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Abstract
This paper reports on laboratory experiments on the formation of partnerships in

social networks. Agents randomly request favors and turn to their neighbors to form
a partnership where they commit to provide the favor when requested. The formation
of a partnership is modeled as a sequential game, which admits a unique subgame
perfect equilibrium resulting in the formation of the maximum number of partnerships.
Experimental results show that a large fraction of the subjects (75%) play according
to their subgame perfect equilibrium strategy and reveals that the efficient maximum
matching is formed over 78% of the times. When subjects deviate from their best
responses, they accept to form partnerships too early. The incentive to accept when
it is optimal to reject is positively correlated with subjects’ risk aversion, and players
employ simple heuristics – like the presence of a captive partner – to decide whether
they should accept or reject the formation of a partnership.
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1 Introduction

1.1 The formation of partnerships in social networks
Bloch, Dutta and Manea (2018) (henceforth BDM) study the impact of network structures on
the pattern of bilateral exchanges. Their setting is one in which individuals form partnerships
to exchange favors with one another. Favors could be small – advice on a particular issue,
a small loan, help on a school project or with baby-sitting, or large – sharing one’s life with
another person, or forming a professional partnership with other workers . The need for such
favors arises randomly for any individual at any point of time. If an individual i needs a
favor at any point, he turns to one of his neighbors j in the network to request the favor.
The recipient of such a request can either grant the favor at some cost c (which is strictly
less than the value of the favor v) or refuse to grant the favor. In the latter case, the link
between i and j is broken. Individual i can then approach another neighbor to grant him
the favor. If the favor is granted, the two players enter a reciprocal agreement to grant each
other the favor and leave the network. The process is repeated in the next period when some
individual chosen at random needs a favor.

It is not difficult to see that not all requests will be granted and that the network will grow
sparser over time. Either an agent who requests a favor finds a partner, and the pair leaves
the network with all their links or the agent is turned down by all his neighbors and ends up
leaving the network as a a singleton. Exploiting this recursive structure (that the network
grows sparser over time) BDM characterize the the unique subgame perfect equilibrium of
the game. They establish that the unique optimal strategy of a player i is to accept the
request of a player j if and only if, once the link ij is broken, player i does not belong to all
maximum matchings of the graph g \ ij. It immediately implies that a maximum matching
is obtained in equilibrium, as players will never break a link which reduces the number of
matchings in the graph.

This paper is the experimental counterpart of BDM. We test whether players form effi-
cient partnerships in social networks running a series of laboratory experiments. The exper-
imental design mimics the game of partnership formation described above, but in a finite
setting where, instead of receiving an expected discounted value, subjects obtain a fixed
finite value when they form the partnership. 1 We consider five different settings with initial
social networks of increasing complexity. We observe that a large fraction of the subjects
(more than 75%) do indeed select the equilibrium action, and that the subjects’ ability to
compute and select the subgame perfect equilibrium action depends on the complexity of
the network. We also note that, even when subjects do not employ their subject equilibrium
strategy, the proportion of rounds for which the efficient maximum matching is obtained is
very high – around 78% of all rounds.

1The value is computed so that the equilibrium behavior in the finite game is equal to the equilibrium
behavior in the infinite game studied in BDM.
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We analyze the systematic departures from equilibrium behavior and discover that sub-
jects err by accepting too often. In addition, we see that subjects who are more risk averse
(as measured by a classical questionnaire on risk aversion) accept more often, in the fear
of being left isolated at the end of the game. One instance where we observe that agents
correctly reject the requests is when they have access to ’captive’ agents who are only linked
to them. We show that this ’captive agents’ heuristic works very well and that players with
captive agents are much more likely to play their subgame perfect equilibrium strategy. Fi-
nally, we note that the complexity of the network – and in particular the presence of cycles
– greatly complicates the computation of the equilibrium behavior and results in subjects
making more mistakes.

1.2 Relation to literature
The model of partnership formation in social networks is related to two different strands of the
literature. First, it has close connections to models of bargaining in networks, in particular
models of bargaining in non-stationary networks where agents who leave the network are
not replaced.2 Second, because the value of a partnership is modeled through reciprocal
exchange of favors, the model is related to the literature on favor exchange.3 The paper
by Abreu and Manea (2012) considers a model of bargaining which differs from ours in two
dimensions. First agents bargain the division over a surplus whereas in our model agents
cannot share the value of the partnership. Second, agents do not sever links if they do not
reach agreement – a strong departure from our model which explains the difference in results
in our paper and Abreu and Manea (2012). The paper in the literature on favor exchange
which is closest to our model is the paper by Jackson, Rodriguez-Barraquer and Tan (2012).
In this paper, pairs of agents are matched randomly in any period, with one of the agents
requiring a favor from the other. Contrary to the BDM model, favors are link-specific and
the agent can only obtain a favor form one of his neighbors. Pairs meet too infrequently to
sustain bilateral exchange, However, the favor exchange network may be sustained through
social pressures or punishments leading to possible loss of neighbors in the network. Despite
the similarity in the settings, the primary focus of their model is very different from ours.
In particular, very different forces sustain the socially efficient network in the two settings -
social pressures in their case and individual incentives in the BDM case.

There is a growing literature on experiments in networks which is related to our paper.4
To the best of our knowledge, our paper is the first to propose an experimental test of the
model of partnership formation in non-stationary networks. The most closely related paper
is the paper by Charness, Corominas-Bosch and Frechette (2007) who test the Corominas-
Bosch bargaining model and observe that, as in our experimental study, the proportion of

2See Manea (2017) for a recent survey.
3This literature is surveyed in Möbius and Rozenblat (2017).
4See Choi, Gallo and Kariv (2016) for an up-to-date survey of this literature
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efficient trade is very high and players’ behavior seems to conform to the equilibrium behavior
predicted by the theory.

