he chooses a sequence of nodes that he inspects one by one.
Choosing the next node in the sequence, the seeker observes all the nodes that he visited
so far, together with links between them, as well as the set of nodes that are neighbours
of the nodes visited so far in the graph chosen by the hider (the frontier nodes). At the
beginning the seeker observes node s and its neighbours only.

A seeking strategy is a function that maps:

• a sequence of nodes starting with s and not containing all nodes in V (e.g. the
sequence of nodes visited so far),

• a graph over the set of nodes in the sequence and the frontier nodes (e.g. the
subgraph of the graph chosen by the hider restricted to the nodes visited so far,
their neighbours, the links between the nodes visited so far, and the links from these
nodes to their neighbours),

to a node in the neighbourhood to be visited next. Formally, let I ⊆ V ∗ ×G be the set of
all pairs (z, G′) ∈ V ∗ × G such that

• z = (z0, . . . , zk−1) with z0 = s, k < n, and, for all j ∈ {1, . . . , k − 1}, zj ∈
NG′({z0, . . . , zj−1}),

• G′ = G′[z].

A seeking strategy is a function r : I → V such that, for all (z, G′) ∈ I, r(z, G′) ∈ NG′(z).
The set of all seeking strategies is denoted by R.

The hiding and the seeking are modelled as a simultaneous move game where the set of
strategies of the hider is G(V )× V and the set of strategies of the seeker is R. A strategy
profile ((G, h), r) ∈ (G(V )×V )×R determines a sequence of nodes seq(G, r) = v0, . . . , vn−1,
called the seeking sequence induced by (G, r), which contains all the nodes in V (each
exactly once) and starts with s. This is the sequence of nodes visited by the seeker when
his seeking strategy e is executed on G until all the nodes are visited. The sequence if
formally defined as follows:

• v0 = s,

• ∀i ∈ {1, . . . , n− 1}, vi = r((v0, . . . , vi−1), G[{v0, . . . , vi−1}]).

Payoffs to the players are defined as follows. Fix a strategy profile ((G, h), r) ∈ (G(V ) ×
V )×R. The objective of the seeker is to find node h in as little number of steps as possible.
The payoff to the seeker is minus the number of steps from the source to node h,

πS(G, h, r) = −pos(h, seq(G, r)). (1)
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The hider enjoys benefit Φ(G, h) at every step of the seeker. The payoff to the hider is
the benefit of the hider, Φ(G, h), times the number of steps of the seeker from the source
to node h,

πH(G, h, r) = pos(h, seq(G, r))Φ(G, h). (2)

A mixed strategy η of the hider is a probability distribution on G(V ) × V and a mixed
strategy σ of the seeker is a probability distribution on E. The expected payoffs from a
given mixed strategy profile, (η, σ) is defined in the standard way:

ΠS(η, σ) =
∑

(G,h)∈G(V )×V

∑
r∈R

ηG,hσrπ
S(G, h, r)

ΠH(η, σ) =
∑

(G,h)∈G(V )×V

∑
r∈R

ηG,hσrπ
H(G, h, r).

We are interested in mixed strategy Nash equilibria of the game defined above.

4 The analysis

4.1 Budget b = n− 1

We start the analysis by considering the case of the minimal budget allowing for the
construction of a connected network over n nodes: b = n− 1. With this budget the hider
is only able to construct trees.

Consider a seeking strategy called the randomized depth first search (randomized DFS).
The strategy, σDFS : I → ∆(V ), is defined as follows.3 Given (z, G′) ∈ I with z =
(z0, . . . , zk), let

actDFS(z, G′) = zmax{i∈{0,...,k}:NG′ (zi)\z ̸=∅}

and

σDFS(z, G′)(v) =

{
0, if v ∈ NG′(actDFS(z, G′)) \ z

1
|NG′ (actDFS(z,G′))\z| , otherwise.

Given a non-empty sequence z and a graph G′, actDFS(z, G′) is the most recently visited
node that has an unvisited neighbour in G′. We call this node an active node in z under
G′. If (z, G′) ∈ I with z = (z0, . . . , zk) then, by the definition of I, G′ is connected and
{z0, . . . , zk} ⊊ V . Therefore actDFS(z, G′) is well defined and is unique. The strategy σDFS

picks, uniformly at random, one of the unvisited neighbours of the active node determined
by actDFS.

Given a set of n nodes, V , such that s ∈ V , a palm-tree graph of height d is an
undirected graph ⟨V,E⟩ such that there exists an ordering of nodes in V , v0, . . . , vn−1

such that:

• v0 = s,

• E = {v0v1, . . . , vd−2vd−1} ∪ {vd−1vd, . . . , vd−1vn−1},

c.f. Figure 2 for an illustration. We will refer to the nodes {vd, . . . , vn−1} as the crown of
the palm tree and to the nodes {v0, . . . , vd−1} as the trunk of the palm tree.

A mixed hiding strategy where the hider chooses a palm tree of height d and picks one
of the nodes of its crown uniformly at random is called a mixed hiding in a crown of a
palm tree of height d.

3Given a finite and non-empty set X we use ∆(X) to denote the set of all probability distributions on
X.
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Figure 2: Palm-tree graph.

We now state and prove the equilibrium result for b = n− 1. Let

D⋆ = arg max
d∈{0,...,n−1}

A(d)

(
n+ d− 1

2

)
.

Theorem 1. If b = n − 1 then any strategy profile (η, σ) where η is a mixed hiding in a
crown of a palm tree of height d⋆ ∈ D⋆ and σ is a random DFS is a Nash equilibrium.

All Nash equilibria yield the same payoff to the hider and strategy η guarantees this
equilibrium payoff to the hider against any strategy of the seeker. Moreover, strategy σ
is a best response to any equilibrium strategy of the hider. The equilibrium payoff to the
seeker is unique if and only if |D⋆| = 1.

The following two lemmas are key for proving the theorem. 4

Lemma 1. Let G = ⟨V,E⟩ be a tree and let t ∈ V be a node in G. Then the expected
number of steps to reach t from any node s ∈ V in G using randomized DFS strategy
starting at s is equal to:

|V |+ dG(s, t)−m

2
, (3)

where m is the number of nodes reachable from s in G through a path containing t.

Proof. Take any connected graph G that is a tree with starting node s ∈ V and any t ∈ V .
Suppose first that t is a leaf in G (since G is a tree so there is a unique path from s to
t in G). Let Xt be a random variable whose realization is the number of steps made by
randomized DFS starting at s until t is reached. For any pair of nodes u, v ∈ V (G), v ̸= u,
let Xuv be a random variable such that

Xuv =

{
1, if u is visited before v under σ

0, otherwise.

Then Xt =
∑

v∈V Xvt and E(Xt) =
∑

v∈V E(Xvt). Clearly for any v ∈ PG(s, t) \ {t},
E(Xvt) = 1. We will show that for any v ∈ V \ PG(s, t), E(Xvt) = 1/2. Take any such

4The expected number of steps to reach the hiding node t by the randomized DFS strategy, stated in
Lemma 1, was characterized before by Alpern et al. (2013). We provide a different proof and we build
on and expand this proof when analyzing the search strategy that we propose in Section 4.2 for the case
where the hider’s budget allows for the construction of a cycle

9



v and let {u1, u2, u3} ⊆ V be nodes such that {u1u2, u1u3} ⊆ E(G), {u1, u2} ⊆ PG(s, t),
and {u1, u3} ⊆ PG(s, v) (c.f. Figure 3 for an illustration). Since G is a tree, v is not on
the path from s to t in G and t is a leaf in G, such nodes u1, u2, and u3 exist and are
unique.

Figure 3: Paths from s to t and from s to v.

Node v is visited before t if and only if node u3 is visited before u2. Nodes u2 and u3
are visited if an only if u1 is an active node and the probability that u3 is visited before
u2 is 1/2. Hence E(Xvt) = 1/2. Thus

E(Xt) =
∑
v∈V

E(Xvt) = |PG(s, t)| − 1 +
|V | − |PG(s, t)|

2

=
|V |+ |PG(s, t)| − 2

2
=

|V |+ dG(s, t)− 1

2
.

Since t is a leaf, the number of nodes reachable from s by a path containing t is equal to
1.

Suppose that t is not a leaf. Then the nodes which are reachable from s via t only
will never be visited before v is visited. Suppose that the set of such nodes (excluding t)
in G′ is U . Then the expected number of steps to visit t in G by a randomized DFS is
equal to the expected number of steps needed in G[V \U ], the graph obtained from G by
removing all the nodes in U . Since t is a leaf in G[V \ U ], by what we have shown above,
the expected number of steps to reach t is equal to (|V | + dG(s, t) − |U | − 1)/2. Since
m = |U |+ 1, this completes the proof.

Lemma 2. Let βd be a mixed hiding in a crown of a palm tree of height d. Then for any
mixed seeking strategy α the expected number of steps to find the hiding place is equal to
(n+ d− 1)/2.

Proof. If the hider uses strategy βd, any seeking strategy makes d−1 steps until it reaches
node vd−1. Then, since the hider chooses one of the nodes in C = {vd⋆ , . . . , vn} as the
hiding place uniformly at random, for any sequence of nodes in C the expected number of
steps to find the hiding place is equal to (n− d+1)/2. Therefore the expected number of
steps to reach the hiding place for any seeking strategy is equal to d− 1+ (n− d+1)/2 =
(n+ d− 1)/2.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Suppose that b = n− 1 and let L(d | n) = (n+ d− 1)/2.
We first show that (η, σ) is a Nash equilibrium. Consider strategy profile (η, σ), as

defined in the theorem. We will show that there is no profitable deviation for any of the
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players from this strategy profile. By Lemma 2, if the hider uses strategy η then the
expected number of steps to reach the hiding place any seeking strategy makes is equal to
L(d⋆ | n). Thus, there is no profitable deviation for the seeker against η.

Consider now any pure strategy (G′, h′) of the hider. If G′ is a palm tree of height
d and h′ is a node in the crown of G′ then the expected payoff to the hider against σ is
equal to A(d)L(d | n). By the definition of d⋆, η yields at least as good of an expected
payoff against σ as (G′, h′). Suppose that h′ is a leaf of G′ and G′ is not a palm tree. Let
d = dG′(s, h′). By Lemma 1, the expected number of steps to visit h′ by σ is equal to L(d)
and the expected payoff to the hider is equal to A(d)L(d | n). By the definition of d⋆ this
payoff is not better than the payoff the hider gets from η. Lastly, suppose that h′ is not
a leaf. Then, by Lemma 1, the expected payoff to the hider from (G′, h′) is L(d | n − q),
where q is the number of nodes, other than h′, reachable from s in G′ by a path containing
h′. Since L(d | n− q) is less than L(d | n), by the definition of d⋆, η yields a higher payoff
to the hider than (G′, h′) against σ. This shows that all pure strategies of the hider yield
at most as high of a payoff against σ as η. Thus this is true for any mixed strategy of the
hider and so there is no profitable deviation to the hider from (η, σ).

Second, we show that all Nash equilibria are payoff equivalent for the hider To this end
we first show, for any Nash equilibrium (η′, σ′) and any pair of graph and a hiding node
(G′, h′) in the support of η′, that the expected number of steps σ′ makes until h′ is reached
in G′ is equal to L(d | n), where d = dG′(s, h′). Assume otherwise and suppose that there
exists (G′, h′) in the support of η′ such that the expected number of steps σ′ makes until
h′ is reached in G′ is less than L(d | n). Let βd be a mixed hiding in a crown of a palm tree
of height d. Then, by Lemma 2, the hider would strictly improve her payoff by deviating
to the mixed strategy σ′′ under which (G′, h′) is played with probability 0 and instead βd
is played with probability σ′

(G′,h′). This contradicts the assumption that (η′, σ′) is a Nash

equilibrium. Thus for all (G′, h′) in the support of η′, the expected number of steps σ′

makes until h′ is reached in G′ is greater or equal to L(d | n). Suppose there is (G′, h′)
in the support of η′ for which it is strictly greater. Then, by Lemma 1, the seeker would
strictly benefit from using σ instead of σ′. Again, a contradiction with the assumption
that (η′, σ′) is a Nash equilibrium. Hence for any (G′, h′) in the support of η′, the expected
number of steps σ′ makes until h′ is reached in G′ is equal to L(d | n). Now assume, to the
contrary, that Nash equilibria are not payoff equivalent to the hider. Then there exists a
Nash equilibrium (η′, σ′) such that ΠH(η′, σ′) ̸= ΠH(η, σ). If ΠH(η′, σ′) < ΠH(η, σ) then,
by Lemma 2 and optimality of d⋆, the hider would strictly benefit from using η instead
of η′ against σ′. Hence it must be that ΠH(η′, σ′) > ΠH(η, σ). Then there exists (G′, h′)
in the support of η′ which yields higher payoff to the hider than A(d⋆)L(d⋆ | n). As
we established above, the expected number of steps σ′ makes until h′ is reached in G′ is
equal to L(d | n), where d = dG′(s, h′). Hence the payoff to the hider from (G′, h′) is
A(d)L(d | n) and, by optimality of d⋆ it cannot be strictly greater than A(d⋆)L(d⋆ | n), a
contradiction. Therefore all equilibria must be payoff equivalent to the hider. Moreover,
by Lemma 2, η yields the equilibrium payoff to the hider against any seeking strategy.