2 The theoretical model

2.1 Partnerships
We start by giving a brief sketch of the theoretical model.

We consider a society of n agents who are organized in a social network g. The social
network evolves over time, as agents will delete links and leave the network. At any discrete
time t = 1, 2, .., one agent is chosen with probability 1

n to request a favor from a neighbor.
If the favor is granted, the agent who receives the favor obtains a flow payoff of v and the
agent who grants the favor pays a flow cost c. All agents discount the future using the same
discount factor �. We define the value of a partnership as the expected discounted payoff
obtained by an agent when he has found a partner with whom he reciprocates favors,

V =
v � c

n(1� �)
.

Partnerships are formed according to the following decentralized procedure. Suppose
that an agent i needs a favor at date t. Two situations may arise:

• Either agent i is already in a partnership

• Or agent i is not yet in a partnership

In the former case, the favor is offered by agent i’s partner. In the latter case, agent i turns
to his direct neighbors in the current social network gt and asks them sequentially for a favor.
The sequence in which he approaches his neighbors for the favor is exogenously given. If
neighbor j is approached by agent i, he responds by Yes or No to the offer. If agent j rejects
the request from i, the link ij is destroyed, the new social network is gt\ ij, and agent i turns
to the next neighbor in his chosen sequence. If all agents reject i’s request, the network at
next period is

gt+1 = gt \ i,

the network obtained from g by deleting i and all his links.
If agent j responds Yes, the partnership {ij} is formed, and the two partners leave the

social network, deleting all their links. Thus, the partnership forms as soon as a favor is
granted. We let

gt+1 = gt \ i, j,
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denote the network obtained after agents i and j have left. If j accepts i’s request, but has
not in the past approached i for a favor, then the network remains unchanged till the next
period, when a possibly different agent needs a favor. A strategy for player j specifies, for
any possible network g and any proposer i a decision to accept or reject the formation of
a partnership. A subgame perfect equilibrium is a collection of strategies such that every
agent plays his optimal strategy after every possible history.

2.2 Matchings and essential nodes
In this subsection, we collect definitions in graph theory pertaining to matchings and bipartite
graphs which will prove useful in our analysis.5 Given a network g, a matching M is a
collection of edges in g such that no pair of edges in M has a common vertex. A matching
M is maximal if there is no matching M 0 � M in g. A matching M is a maximum matching
if there is no matching M 0 in g such that |M 0| > |M |. For any graph g, we let µ(g) denote
the matching number of graph g, i.e. the size of any maximum matching in g.

A node i in graph g is called essential if it belongs to all maximum matchings of the
graph g. It is called inessential otherwise. Clearly, all nodes are essential in a perfect graph.
As illustrated in Figure 2, all nodes are inessential in the odd cycle C3, and in the line L5,
nodes 2 and 4 are essential, but not nodes 1, 3 and 5. In the line L5, node 3 is the most
central node according to all measures of node centrality, but is inessential. This example
shows that there is no connection between centrality and essentiality of nodes in a graph.

1 2 3 4

The line L4

1

2 3

The cycle C3

1 2 3 4 5

The line L5

5See Lovasz and Plummer (1986) for an excellent monograph on matchings and bipartite graphs.
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Figure 1: Essential and inessential nodes

The following Proposition characterizes subgame perfect equilibrium strategies.

Proposition 2.1 Suppose that j receives a request from i in the social network g. Then, in
a subgame perfect equilibrium, j accepts the request if and only if j is inessential in g \ i or
g \ i, k where k is the first agent (if any) to accept i’s request if j refuses the requesr.

Proof. We only give here a sketch of the proof. The full proof can be found in the companion
paper (Bloch, Dutta and Manea (2018)).
We first make some observations on the characterization of essential nodes when the network
evolves and becomes sparser:

1. If i is an essential node in g, there exists ij 2 g, such that j is inessential in g \ i.

2. If i is not an essential node in g and ij 2 g, j is an essential node in g \ i.

Any essential node i must be connected to some node which is inessential in g\i. On the other
hand, all neighbors of an inessential node i are essential in g \ i. When an inessential agent
is removed from the network, all essential agents remain essential. When a pair of agents
leaves the network, without disrupting the total number of matchings, all essential agents
remain essential as well. This will lead us to show that in a subgame perfect equilibrium, all
essential agents are guaranteed to find a partner whereas inessential agents may not find a
partner with positive probability.
The proof is by induction on the number of agents in a connected component. For n = 2,
both agents are essential and the statement is trivially satisfied. For n = 3, we show that
the characterization is valid both in the line L3 and in the circle C3. The difficult part of the
proof is to prove the inductive step. We do so by proving a sequence of assertions, noting
that essential agents have no incentive to accept a proposal but inessential agents always
accept.

We now use the characterization of equilibrium behavior to observe that when players are
sufficiently patient, the maximum number of pairs are formed in equilibrium.

Theorem 2.2 There exists � > 0 such that for all � � �, the maximum number of pairs is
formed in a subgame perfect equilibrium.

Proof. The complete proof is in BDM. The proof relies on the fact that, if an agent rejects
the formation of a partnership, she must remain essential in the continuation game after the
link ij has been deleted. But this implies that the matching number of the graph cannot
drop after a rejection.
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3 Experimental design
In order to test the behavior of agents in the game of partnership formation in social net-
works, we design a laboratory experiment in the model with costly favors.6 The objective of
the experiment is to check whether boundedly rational agents will play equilibrium strate-
gies when facing incentives in real social-network interactions, and to what extent different
networks support efficient outcomes.

Unlike the infinite process described in Section 2, the experiment must stop in finite time.
We assume that once agents form partnerships and leave the network, they immediately
collect the total value of the partnership and will not request or grant favors anymore. Only
those agents who are not yet in a partnership are chosen with equal probability to request a
favor from one of their neighbors. The process ends when no new partnership can be formed
in the network. The value obtained by an agent in a partnership is either v� c (if the agent
grants the favor) or v ( if he requests the favor). Agents who are not in a partnership at
the end of the process receive a value of 0. We calibrate the values of v and c so that, in
the particular networks we consider in the experiment, the equilibrium behavior in the finite
game coincides with the equilibrium of the game of partnership formation of Section 2 when
the discount factor � converges to 1.

3.1 Initial social networks in the experiment
We choose five initial social networks in the experiment which are depicted in Figure 2. The
number of nodes, links and complexity of the network structure increase from social network
1 to social network 5. The first two social networks are the lines L4 and L5. The other three
social networks are more complex and involve cycles with four agents in social network 3,
five agents in social network 4, and seven agents in social network 5.

In the experiment, subjects go through the initial social networks 1 to 5 in sequence. They
play the game with each initial social network five times so play a total of 25 times. There
are also 2 practice periods on social network 1 at the beginning of the experiment.

At the beginning of each period, subjects are randomly re-matched into groups. The network
positions are also randomly assigned in each period. Given any initial network, each period
starts with one agent, say i, being randomly chosen to request a favor from one of his
neighbors, agent j. The sequence in which agent i approaches his neighbors is chosen at
random by the computer.7 Agent j then decides whether to accept the offer or not. If the
offer is accepted, the partnership is formed and both agents leave the social network. If

6Behavior in the model of positive favors is obvious, so we do not feel that an experiment will be helpful
there.

7In the theoretical model, the proposer chooses the sequence in which neighbors are approached. But
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1 2 3 4

Social network 1

1 2 3 4 5

Social network 2

1

2

3

4

Social network 3

1

2

3

4

5

Social network 4

1

2

3

4

5

6

7

Social network 5

Figure 2: Initial social networks 1-5 in the experiment
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this agent decides to reject the offer, the link between i and j is destroyed. Agent i then
requests a favor from his next neighbor in the sequence. If all neighbors reject his request,
agent i will be cut off from the social network. Once agents leave or are cut off from the
social network, the computer will then randomly select the next agent from the remaining
social network and the same process is executed again. The social network evolves until each
agent either has a partner or is isolated. Each period thus involves a sequence of decisions,
with each decision made in a specific network by the selected subject. For each decision,
subjects who made it and who proposed the request are informed of the result and their
respective payoffs, and others in their group are shown the changes in the social network on
the computer screen.

3.2 Individual difference tests

Belief elicitation
Subjects should make decisions in the game according to their beliefs about the rationality
and the behavior of other agents in the social network. In order to take into account these
beliefs in the analysis of decisions, we have asked subjects about the decision of other agents
in a simple situation. In the context of the 3-agent line L3, subjects are asked to give an
estimate of the proportion of central agents who actually accepted the request from one of
the extreme nodes. In this situation, the agent should always reject the request, as he obtains
either v or v� c after the rejection. The actual proportion of acceptance from central agents
is 14.6%. The average estimated proportion of acceptance is 20.8%, and half of the subjects
believe that it is smaller than 10%. In addition, only 15.6% of subjects estimate that the
proportion of acceptance is equal to or higher than 50%. This question is not incentivized
in our experimental design.8

Cognitive ability
In our experiment, cognitive abilities are elicited with the CRT test (Frederick, 2005). This
test is designed to assess an individual’s ability to move from an intuitive and spontaneous
wrong decision to a reflective and deliberative right one. Subjects are asked to answer three
questions in the CRT test, which are listed as follows:

• Question 1: A bat and a ball cost e11. The bat costs e10 more than the ball. How
much does the ball cost?

whether the sequence is chosen endogenously or exogenously does not affect the equilibrium response of the
agents. Since the analysis focuses on equilibrium responses and matchings formed, the two models with
endogenous and exogenous sequences are equivalent.

8This is not a true elicitation of subjects’ beliefs about other agents’ behavior as the answer to this
question depends also on the rationality of the subject questioned. Nevertheless, the answer to this question
may explain deviation from the equilibrium strategy.
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• Question 2: If it takes 5 machines 5 minutes to make 5 widgets, how long would it take
100 machines to make 100 widgets?

• Question 3: In a lake, there is a patch of lily pads. Every day, the patch doubles in
size. If it takes 48 days for the patch to cover the entire lake, how long would it take
for the patch to cover half of the lake?

Although the CRT test is relatively short and simple to perform compared to other cognitive
tests, its results are positively related with rational thinking performance (Toplak, West and
Stanovich, 2011). On average, 1.75 questions are answered correctly by subjects in the CRT
test for this study.

Risk elicitation
Rejection is a risky decision when the acceptance of the request gives v � c for sure. So,
acceptance and rejection decisions should be related to subjects’ attitudes towards risk. We
elicited this attitude following a procedure introduced by Eckel et al (2012). The procedure
consists of a choice among six lotteries in the form of a coin flip that gives a low or a high
payoff with equal probability. The lotteries are arrayed from a safe one with a certain payoff
of 18 experiment points to a highly risky one with a high payoff of 54 points and a negative
low payoff of -2 points. Expected return increases along with higher variance as one moves
from the safest to the riskiest lottery. The variance that a subject is willing to accept gives a
proxy of his risk preference. Therefore, we can estimate each subject’s level of risk attitude
by looking at his choice among six lotteries: lottery 1 through 4 represent decreasing levels
of risk aversion, lottery 5 indicates risk neutrality, and lottery 6 corresponds to risk seeking
individuals.