Third, we show that strategy σ is a best response to any equilibrium strategy of the
hider. Since, as we showed above, for any Nash equilibrium (η′, σ′) and any pair of a graph
and a hiding node (G′, h′) in the support of η′, that the expected number of steps σ′ makes
until h′ is reached in G′ is equal to L(d | n), where d = dG′(s, h′), so ΠS(η′, σ′) = ΠS(η′, σ).
Since σ′ is a best response to η′ so is σ as well.

Fourth, we show that equilibrium payoff to the seeker is unique of and only if |D⋆| = 1.
If |D⋆| = 1 that the claim follows because, as we showed above, σ is a best response to
any equilibrium strategy of the hider and the payoff to the seeker from any equilibrium
(η′, σ′), ΠS(η′, σ′) = ΠH(η′, σ′)/A(d⋆), where {d⋆} = D⋆. Since ΠH(η′, σ′) is unique (as we
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showe above) and d⋆ is unique, so is ΠS(η′, σ′). Now, suppose that |D⋆| > 1. Then there
exist d⋆ ∈ D⋆ and d⋆⋆ ∈ D⋆ such that d⋆ < d⋆⋆. As we have shown above, both (η, σ),
with σ = βd⋆ , and (η′, σ), with η′ = βd⋆⋆ , are Nash equilibria of the game. Moreover,
ΠS(η, σ) = L(d⋆) < L(d⋆⋆) = ΠS(η′, σ).

4.2 Budget b = n

With budget b = n the hider can build a network that contains a cycle. This possibility
makes the search problem considerably more challenging.

Since the problem is significantly more challenging than in the case of b = n − 1, to
make progress, we assume a particular form of payoffs from hiding at a given distance, A.
For a fixed d > 0, let

A(x) =

{
1, if x ≤ d,

0, otherwise.

Thus the hider gets payoff 1 if the target node is at distance at most d from the source and
payoff 0 otherwise. Notice that this makes the game zero-sum. In particular, the hider
can create networks on which the randomized DFS makes more than 2n/3 steps to find
the target, in expectation. We illustrate this possibility with the following example.

Example 1. Consider a network over n nodes consisting of a line of d+1 nodes, starting at
node s, and a cycle over n−d nodes, including s (c.f. Figure 4). Consider the randomized
DFS seeking strategy starting at node s. Every node on the line from s to t is visited with
probability 1 until t is visited. In addition, every node in the cycle (except s) is visited
with probability 2/3 before t is visited. Hence 2/3(n + d/2 − 1) nodes will be visited, in
expectation, until t is visited.

Figure 4: A graph over n nodes that requires 2/3(n + d/2 − 1) steps for the randomized
DFS to reach node t starting at node s.

△
As illustrated by the example, the hider can put a large fraction of the nodes in the

cycle and hide the treasure outside the cycle, which makes the seeker visit the nodes in the
cycle with high probability before the hiding node outside the cycle is visited. Since the
payoff to the hider is decreasing in the distance from the starting node to the hiding node,
it is not beneficial to the hider to hide further than a distance determined by benefit from
hiding and the seeking strategy. Hence, the seeker could adjust the seeking strategy so
that all the nodes which are at certain distance, d, from the starting node are visited before
the nodes which are further than d from the starting node. This motivates a definition of
a seeking strategy called the d-bounded randomized DFS, denoted by DFSd, where d ≥ 1
is a parameter of the strategy.
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Informally, the strategy is described as follows. On a tree, the DFSd seeking strategy
visits all the nodes at distance at most d from the source first, proceeding analogously
to the DFS seeking strategy. After all such nodes are visited, the seeking strategy visits
all the remaining nodes following the DFS strategy. On graphs containing a cycle, the
description of the strategy is more complicated because after the cycle is discovered (i.e.
the subgraph of the explored graph restricted to the set of visited nodes contains a cycle),
the distances from the source to the nodes in the cycle need to be updated. Some nodes,
where visiting was postponed due to their distance from the source being greater than d,
may turn out to be at distance at most d from the source when the second path to them
(discovered together with discovering the cycle) is discovered. These nodes (and the nodes
reachable through them from the sources) are visited before the remaining nodes as soon
as the cycle is discovered. Moreover, they are visited in the “first seen first visited” order
rather than “last seen first visited” order used by the standard DFS strategy.

Before providing a formal definition of the seeking strategy we need to introduce some
notions and notation. Given a graph G, a set of nodes {v1, . . . , vm} such that vmv1 ∈ E(G)
and, for all i ∈ {2, . . . ,m}, vi−1vi ∈ E(G) is a cycle in G. The set of all cycles in G is
denoted by Z(G). Given d ≥ 1, i ≥ 1, graph G, and node s ∈ V (G), let

Ri
d(G, s) = {v ∈ V (G) : there is exactly i paths of length ≤ d from s to v}

be the set of nodes in network G which are reachable by exactly i paths of length at most
d from s in G. Let Rd(G, s) =

⋃
i≥1R

i
d(G, s) be the set of all the nodes at distance at

most d from s in G.
Like in the DFS seeking strategy, the nodes to be visited next are picked uniformly

at random from the set of unvisited neighbours of the active node. The main difference
between the DFSd and DFS seeking strategies is in how the active node is selected. The
d-bounded DFS seeking strategy, σDFSd : I → ∆(V ), is formally defined as follows. Given
an integer bound d ≥ 0, for any (z, G′) ∈ I with z = (z0, . . . , zk), act

DFSd(z, G′) = zj ,
where j is selected as follows

if Z(G′[z]) ̸= ∅ and NG′(z) ∩R1
d(G

′, s) ∩
(
R2

n(G
′, s) \R2

d+1

)
̸= ∅ then

j = max
{
i ∈ {0, . . . , k} : (NG′(zi) \ z) ∩R1

d(G
′, s) ∩

(
R2

n(G
′, s) \R2

d+1

)
̸= ∅

}
else if Z(G′[z]) ̸= ∅ and NG′(z)∩R1

d(G
′, s)∩

(
R2

d+1(G
′, s) \R2

d(G
′, s)

)
̸= ∅ then

j = min
{
i ∈ {0, . . . , k} : (NG′(zi) \ z) ∩R1

d(G
′, s) ∩(

R2
d+1(G

′, s) \R2
d(G

′, s)
)
̸= ∅

}
else if NG′(z) ∩Rd(G

′, s) ̸= ∅ then
j = max{i ∈ {0, . . . , k} : (NG′(zi) \ z) ∩Rd(G

′, s) ̸= ∅}
else

j = max{i ∈ {0, . . . , k} : NG′(zi) \ z ̸= ∅}
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and

σDFS
d (z, G′)(v) =

1
|(NG′ (actDFS

d (z,G′))\z)∩Rd(G′,s)| ,

if v ∈ NG′(actDFS
d (z, G′)) \ z) ∩Rd(G

′, s)
1

|(NG′ (actDFS
d (z,G′))\(z∪Rd(G′,s)))| ,

if v ∈ NG′(actDFS
d (z, G′)) \ (z ∪Rd(G

′, s))
and NG′(actDFS

d (z, G′)) \ z) ∩Rd(G
′, s) =

∅,
0, otherwise.