Table 1: Six lotteries in risk test
Lottery Payoff (experiment points) Risk Preference Percentage

Low (50%) High (50%) Expected Variance
1 18 18 18 0 Highly risk averse 20.14%
2 14 26 20 36 Very risk averse 22.86%
3 10 34 22 144 Risk averse 17.1%
4 6 42 24 324 Slightly risk averse 7.49%
5 2 50 26 576 Risk neutral 15.31%
6 -2 54 26 784 Risk loving 17.1%

3.3 Experimental procedure
In each experimental session, subjects are randomly assigned ID numbers and seats in front of
the corresponding terminal in the laboratory. The experimenter reads the instructions aloud.
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Subjects are given the opportunities to ask questions, which are answered in private. We
check the subjects’ understanding of the instructions by asking them to answer 7 incentivized
review questions at their own pace. After answering one review question, each subject is
shown whether his answer is correct, as well as the right answer. After going over all review
questions, subjects go through 27 periods in the social-network experiment, including 2
practice periods. Afterwards, subjects are asked to report their beliefs on other agents’
behaviors, and take the CRT and risk tests. At the end of the experiment, each subject fills
out a demographic survey on the computer, and is then paid in private. Each session lasts
approximately 80 minutes, with 15 minutes devoted to the instructions. The experiment is
programmed in Java.

In the experiment, we set the parameters at v = 20 experimental points and c = 8 points.
Therefore, in a given period, a subject will obtain a payoff of 20 points by requesting a favor
or 12 points by granting a favor. If the subject has no partner, he will earn 0 points. There
are 21 subjects in each session. As there are 4 or 5 subjects per group from the initial social
networks 1 to 4, for the corresponding period one subject will be randomly chosen not to
play and be paid 10 points. At the end of the experiment, 10 out of 25 periods are randomly
chosen to be paid. In addition, a subject could earn 2 points per review question and per
CRT question answered correctly. He will also earn the payoff resulting from the draw for
the lotteries he chose in the risk test. The exchange rate is 10 experiment points for e1
for all sessions. Each subject also receives a participation fee of e3. The average earning
(including participation fee) is equal to e21.

All sessions were conducted in French at GATE-LAB, the Experiment Economics Laboratory
in Lyon between April and September 2015. The subjects are students from an engineering
department, Ecole Centrale de Lyon, a business school EM Lyon, and the University of Lyon.
No one participated more than once. We ran 6 independent sessions. In total, 126 subjects
participated in the experiment and we collected 1842 decisions. The English translations of
the experimental instructions can be found in the Appendix.

4 Results
In this section, we analyze the results of the experiment, focusing on two main questions.
First, we study individual behavior and analyze whether agents play the subgame perfect
equilibrium strategy, which is also referred to as risk-neutral best response (BR) here. We
also identify which factors could explain the deviation from the best response behavior.
Second, we analyze whether, at the aggregate level, the social interaction among real agents
results in efficient outcomes in different social networks.
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4.1 Individual behavior
To check whether subjects choose the BR, we consider all networks which may arise during
the experiment and break down behavior in the various networks, defining different situations
that subjects are faced with when making decisions in each graph.9 Overall, there are 28
possible graphs and 105 possible situations in the experiment.

For each situation, we compute the BR of the agent using the characterization results of
Section 2. We also calculate the expected value of acceptance, which is always 12 with
certainty, and the expected value of rejection for each situation. For example, in Figure 2,
suppose that agent 2 in the initial social network 1 receives a request from agent 3. Agent
2 can make the following calculation using backward induction. He will earn 12 for sure by
accepting the request; however, if agent 2 declines the offer, the link between agents 2 and 3
will be destroyed, and agent 3 would make a request to agent 4, who is expected to accept the
offer. The network would then evolve to L2 where agent 2 has 50% chance of earning 20 by
making a request that should be accepted by a rational agent 1, and 50% chance of earning
12 by accepting the request from agent 1. The expected value is thus 0.5⇥20+0.5⇥12 = 16.
Hence agent 2 should reject the offer. Generally, the difference between the expected values
of rejection and acceptance is defined as follows:

EV.difference = Expected value of rejection � Expected value of acceptance.

Note that when EV.difference > 0, BR is to reject, and when EV.difference < 0, BR is to
accept.10

Due to strategy uncertainty, subjects may not behave according to the expected value dif-
ference calculated under the assumption that other agents play BR. For instance, in the
previous example, it is possible that agent 1 mistakenly rejects the offer, making the payoff
after rejection equal to 0.5⇥0+0.5⇥12 = 6 for agent 2. Considering the possibility of agent
1’s mistake, agent 2 may instead accept the offer as he earns less than 12 by rejection. We
thus decided to check if subjects make decisions based on the difference between the actual
payoffs after rejection and acceptance. The actual payoff after rejection is computed, for
each situation, as the average actual payoff after rejection. The difference between actual
payoff after rejection and acceptance is therefore defined as follows:

Real.difference = Real gain of rejection � Real gain of acceptance.

Finally, in order to assess the complexity of each situation, we compute the steps of reasoning
a person has to consider when making the decision, i.e. the number of successive decisions

9For instance, in the initial network 1 or line L4, there are 3 different situations: one where an extreme
agent requests a favor from a central agent, one where a central agent requests a favor from an extreme agent
and one where a central agent requests a favor from the other central agent.

10Given our design, we did not have any situation with indifference in the experiment.
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in the longest path of the extensive form game starting from this situation.11 For instance,
when agent 2 receives a request from agent 3 in the previous example, the complexity for
agent 2 is equal to 2. We also calculate the complexity of the social network by taking the
average of complexity in all possible situations at a given initial graph, and find that the
complexity increases from 2 steps of reasoning on average for the initial social network 1 to
8 steps of reasoning for the initial social network 5.

4.1.1 Basic findings

We first examine whether subjects behave according to the subgame perfect equilibrium of
the partnership formation game. Overall, we find that the proportion of best responses is
equal to 79.5%. Even if we exclude the simple situations where the decision maker only has
one link, the proportion of best response remains as high as 66.7%. Table 2 presents the
proportions of rejection for EV.difference > 0 (Real.difference > 0) and EV.difference < 0
(Real.difference < 0) in each session, respectively. On average, the proportion of rejection
is as high as 67.2% (59.5%) when EV.difference > 0 (Real.difference > 0) and as low as
12.8% (26.5%) when EV.difference < 0 (Real.difference < 0) (the proportion of acceptance
is 87.2% (73.5%) correspondingly). In other words, a majority of subjects play equilibrium
strategies, with 67.2% of rejection when BR is to reject and 87.2% of acceptance when BR
is to accept.

Table 2: Proportions of rejection

EV.difference > 0 EV.difference < 0 Real.difference> 0 Real.difference < 0
Session 1 0.691 0.106 0.583 0.263
Session 2 0.703 0.148 0.588 0.297
Session 3 0.655 0.089 0.556 0.239
Session 4 0.528 0.140 0.492 0.231
Session 5 0.768 0.143 0.708 0.290
Session 6 0.683 0.139 0.646 0.273
Average 0.672 0.128 0.595 0.265

Even though subjects generally conform to the theoretical prediction, we find that their
choices vary greatly in different situations. Table 3 presents some graphs which arise fre-
quently during the experiment. These graphs are ordered from the simple two-agent line

11Other measures of complexity of the situation can also be computed, such as the total number of nodes
in the extensive form of the game or the total number of terminal nodes, etc. We find that all of these
measures are highly correlated with each other.
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to the most complex seven-agent network, labeled as g1, . . . g8 in sequence. In each graph,
we compute the expected value difference, real earning difference, the proportion of best
response as well as the number of observations for each possible situation. It can be seen
from Table 3 that subjects perform differently when the social networks are lines (e.g. 85.7%
of best response for g1 to g3) and when social networks have cycles (e.g. 24% and 51.3% of
best responses in g4 and g5, respectively). Their rational reaction also changes with different
positions in a given graph (e.g. in g6, 88.9% of best response when agent 3 or 4 requests to 1
and 50% conversely) or when different neighbors place requests (e.g. in g7, 80% of rational
acceptance for agent 2 when 3 requests a favor and 44.4% when 1 makes the request).

In particular, we observe that subjects tend to follow two behavioral patterns, which are
presented in Figure 3.

0.6

0.7

0.8

0.9

1 2 3 4 5
Social networks 1 − 5

B
es

t r
es
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ns

e

BR=accept BR=reject w/o #link = 1

0.2

0.4

0.6

0.8

BR=accept BR=reject

B
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t r
es
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e

w/o captive w/ captive

Figure 3: Two behavior patterns in the experiment

First, subjects are more likely to accept than to reject (left panel of Figure 3). On average,
65.6% of requests are accepted by subjects. We also find a higher rate of rational acceptance
(acceptance when BR is to accept), which is 87.2%, compared to 67.2% for rational rejection
(rejection when BR is to reject). However, the high rate of acceptance is probably due to the
fact that rational acceptance includes the simple situations where the decision maker has only
one link. If we exclude these situations, the proportion of rational acceptance is only 64.7%.
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Table 3: Proportions of best response in selected graphs
# Graph Situation EV.diff. Real.diff. BR # of obs.

g1: 1 2 1 (2) ! 2 (1) -12 -12 0.983 478

1 2 3 4

1 (4) ! 2 (3) -4.7 -4.44 0.649 154
g2: 2 (3) ! 3 (2) 4 3.82 0.733 60

2 (3) ! 1 (4) -12 -12 1 63

1 2 3 4 5

2 (4) ! 3 -4.7 -0.27 0.7 20
g3: 1 (5) ! 2 (4) 4 1.57 0.529 87

3 ! 2 (4) 4 3.2 0.769 26
2 (4) ! 1 (5) -12 -12 1 27

g4:
1

2

3

2 (3) ! 1 4 -1.33 0.24 25

g5:
1

2 3

4
2 (4) ! 1 4 1.6 0.513 39

1

2 3

4
2 ! 1 -1.33 -4 0.39 41

3 (4) ! 1 4 1.33 0.889 27
g6: 3 (4) ! 4 (3) -4.7 -4 0.676 37

1 ! 3 (4) 4 3.5 0.5 32
1 ! 2 -12 -12 1 13

1

2 3

4

5

5 ! 1 4 -0.52 0.784 37
2 (4) ! 1 4 0.57 0.824 34

g7: 3 ! 2 (4) -4.7 0.8 0.8 35
1 ! 2 (4) -0.35 0.8 0.444 18
2 (4) ! 3 4 -0.11 0.359 39

1 ! 5 -12 -12 1 12

1

2

3

4

5

6

7 1 (4, 5, 6) ! 3 4 0.76 0.8 30
g8: 2 (7) ! 1, 4 (5, 6) - 3.34 1.14 0.667 24

3 ! 1 (4, 5, 6) -1.8 -1.71 0.714 7
1, 4 (5, 6) ! 2 (7) 4 0.95 0.414 29
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We conduct probit regressions to control for this fact,12 and still find a significantly higher
rate of rational acceptance than rational rejection.13 There are two plausible explanations
for this tendency to accept: (1) to reject is a risky choice and subjects tend to accept because
of risk aversion; (2) there is a cognitive cost to calculate expected value of rejection, and
so subjects will make the immediate acceptance decision instead. We will explore these two
explanations in the next subsection.