The first two cases of the active node selection function apply only when the graph over
the visited nodes contains a cycle. Notice that the nodes, whose visiting was postponed
due the fact that the distance from the source is to too high, and which are visited after
the cycle is discovered, are the nodes reachable by exactly one path of length at most d
and by exactly two paths of length at most d + 1. The second case of the active node
selection function applies to them. The first case applies to the nodes which are reachable
by exactly one path of length at most d and by exactly two paths of length d+2 or more.
These are the nodes reachable via the postponed nodes mentioned above and they are
visited in the “last seen first visited order” of the standard DFS strategy.

The randomized DFS bounded by d visits 2d nodes in expectation until node t is
visited starting from node s in the network in Figure 4. However, the hider can still make
the seeker visit more than 2n/3 nodes in expectation by having many nodes reachable by
two paths from the sources and at distance d from the source. This is illustrated with the
following example.

Example 2. Consider a network over n nodes consisting of a line of d+ 1 nodes, starting
at node s, and a cycle over 2d − 2 nodes, including s, and n − 3d + 2 nodes not in
the cycle, reachable by two paths of length d from s (c.f. Figure 5). Similarly to the
network in Example 1, the randomized DFS seeking strategy starting at node s visits
2/3(n + d/2 − 1) nodes in expectation, until t is visited. The randomized DFS bounded
by d visits 2/3(n+1/2) nodes in expectation until node t is visited. This is because every
node on the line from s to t, is visited with probability 1, every node at distance d from s
reachable by two paths from s is visited with probability 2/3 before t is visited (and there
are n − 3d + 5 such nodes, 3 in the cycle and n − 3d + 2 outside the cycle). Each of the
remaining 2(d− 3) nodes (each of them in the cycle) is visited with probability 1/2 before
t is visited.

△
Large expected number of visited nodes until the hiding node is visited results from

the fact that O(n) nodes are at distance d from the source and are reachable by two paths
from s. A randomized DFS seeking strategy (bounded or unbounded) visits these nodes
with probability 2/3 before the node reachable by a single path is visited. To reduce this
probability, the DFS can be adjusted so that it postpones visiting nodes reachable by two
paths and visits nodes reachable by a single path first. This can be done after the graph
over the visited nodes contains a cycle and requires a modification to an unbounded DFS
strategy, because the bounded version cannot discover cycles which contain more than
d + 1 nodes (the network used in Example 2 has a cycle over 2d nodes which cannot be
discovered by the DFS bounded by d). To define the adjusted DFS seeking strategy we
need to introduce some more notions and notation.
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Figure 5: A graph over n nodes that requires 2/3(n + d/2 − 1) steps for the randomized
DFS and 2/3(n+1/2) steps for the randomized DFS bounded by d to reach node t starting
at node s.

Given a cycle K ∈ Z(G) and a node s ∈ V , enK(G, s) ∈ K denotes the node of cycle
K that is closest to s (we call it the entrance to the cycle from s). Given d ≥ 1, i ≥ 1,
graph G, and nodes {s, u} ⊆ V (G), let

Ri
d(G, s, u) = {v ∈ V (G) : there is exactly i paths

of length ≤ d from s to v containing u}

be the set of nodes reachable from s by exactly i paths of length at most d, each path
containing node u. In particular, if G contains a cycle K, R1

n(G, s, enK(G, s)) is the set of
nodes reachable from s by exactly one path that contains the entrance to the cycle from
s.

The adjusted DFS seeking strategy, σaDFS : I → ∆(V ) is formally defined as follows.
Given any (z, G′) ∈ I with z = (z0, . . . , zk), act

aDFS(z, G′) = zj where , where j is selected
as follows

if Z(G′[z]) = {K} and NG′(z) ∩
(
R1

n(G
′, s, enK(G′, s)) \R2

n(G
′, s)

)
̸= ∅ then

j = max{i ∈ [k] : (NG′(zi) \ z) ∩R1
n(G

′, s) ̸= ∅}
else if Z(G′[z]) = {K} and NG′(z) ∩R2

n(G
′, s) ̸= ∅ then

j = max
{
i ∈ [k] : (NG′(zi) \ z) ∩R2

n(G
′, s) ̸= ∅

}
else

j = max{i ∈ [k] : NG′(zi) \ z ̸= ∅}

and

σaDFS(z, G′)(v) =


1

|NG′ (actaDFS(z,G′))\z| ,

if v ∈ NG′(actaDFS(z, G′)) \ z
0, otherwise.

Like the DFS seeking strategy, strategy σaDFS chooses, uniformly at random, an unvisited
neighbour of an active node. The active node is a visited node selected by function actaDFS.
After the cycle is discovered, i.e. the graph over the visited nodes contains a cycle, the
function chooses the nodes reachable by a single path from s via the entrance to the cycle
before the visited nodes that have neighbours reachable by two paths from s (since the
graph has at most one cycle, the number of paths to the neighbours of unvisited nodes
can be determined after the cycle is discovered).
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The seeking strategy σ⋆ that we define below is a convex combination of three seeking
strategies: the randomized DFS, depth bounded randomized DFS and adjusted DFS. Let
σ⋆ : I → ∆(V ) be a seeking strategy formally defined as follows. Given any (z, G′) ∈ I
let

σ⋆(z, G′)(v) =

3

8
σDFS(z, G′)(v) +

3

8
σaDFS(z, G′)(v) +

1

4
σDFS
d (z, G′)(v).

The following proposition (proven in the Appendix) provides a lower bound on seeker’s
payoff for the case when linking budget of the hider is n.

Proposition 1. For any connected network G and node h ∈ V (G) at distance at most d
from s, the expected number of steps to discover the hider using strategy σ⋆ is less than or
equal to

9

16
n+ C(d),

where C(d) depends on d only.

5 Conclusions

We studied a problem of strategic hiding and exploration of a network and provided a
formal definition of the game theoretic model of the problem. We characterized a Nash
equilibrium of the game when the hider’s budget allows for constructing trees only. The
equilibrium strategy of the hider that we found guarantees equilibrium payoff against any
seeking strategy and all equilibria yield the same payoff to the hider. The strategy of
the seeker in the equilibrium that we found is the randomized DFS strategy. We showed
that if an optimal hiding distance from the source is unique then all equilibria are payoff
equivalent to the seeker and the DFS strategy guarantees the same expected number of
steps to find the hider against any equilibrium strategy of the hider.

We also considered the case where the budget of the hider allows for the construction
a network that contains a cycle. We showed that the randomized DFS strategy is no
longer effective in this case and proposed a seeking strategy that finds the hider, hiding
at distance d from the source in the expected number of steps close, but greater, to the
expected number of steps guaranteed by the DFS strategy on trees.

There are a number of possible avenues for future research. The most interesting,
but most likely a very ambitious one, would be to characterize equilibria (or at least one
equilibrium) in the case where the hider does not face any budget constraints. Another
interesting question would be about the seeking strategy against networks containing a
cycle. Is it possible to construct a seeking strategy that would find the hider hiding at
distance d from the source in n/2 + C(d) steps, where C(d) depends on d only? Can the
number of steps 9/16n+ C(d) provided in Proposition 1 be improved?
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Appendix

Lower bound on seeker’s payoff when b = n

In this section we prove Proposition 1 stating the upper bound on the number of nodes
visited by seeking strategy σ̃ until the node chosen by the hider is found.

The key to prove the proposition is characterization of the expected value of random
variables Xvt across the pairs of distinct nodes v and t. The following lemma provides a
characterization of the values of Xvt under a bounded DFS strategy for the cases when t
is at distance at most d from the source.

Lemma 3. Let d > 0, G = ⟨V,E⟩ be a graph containing at most one cycle K such that
K ∩ R2

d(G, s) ̸= ∅, and let t ∈ V be either a leaf or a node in K. Let 0 ≤ dG(s, t) ≤ d.
Under bounded DFS seeking strategy σDFS

d , for any node v ∈ V \ PG(s, t) such that t /∈
PG(s, v),

• if t ∈ R1
n(G, s) \R1

n(G, s, enK(G, s)) then

E(Xvt) =

{
1
2 , if dG(s, v) ≤ d,

0, if dG(s, v) > d.

• if t ∈ R1
n(G, s, enK(G, s)) then

E(Xvt) =


2
3 , if v ∈ R2

d(G, s),
1
2 , if v ∈ R1

d(G, s) ∩R1
n(G, s),

2
3 , if v ∈ R1

d(G, s) ∩R2
n(G, s) and K ⊆ R2

d(G, s),
1
2 , if v ∈ R1

d(G, s) ∩R2
n(G, s) and K \R2

d(G, s) ̸= ∅,

• if t ∈ K and v ∈ K then E(Xvt) = 1/2,

• if t ∈ R2
n(G, s) \K and v ∈ K then

E(Xvt) =


1, if t ∈ R1

d(G, s) ∩R1
d(G, s, v),

3
4 , if t /∈ R1

d(G, s) ∩R1
d(G, s, v) and v ∈ R2

d(G, s),
1
2 , if t /∈ R1

d(G, s) ∩R1
d(G, s, v) and v ∈ R1

d(G, s).

• if {t, v} ⊆ R2
n(G, s) \K and K ⊆ R2

d(G, s) then

E(Xvt) =
1

2
+

1

8
[v ∈ R2

d(G, s)][t ∈ R1
d(G, s) ∩R1

d(G, s, exK(G, s, v))]

• if {t, v} ⊆ R2
n(G, s) \K and K \R2

d(G, s) ̸= ∅ then

E(Xvt) =
1

2
+

1

4
[t ∈ R1

d(G, s)][v ∈ R2
d(G, s)]

Proof. Take any connected graph G with starting node s ∈ V such that either Z(G) = ∅
or Z(G) = {K}, so that K is the unique cycle in G, and K ∩ R2

d(G, s) ̸= ∅, so that at
least one node in the cycle is reachable by exactly two paths of length at most d. Let
t ∈ V be either a leaf or a node in K such that 0 ≤ dG(s, t) ≤ d. Let v ∈ V (G) be any
node such that v ̸= t, t /∈ PG(s, v), and v /∈ PG(s, t).
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Since the seeking strategy visits nodes at distance at most d from s first so E(Xvt) = 0
for all v with dG(s, v) > d. For the remaining part of the proof assume that dG(s, v) ≤ d.

Suppose that t ∈ R1
n(G, s) \ R1

n(G, s, enK(G, s)), i.e. there is a unique path from s to
t in G and that path does not contain any node of the cycle. Since v ∈ V (G) \ PG(s, t)
and t /∈ PG(s, v) so E(Xtv) = 1/2. This follows by the same arguments as those used in
proof of Lemma 1.

Suppose that t ∈ R1
n(G, s, enK(G, s)), i.e. there is a unique path from s to t in G and

that path contains a node of the cycle. In this case the path from s to t contains enK(G, s)
and no other node of the cycle.

Suppose that v ∈ R1
n(G, s). Then there is exactly one path from s to v in G and, since

dG(s, v) ≤ d, this path is of length at most d. In this case E(Xvt) = 1/2, by analogous
arguments to those used in proof of Lemma 1.

Suppose that v ∈ R2
n(G, s). Since dG(s, v) ≤ d so either v ∈ R1

d(G, s) or v ∈ R2
d(G, s).

Let u1 be the successor of enK(G, s) on the path from s to t, and let u2 and u3 be the two
distinct successors of enK(G, s) on the paths from s to v such that dG(u2, v) ≤ dG(u3, v).
In the case of v /∈ K, let u4 be the successor exK(G, s, v) on the path from s to v (c.f.
Figure 6).

Figure 6: Paths from s to t and from s to v in the case of t ∈ R1
n(G, s, enK(G, s)) and

v ∈ R2
n(G, s).

Suppose that K ⊆ R2
d(G, s) (i.e. every node in the cycle is reachable by exactly

two paths of length at most d from s). In this case the set of visited nodes contains
all the nodes of the cycle if and only if either u2 or u3 is visited before u1. Thus if
v ∈ K then v is visited before t with probability 2/3 and so E(Xvt) = 2/3. Suppose
that v /∈ K. In this case v is visited before t if and only if u4 is visited before u1.
Since K ⊆ R2

d(G, s) so exK(G, s, v) ∈ R2
d(G, s). Since dG(s, v) ≤ d so dG(s, u4) ≤ d and

u4 ∈ R2
n(G, s) ∩ (R1

d(G, s) ∪R2
d(G, s)). Hence, by construction of the seeking strategy, u4

is visited before u1 if and only if either u2 or u3 is visited before u1. This happens with
probability 2/3 and so E(Xvt) = 2/3 in this case.

Suppose that K \ R2
d(G, s) ̸= ∅. In this case at least one node in the cycle is not

reachable by two paths of length at most d. Since K ∩R2
d(G, s) ̸= ∅ so every node in the

cycle is reachable by at least one path of length at most d from s. Thus the set of visited
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nodes contains all the nodes of the cycle if and only if both u2 and u3 are visited before
u1. If v ∈ R2

d(G, s) then v is visited before t if either u2 or u3 is visited before t. Hence
E(Xvt) = 2/3 in this case. If v /∈ R2

d(G, s) then v ∈ R1
d(G, s) and node v is visited before

t if either u2 is visited before u1 and u3, or u3 is visited before u2 and u2 is visited before
u1. In the former case v is visited before cycle K is discovered and the case happens with
probability 1/3. In the latter case the cycle is discovered before u1 is visited and node
v is visited before u1, because after discovering the cycle u1 is visited after all the nodes
reachable by two paths from s, at least one of them of the length at most d, are visited.
The case happens with probability 1/6. Thus v is visited before t with probability 1/2
and so E(Xvt) = 1/2.