Second, subjects tend to rationally reject when they have a captive agent not making the
request (right panel of Figure 3). An agent is said to be a captive agent if he has only one
connection in the social network. So one should expect that a captive agent will always
accept the request from his only neighbor. When a subject has a captive agent he should
reject the current offer as he is guaranteed to earn 20 by requesting a favor from his captive
agent. We find that 81.9% of requests are rationally rejected when subjects have captive
agents not making the request, compared to 54.1% of rational rejection by subjects who do
not have captive agents. (This effect is proved to be significant through regression results in
the next subsection).

4.1.2 Determinants of behavior

We now analyze in detail departures from equilibrium behavior related to the characteristics
of the current social network and situation. We also control for factors related to individuals.
In order to systematically check how these factors affect the strategies of the subjects, we
conduct probit regressions. The results are presented in Table 4 and Table 5. The dependent
variable is the probability of best response when BR is to reject (in Table 4) and when BR
is to accept (in Table 5), respectively. Independent variables include “EV.difference”, the
difference between expected value after rejection and acceptance in specifications (1) through
(3), “Real.difference”, the difference between actual payoffs after rejection and acceptance in
specifications (4) through (6). Specifications (1) and (4) only include variables related to the
characteristics of the social network and situation: a dummy variable "Steps of reasoning"
which is equal to 1 if an agent has to consider more than 3 steps of reasoning in the extensive
form of the game he faced, a dummy variable “Cycle” which is equal to 1 if subject is in the
cycle. In the case of the regressions when BR is to reject (in Table 4), we add an additional
dummy variable “Captive” which is equal to 1 if the subject has a captive agent who is not
the one who requests a favor from him. Specifications (2) and (5) control for individual

12In the regressions, the dependent variable is the probability of best response. The primary independent
variable is the dummy variable “BR Reject” which is equal to 1 if BR is to reject. Control variables include
the dummy variable “One link” which is equal to 1 if the subject has only one link, the absolute difference
between expected value and actual value after rejection and acceptance, as well as other variables introduced
in the regressions in the next subsection. The regression results are presented in Table ?? in Appendix.

13In Table ??, the coefficients for dummy variable “BR Reject” are negative and significant at p< 0.01 or
p< 0.05.
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differences: the measure of "Risk" preference for a subject where smaller value indicates
higher level of risk aversion, the number of correct answers in the "CRT" test, and the proxy
for the subject’s "Belief" about other agents’ rationality where a lower percentage represents
a higher estimation of the rationality of other agents. Finally, specifications (3) and (6) add
individual ”Experience", the number of decisions the subject has already made, in order to
capture a learning effect.

Table 4: Probit regressions: Probability to best respond when BR is to reject

(1) (2) (3) (4) (5) (6)

EV.difference -0.030 -0.029 -0.043
(0.115) (0.117) (0.112)

Real.difference -0.007 -0.008 -0.001
(0.010) (0.008) (0.009)

Steps of Reasoning -0.168*** -0.177*** -0.143*** -0.175*** -0.184*** -0.145***
(0.043) (0.044) (0.041) (0.038) (0.039) (0.034)

Cycle 0.010 0.005 -0.033 0.016 0.011 -0.032
(0.062) (0.058) (0.059) (0.066) (0.061) (0.063)

Captive 0.400*** 0.397*** 0.395*** 0.404*** 0.401*** 0.394***
(0.040) (0.041) (0.042) (0.037) (0.040) (0.040)

Risk 0.016** 0.018** 0.016** 0.018**
(0.007) (0.007) (0.007) (0.007)

CRT 0.014 0.011 0.014 0.011
(0.021) (0.021) (0.020) (0.021)

Belief -0.002** -0.002*** -0.002** -0.002***
(0.001) (0.001) (0.001) (0.001)

Experience 0.014*** 0.014***
(0.003) (0.004)

No. of observations 724 724 724 724 724 724

Note: standard errors in parentheses are clustered at the session level; coefficients are
marginal effects. *** p<0.01, ** p<0.05, * p<0.1.

We first check the relation between best response and expected value difference as well as real
earning difference. Figure 4 presents the proportion of rejection in each situation for each
expected value difference (left panel) and real earning difference (right panel), respectively.
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Table 5: Probit regressions: Probability to best respond when BR is to accept

(1) (2) (3) (4) (5) (6)

EV.difference -0.033*** -0.033*** -0.032***
(0.002) (0.002) (0.003)

Real.difference -0.024*** -0.024*** -0.024***
(0.002) (0.002) (0.002)

Steps of Reasoning -0.101*** -0.109*** -0.074* -0.034 -0.048 0.011
(0.033) (0.030) (0.038) (0.042) (0.044) (0.060)

Cycle -0.062 -0.068 -0.058 -0.028 -0.040 -0.018
(0.048) (0.044) (0.045) (0.044) (0.045) (0.050)

Risk -0.008*** -0.009*** -0.007** -0.007***
(0.002) (0.002) (0.003) (0.003)

CRT 0.016** 0.015** 0.016** 0.016*
(0.008) (0.008) (0.008) (0.008)

Belief -0.001 -0.001 -0.001 -0.001
(0.000) (0.000) (0.001) (0.001)

Experience 0.005** 0.009***
(0.003) (0.003)

No. of observations 1,118 1,118 1,118 1,104 1,104 1,104

Note: standard errors in parentheses are clustered at the session level; coefficients are
marginal effects. *** p<0.01, ** p<0.05, * p<0.1.
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For risk neutral rational agents, the proportion of rejection should be equal to zero when
EV.difference < 0 and equal to one when EV.difference > 0.