Suppose that t ∈ R2
n(G, s), i.e. there are two paths from s to t in G.

Suppose that t ∈ K and v ∈ K, i.e. both t and v belong to the cycle. Let u1 ∈ K
be the successor of enK(G, s) in the cycle that is closer to t and u2 ∈ K be the successor
of enK(G, s) in the cycle that is closer two v. Since dG(s, t) ≤ d and dG(s, v) ≤ d so v is
visited before t if and only if u2 is visited before u1. This happens with probability 1/2
and so E(Xvt) = 1/2 in this case.

Suppose that t ∈ R2
n(G, s) \K, i.e. there are two paths from s to t in G and t is not in

the cycle. Let u1 ∈ K be the successor of enK(G, s) in the cycle that is closer to t than the
other successor of enK(G, s) in the cycle, u2 ∈ K. Let u3 be the successor of exK(G, s, t)
on the path from s to t.

Figure 7: Paths from s to t and from s to v in the case of t ∈ R1
n(G, s) \K and v ∈ K.

Suppose that v ∈ K (c.f. Figure 7). Since v is not on every path from s to t of length
at most d so there exists a path from s to t of length at most d that does not contain v
and, consequently, contains u1. Suppose that v ∈ R2

d(G, s). In this case v is visited before
t if and only if either u2 is visited before u1 or u1 is visited before u2 and u2 is visited
before u3. This happens with probability 1/2 + 1/2 · 1/2 = 3/4. Hence E(Xvt) = 3/4 in
this case.

Suppose that v /∈ R2
d(G, s), in which case v ∈ R1

d(G, s). If the path from s to v of
length at most d contains u1 then v is visited before t with probability 1/2. Otherwise
the path contains u2 and v is visited before t if and only if u2 is visited before u1. This
happens with probability 1/2. Hence E(Xvt) = 1/2 in this case.
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Figure 8: Paths from s to t and from s to v in the case of t ∈ R2
n(G, s)\K, v ∈ R2

n(G, s)\K,
and u3 = u4.

Suppose that v ∈ R2
n(G, s) \K, i.e. there are two paths from s to v in G and v is not

in the cycle. Let u4 be the successor of exK(G, s, v) on the path from s to v. Consider
first the case of u3 = u4. Let u5 be the first node on the path from u3 to t that is not on
the path from u3 to v and let u6 be the first node on the path from u3 to v that is not on
the path from u3 to t (c.f. Figure 8). If t ∈ R2

d(G, s) and v ∈ R2
d(G, s) then v is visited

before t if and only if u6 is visited before u5. This happens with probability 1/2 and so
E(Xvt) = 1/2. Suppose that t ∈ R1

d(G, s). In this case there is a unique path of length at
most d from s to t and, since u1 is closer to t than u2, this path contains u1. Suppose that
v ∈ R2

d(G, s). If the cycle is discovered (i.e. both u1 and u2 are visited before u3, which
happens with probability 1/2 · 1/2 + 1/2 · 1/2 = 1/2) then v is visited before t if and only
if u6 is visited before u5. Similarly, if u1 is visited before u3 and u3 is visited before u2
(which happens with probability 1/2 ·1/2 = 1/4) then v is visited before t if and only if u6
is visited before u5. If u2 is visited before u3 and u3 is visited before u1 then v is visited
before t with probability 1 because in this case t cannot be reached by the seeking strategy
until u1 is visited, i.e. the cycle is discovered, and v is visited before u1 if u3 is visited
before u1. Hence v is visited before t with probability 1/2 · 1/2 + 1/4 · 1/2 + 1/4 · 1 = 5/8
and so E(Xvt) = 5/8. Suppose that v ∈ R1

d(G, s). Since u1 is closer to t than u2 so u1 is
closer to u3 than u2 and, consequently, u1 is closer to v than u2. Thus v and t are visited
only after u1 is visited and v is visited before t if and only if u6 if visited before u5. This
happens with probability 1/2 and so E(Xvt) = 1/2.

Second, consider the case of u3 ̸= u4 (c.f. Figure 9).
Suppose that K ⊆ R2

d(G, s), i.e. all the nodes in the cycle are reachable from s by two
paths of length at most d.

Suppose that {exK(G, s, t), exK(G, s, v)} ⊆ R2
d−1(G, s), so that u3 ∈ R2

d(G, s) and
u4 ∈ R2

d(G, s), Consider the following three subcases: (a) t ∈ R2
d(G, s) and v ∈ R2

d(G, s),
(b) t ∈ R1

d(G, s) and v ∈ R1
d(G, s), (c) t ∈ R1

d(G, s) and v ∈ R2
d(G, s). In case (a), t is

visited before v if and only if u4 is visited before u3, which happens with probability 1/2 in
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Figure 9: Paths from s to t and from s to v in the case of t ∈ R2
n(G, s)\K, v ∈ R2

n(G, s)\K,
and u3 ̸= u4.

both cases of u1 being visited before u2 and u2 being visited before u1. Hence v is visited
before t with probability 1/2 and so E(Xvt) = 1/2.

In case (b), if v is closer to u1 than to u2 then the unique path of length at most d
from s to v includes u1 and does not include u2. The same is the case for t, because t is
closer to u1 than to u2. Thus if v is closer to u1 than to u2 then v is visited before t if and
only if either u1 is visited before u2 and u4 is visited before u3 or u2 is visited before u1
and u4 is visited before u3. This happens with probability 1/2 · 1/2 + 1/2 · 1/2 = 1/2 and
so E(Xvt) = 1/2. Notice that in the case of u2 being visited before u1, if u3 was visited
before u4 and u1 was visited then, although t would not be visited before u1 (because
the path from s to t going through u2 is of length greater than d), it would be visited
before v because the seeking strategy visits nodes in the “first seen first visited” order
(i.e. those whose neighbour in the set of visited nodes is earlier in the sequence of visited
nodes are visited before those whose neighbour in the set of visited nodes is later in the
sequence). If, on the other hand, u4 was visited before u3 then, although v would not be
visited before u1, it would be visited before t, again, because the seeking strategy visits
nodes in the “first seen first visited” order. If v is closer to u2 than to u1 then the unique
path of length at most d from s to v includes u2 and does not include u1. On the other
hand, the unique path of length at most d from s to t includes u1 and does not include
u2 because t is closer to u1 than to u2. Thus in this case exK(G, s, v) is closer to u2 than
exK(G, s, t). Hence v is visited before t if either u1 is visited before u2 and exK(G, s, v)
is visited before u3 or u2 is visited before u1 and u4 is visited before exK(G, s, t). This
happens with probability 1/2 · 1/2 + 1/2 · 1/2 = 1/2 and so E(Xtv) = 1/2.