Figure 4: Proportion of rejection in each situation by EV.difference and Real.difference

It can be seen from Figure 4 that although subjects do not play completely according to
the theoretical prediction, they are more likely to reject when the expected value difference
or the real earning difference increases. In particular, this relation is almost linear when
EV.difference < 0 and Real.difference < 0.

Regression results in Table 5 support this finding. A subject’s probability of playing a best
response (acceptance) will significantly decrease by about 3.2 percentage points when the
expected value difference increases by 1 unit (p < 0.01 for coefficients “EV.difference”), and
will significantly decrease by about 2.4 percentage points when the real earning difference
increases by 1 unit (p < 0.01 for coefficients “Real.difference”). We note that when BR
is to accept, the expect value difference is negative (EV.difference < 0). So the subject’s
best response significantly increases with the absolute value difference between rejection and
acceptance, indicating that subjects tend to play equilibrium strategies when the cost of
deviation from rational acceptance increases.

However, Figure 4 shows that when BR is to reject (EV.difference > 0), there is a striking het-
erogeneity among subjects’ best responses according to different decision situations, even for
situations with the same expected value difference. In fact, the coefficients of “EV.difference”
in specifications (1) through (3) and the coefficients of “Real.difference” in specifications (4)
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through (6) in Table 4 are all negative and insignificant. This indicates that other charac-
teristics of the situation, such as complexity of the network or the structure of the network
are likely to play a role in situations when BR is to reject.

We next present in Figure 5 the proportion of best responses as a function of the steps of
reasoning when BR is to accept or to reject (left panel), and when the decision maker is in
a line or in a cycle (right panel).
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Figure 5: Proportion of best response by situation complexity

It can be seen from Figure 5 that the proportion of best response decreases with the com-
plexity at first and then increases slightly when the number of steps of reasoning is higher
than 3. We also observe a high volatility of best responses for some steps of reasoning. This
is probably due to the small number of observations, especially when the situation becomes
more complex -we only have a third of the total observations corresponding to situations
where the number of steps of reasoning is higher than 3. Overall, we find that the propor-
tion of best responses is high when the situation is less complex. The proportion of rational
rejections is 73.1% (91.8% of rational acceptance) when the number of steps of reasoning is
smaller than 3, and is 62.9% (64.1% of rational acceptance) otherwise. Results of the regres-
sions in Table 4 and Table 5 further show that when it takes more than 3 steps of reasoning,
the probability of best responses significantly decreases by at least 14.3 percentage points
when BR is to reject (p< 0.01 for coefficients “Steps of Reasoning” in Table 4) and by about
7.4 percentage points when BR is to accept. However, the effect is only significant if we do
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not control for learning effect and real earning difference (p< 0.01 in specifications (1) and
(2) in Table 5).

On average, it takes 5 steps for a subject to figure out his subgame perfect equilibrium
strategies when he is in a cycle, but it only requires 2 steps in a line. However, when we
control for the complexity of the situation, the network structure - whether the subject is in
a line or in a cycle - has no significant effect on the probability of best response (coefficients
for “Cycle” are insignificant in Table 4 and Table 5). On the other hand, when facing the
same level of complexity, the probability of best response significantly increases by at least
39.4 percentage points if the subjects have captive agents when BR is to reject (p< 0.01 for
coefficients “Captive” in Table 4). This result further supports the previous finding that this
heuristics helps subjects adopt equilibrium strategies.

We next argue that risk aversion, cognitive ability, subject’s belief about other participants’
rationality can also help explain behavior heterogeneity. Regression results show that sub-
jects with higher levels of risk aversion are significantly less likely to rationally reject (the
coefficients for “Risk” are 0.016 to 0.018 at p < 0.05 in Table 4) and are significantly more
likely to rationally accept the favor (the coefficients for “Risk” are -0.009 to -0.007 at p <
0.05 in Table 5). That is, risk aversion makes subjects more likely to accept, especially in
situations when BR is to reject. Even in the “safe rejection” situations when subjects will
earn at least 12 by rejection, highly risk averse subjects- those who choose low but certain
payoff in the risk test- still tend to accept (56.6% of rejection by high risk averse subjects
v.s. 70.3% of rejection by other types of subjects).

On the other hand, subjects have to invest their cognitive abilities and cognitive efforts to
calculate the expected value of rejection so as to find out their optimal choices. We use the
number of correct answers in the CRT test as the proxy for subjects cognitive abilities and
cognitive efforts. We find that subjects with a better answer in the CRT test are more likely
to play equilibrium strategies. However, this effect is only significant (p < 0.05 for coefficient
“CRT” in Table 5) and sometimes marginally significant (p < 0.1 for coefficient “CRT” in
specification (3) of Table 5) when BR is to accept.

Subjects’ beliefs about others’ rationality may also affect their tendency to best respond.
Regression results in Table 4 and Table 5 show that the coefficients of variable “Belief” are
negative in all specifications, and in particular, they are significant when BR is to reject
(p < 0.05 for coefficients “Belief” in Table 4). The result indicates that subjects holding a
stronger belief about strategy uncertainty (i.e. weaker belief about others’ rationality) are
more likely to choose the safe “acceptance”, when rejection is in fact their subgame perfect
equilibrium strategies under the assumption of rationality for other agents.