In case (c), if exK(G, s, v) is on the unique path of length at most d from s to t
then, since the path includes u1 and does not include u2, exK(G, s, v) is closer to u1 than
exK(G, s, t). In this case v is visited before t if and only if either u1 is visited before
u2 and u4 is visited before exK(G, s, t) or u2 is visited before u1 and either exK(G, s, v)
is visited before u3 or u3 is visited before exK(G, s, t) and u4 is visited before u1. This
happens with probability 1/2 · 1/2 + 1/2 · (1/2 + 1/2 · 1/2) = 5/8 and so E(Xtv) = 5/8. If
exK(G, s, v) is not on the unique path of length at most d from s to t then exK(G, s, v) is
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closer to u2 than exK(G, s, t). In this case v is visited before t if and only if either u1 is
visited before u2 and exK(G, s, v) is visited before u3 or u2 is visited before u1 and u4 is
visited before exK(G, s, t). This happens with probability 1/2 · 1/2 + 1/2 · 1/2 = 1/2 and
so E(Xtv) = 1/2.

Suppose that K \R2
d(G, s) ̸= ∅, i.e. there exists nodes in the cycle which are reachable

from s by two paths of length at most d. Suppose that t ∈ R2
d(G, s) and v ∈ R2

d(G, s). In
this case both nodes u3 and u4 are visited if either u1 or u2 is visited but before all the
nodes in the cycle are visited. Therefore v is visited before t if and only if u4 is visited
before u3. This happens with probability 1/2 in the case when u1 is visited before u2 as
well as in the case when u2 is visited before u1. Hence v is visited before t with probability
1/2 and so E(Xtv) = 1/2. Suppose that t ∈ R1

d(G, s) and v ∈ R2
d(G, s). Since u1 is closer

to t than u2 so t is visited only after u1 is visited. Hence v is visited before t if and only
if either u2 is visited before u1 or u1 is visited before u2 and u4 is visited before u3. This
happens with probability 1/2 + 1/2 · 1/2 = 3/4. Therefore E(Xtv) = 3/4 in this case.
Suppose that t ∈ R1

d(G, s) and v ∈ R1
d(G, s). If u1 is closer to v than u2 then, since u1

is closer to t than u2, v is visited before t if and only if u4 is visited before u3, which
happens with probability 1/2. If u2 is closer to v than u1 then v is visited before t if and
only if u2 is visited before u1, which happens with probability 1/2. Hence, in either case,
E(Xtv) = 1/2.

Since the DFS strategy is equal to the bounded DFS strategy with bound n, σDFS =
σDFS
n , we have the following corollary from Lemma 3.

Corollary 1. Let G = ⟨V,E⟩ be a graph containing at most one cycle K and let t ∈ V
be either a leaf or a node in K. Under the DFS seeking strategy σDFS, for any node
v ∈ V \ PG(s, t) such that t /∈ PG(s, v),

• if t ∈ R1
n(G, s) \R1

n(G, s, enK(G, s)) then E(Xvt) = 1/2,

• if t ∈ R1
n(G, s, enK(G, s)) then

E(Xvt) =

{
1
2 , if v ∈ R1

n(G, s),
2
3 , if v ∈ R2

n(G, s),

• if t ∈ K and v ∈ K then E(Xvt) = 1/2,

• if t ∈ R2
n(G, s) \K and v ∈ K then E(Xvt) = 3/4,

• if {t, v} ⊆ R2
n(G, s) \K then E(Xvt) = 1/2.

Lastly, the following lemma characterizes the expected value of Xvt for the adjusted
DFS seeking strategy.

Lemma 4. Let d > 0, G = ⟨V,E⟩ be a graph containing at most one cycle K, and let
t ∈ V be either a leaf or a node in K. Under adjusted DFS seeking strategy σaDFS, for any
node v ∈ V \ PG(s, t) such that t /∈ PG(s, v),

• if t ∈ R1
n(G, s) \R1

n(G, s, enK(G, s)) then E(Xvt) = 1/2,

• if t ∈ R1
n(G, s, enK(G, s)) then

E(Xvt) =


1
2 , if v ∈ R1

n(G, s),
2
3 , if v ∈ K,
1
3 , if v ∈ R2

n(G, s) \K,

24



• if t ∈ K and v ∈ K then E(Xvt) = 1/2,

• if t ∈ R2
n(G, s) \K and v ∈ K then E(Xvt) = 3/4,

• if {t, v} ⊆ R2
n(G, s) \K then E(Xvt) = 1/2.

Proof. Take any connected graph G with starting node s ∈ V such that either Z(G) = ∅
or Z(G) = {K}, so that K is the unique cycle in G. Take any two nodes t, v ∈ V (G) such
that v ̸= t and t is either a leaf or a node in K. Suppose that v /∈ PG(s, t) and t /∈ PG(s, v).

Suppose that t ∈ R1
n(G, s) \R1

n(G, s, enK(G, s)), i.e. there is a unique path from s to t
in G and that path does not contain any node of the cycle. Since neither v ∈ V (G)\P (s, t)
nor t /∈ P (s, v) so E(Xvt) = 1/2. This follows by the same arguments as those used in
proof of Lemma 1.

Suppose that t ∈ R1
n(G, s, enK(G, s)), i.e. there is a unique path from s to t in G and

that path contains a node of the cycle. In this case the path from s to t contains enK(G, s)
and no other node of the cycle. Suppose that v ∈ R1

n(G, s). Then there is exactly one
path from s to v in G and E(Xvt) = 1/2, by analogous arguments to those used in proof
of Lemma 1.

Suppose that v ∈ R2
n(G, s). Let u1 be the successor of enK(G, s) on the path from s

to t, and u2 and u3 be the successors of enK(G, s) on the paths from s to v. In the case
of v /∈ K, let u4 be the successor exK(G, s, v) on the path from s to v (c.f. Figure 6).

If v ∈ K then v is visited before t if and only if either u2 and u3 is visited before u1.
This happens with probability 2/3 and so E(Xvt) = 2/3. Suppose that v /∈ K. In this
case v is visited before t if and only if u4 is visited before u1. This happens if and only if
either u2 is visited before u1 and u3 and then u4 is visited before u3 or u3 is visited before
u1 and u2 and then u4 is visited before u2. To see why these conditions are necessary,
notice that if u2 is visited before u1 and then u3 is visited before u4 then the cycle is
discovered before u4 is visited and, by construction of the seeking strategy, u1 is visited
before u4. Consequently, t is visited before u4 and v. Similar argument applies to the case
of u3 being visited before u1 and then u2 being visited before u4. Thus v is visited before
t with probability 1/3 · 1/2 + 1/3 · 1/2 = 1/3.

Suppose that t ∈ R2
n(G, s), i.e. there are two paths from s to t in G. Let u1 ∈ K be

the successor of enK(G, s) in the cycle that is closer to t and u2 ∈ K be the successor of
enK(G, s) in the cycle that is closer two v.

Suppose that t ∈ K and v ∈ K, i.e. both t and v belong to the cycle. Then v is visited
before t if and only if u2 is visited before u1. This happens with probability 1/2 and so
E(Xvt) = 1/2 in this case.

Suppose that t ∈ R2
n(G, s) \K, i.e. there are two paths from s to t in G and t is not

in the cycle. Let u3 be the successor of exK(G, s, t) on the path from s to t. Suppose that
v ∈ K (c.f. Figure 7). Then v is visited before t if and only if either u2 is visited before
u1 or u1 is visited before u2 and u2 is visited before u3. This happens with probability
1/2+1/2 ·1/2 = 3/4. Hence E(Xtv) = 3/4 in this case. Suppose that v ∈ R2

n(G, s)\K, i.e.
there are two paths from s to v in G and v is not in the cycle. Let u4 be the successor of
exK(G, s, v) on the path from s to v. Consider first the case of u3 = u4. Let u5 be the first
node on the path from u3 to t that is not on the path from u3 to v and let u6 be the first
node on the path from u3 to v that is not on the path from u3 to t (c.f. Figure 8). Then v
is visited before t if and only if u6 is visited before u5. This happens with probability 1/2
and so E(Xvt) = 1/2. Second, consider the case of u3 ̸= u4 (c.f. Figure 9). In this case
t is visited before v if and only if u4 is visited before u3, which happens with probability
1/2 in both cases of u1 being visited before u2 and u2 being visited before u1. Hence v is
visited before t with probability 1/2 and so E(Xtv) = 1/2.
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The following corollary from Lemmata 3 and 4 and Corollary 1 characterizes the prob-
abilities of a node being visited before another node for the seeking strategies being a
convex combination of strategies DFSd, aDFS, and bounded DFS.

Corollary 2. Let d > 0, G = ⟨V,E⟩ be a graph containing at most one cycle K, and let
t ∈ V be either a leaf or a node in K. Under the seeking strategy

σ⋆
d =

3

8
σaDFS +

3

8
σDFS +

1

4
σDFSd ,

with λ ∈ [0, 1], for any node v ∈ V \ PG(s, t) such that t /∈ PG(s, v),

• if t ∈ R1
n(G, s) \R1

n(G, s, enK(G, s)) then

E(Xvt) =

{
1
2 , if dG(s, v) ≤ d,
3
8 , if dG(s, v) > d.

• if t ∈ R1
n(G, s, enK(G, s)) then

E(Xvt) =



1
2 , if v ∈ R1

d(G, s) ∩R1
n(G, s),

13
24 , if v ∈ R1

d(G, s) ∩R2
n(G, s) and K ⊆ R2

d(G, s),
1
2 , if v ∈ R1

d(G, s) ∩ (R2
n(G, s) \K) and K ⊈ R2

d(G, s),
5
8 , if v ∈ R1

d(G, s) ∩K and K ⊈ R2
d(G, s),

2
3 , if v ∈ R2

d(G, s) ∩K,
13
24 , if v ∈ R2

d(G, s) \K,
3
8 , if v ∈ R1

n(G, s) \R1
d(G, s),

1
2 , if v ∈ K \ (R1

d(G, s) ∪R2
d(G, s)),

3
8 , if v ∈ R2

n(G, s) \ (R1
d(G, s) ∪R2

d(G, s) ∪K),

• if t ∈ K and v ∈ K then E(Xvt) = 1/2,

• if t ∈ R2
n(G, s) \K and v ∈ K then

E(Xvt) =


13
16 , if t ∈ R1

d(G, s) ∩R1
d(G, s, v),

3
4 , if t /∈ R1

d(G, s) ∩R1
d(G, s, v) and v ∈ R2

d(G, s),
11
16 , if t /∈ R1

d(G, s) ∩R1
d(G, s, v) and v ∈ R1

d(G, s).
9
16 , if t /∈ R1

d(G, s) ∩R1
d(G, s, v) and v /∈ R1

d(G, s) ∪R2
d(G, s).

• if {t, v} ⊆ R2
n(G, s) \K and K ⊆ R2

d(G, s) then

E(Xvt) =
1

2
+

1

32
[v ∈ R2

d(G, s)][t ∈ R1
d(G, s) ∩R1

d(G, s, exK(G, s, v))]

• if {t, v} ⊆ R2
n(G, s) \K and K \R2

d(G, s) ̸= ∅ then

E(Xvt) =
1

2
+

1

16
[t ∈ R1

d(G, s)][v ∈ R2
d(G, s)]

Proof of Proposition 1. To obtain the upper bound on the number nodes visited by strat-
egy σ⋆

d until a node at distance d from node s is reached notice that for any node on all the
paths from s to t, E(Xvt) = 1. Moreover, since, for any two nodes u and v, Xuv = 1−Xvu
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so E(Xuv) = 1 − E(Xvu). By these two observations, together with Corollary 2, for any
node t at distance d from s and any node v,

E(Xvt) =



1, if v ∈ PG(s, t)
5
8 , if t ∈ R1

n(G, s, enK(G, s)) and v ∈ R1
d(G, s) ∩K and K ⊈ R2

d(G, s),
2
3 , if t ∈ R1

n(G, s, enK(G, s)) and v ∈ R2
d(G, s) ∩K,

13
16 , if t ∈ R2

n(G, s) \K and t ∈ R1
d(G, s) ∩R1

d(G, s, v),
3
4 , if t ∈ R2

n(G, s) \K, t /∈ R1
d(G, s) ∩R1

d(G, s, v) and v ∈ R2
d(G, s),

11
16 , if t ∈ R2

n(G, s) \K, t /∈ R1
d(G, s) ∩R1

d(G, s, v) and v ∈ R1
d(G, s).

and in all the remaining cases, E(Xvt) ≤ 9/16. Notice that the number of nodes v
satisfying the first six cases is at most d. In the first case, there are at most d nodes that
are on every path from s to t. The second and the sixth case is satisfied only for nodes
v that are in the cycle and are at distance at most d from the source. There are at most
2d − 1 such nodes. The third and the fifth case is satisfied only for nodes v that are in
the cycle and are reachable by two paths of length at most d from the source. There are
at most d such nodes. The fourth case is satisfied only for nodes v that are on the unique
path of length at most d from s to t (the case applies when t is reachable by two paths
from s but only one of them is of length at most d). There are at most d− 1 such nodes.

Hence the expected number of nodes visited by seeking strategy σ⋆
d before t is reached

is not greater than

9

16
(n− d) +

11

16
(2d− 1) =

9

16
n+

13d− 11

16
.
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