Lastly, as the experiment is repeated for 25 periods, from the simple social network to the
complex ones, it is interesting to ask whether previous experiences affect individual choices,
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and more importantly, whether subjects learn to best respond over time. We check the
effect of a subject’s own decision experience on best response by controlling for situation
characteristics as well as individual difference, and find a significant learning effect. It can
be seen from Table 4 and Table 5 that on average, with one more decision a subject has made,
the probability of best response significantly increases by 1.4 percentage points when BR is
to reject (p < 0.01 for coefficients “Experience” in Table 4), and by at least 0.5 percentage
points when BR is to accept (p < 0.05 for coefficients “Experience” in Table 5).

4.2 Aggregate outcomes
In this subsection, we analyze whether aggregate behavior leads to efficient outcomes in the
experiment. We first look at the number of matched pairs for each of the five initial social
networks formed in the experiment. If all subjects follow the subgame perfect equilibrium
strategies, as shown in Section 2, the maximum number of matches in the initial social
network will be achieved. We therefore compute an efficiency index (EI) as follows:

EI =
Number of actual matched pairs

Maximum number of matched pairs
.

Notice that, in some social networks, the maximum number of matched pairs can still be
formed when agents do not play their equilibrium strategies. For example, in the social
network 5, even when some agents make mistakes by accepting the offer when they should
reject, there will still be 3 matches formed at the end. On the contrary, in social network 1, if
any of the agents does not play his best response, the efficient outcome cannot be achieved.
As a result, social networks differ by the sensitivity of the number of matches formed as
a function of the behavior of agents. Taking this fact into account, we consider random
agents who randomly reject and accept the request in each situation with equal probability,
and compute the number of matched pairs formed by these random agents. This gives us a
benchmark with which to compare the efficiency level obtained by real agents. We compute
a relative efficiency index (REI) as follows:

REI =
Number of actual matched pairs - Number of randomly matched pairs

Maximum number of matched pairs - Number of randomly matched pairs
.

Table 6 presents the outcome efficiency for each of five initial social networks, including
the number of actual matched pairs, the number of randomly matched pairs, the maximum
number of matched pairs, the efficiency index as well as the relative efficiency index. The
proportion of best response is also computed for each initial social network. On average,
the efficiency index is as high as 0.90 and the relative efficiency index is 0.75. We also find

22



Table 6: Outcome efficiency for initial social networks
Period Network 1 Network 2 Network 3 Network 4 Network 5

1 1.63 1.96 1.53 1.96 2.78
2 1.73 1.92 1.53 1.88 2.89
3 1.60 1.96 1.63 1.96 2.94
4 1.63 1.88 1.53 1.96 2.89
5 1.77 1.88 1.57 1.96 3.00

Average 1.67 1.92 1.56 1.94 2.90
Random agents 1.09 1.41 1.13 1.51 2.25
Max.# of pairs. 2 2 2 2 3

EI 0.84 0.96 0.78 0.97 0.97
REI 0.64 0.86 0.49 0.88 0.87

Best response 0.828 0.821 0.756 0.804 0.774

that 78% of times (493 out of 630 total outcomes) the maximum number of matched pairs
is achieved. More interestingly, in the most complex seven-agent social network, all groups
achieve efficient outcomes in the last period. For each initial social network, the number of
matched pairs established by random agents is also lower than that achieved by real agents.

In addition, the efficiency index (relative efficiency index) is 0.84 (0.64) and 0.78 (0.49) in
social networks 1 and 3, lower than those in social networks 2, 4 and 5. We also observe
that the efficiency level achieved by random agents is also lower in these two networks. In
fact, social networks 1 and 3 have an even number of agents, whereas the rest has an odd
number of agents. Therefore, the low level of efficiency in these two networks is partly due
to the fact that they are more sensitive to mistakes in the agents’ behavior. As a result, even
though the proportion of best response in social network 1 is higher than that in all other
networks, the efficiency level is lower.

5 Conclusion
This paper analyzes the formation of partnerships in social networks. Agents randomly
request favors and turn to their neighbors to form a partnership where they commit to
provide the favor when requested. The formation of a partnership is modeled as a sequential
game, which admits a unique subgame perfect equilibrium resulting in the formation of the
maximum number of partnerships. Experimental results show that a large fraction of the
subjects (75%) play according to their subgame perfect equilibrium strategy and reveals that
the efficient maximum matching is formed over 78% of the times. When subjects deviate
from their best responses, they accept to form partnerships too early. The incentive to accept
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when it is optimal to reject is positively correlated with subjects’ risk aversion, and players
employ simple heuristics – like the presence of a captive partner – to decide whether they
should accept or reject the formation of a partnership.
We are aware of a number of limitations of our model and experimental study and would
like to focus our attention to two important questions in future work. First, we would like to
extend the model to the study of partnerships of more than two agents. While this extension
does not pose any conceptual difficulty, it requires to define generalized matchings of more
than two agents, and requires to use more complex tools from graph theory. The second
extension is to allow for heterogeneity in the value of partnerships, letting the value of the
partnership depend on the pair ij, vij. Computing the optimal behavior of agents in non-
stationary networks with heterogeneous values is a complex task. It will introduce a new
dimension of heterogeneity (beyond the location in the network) in experiments. However,
we believe that this is an important avenue for future research.
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A Experimental Instructions
We would like to thank you for having agreed to participate in this economics experiment.
During this experiment, you will earn a certain sum of money. Your earnings are stated in
experimental currency unit (ECU). At the end of the session they will be converted to euros
using the following rate of conversion :

1 ECU = 0,1 Euros

So 10 ECU= 1 Euros
Besides the earnings you will make during the experiment, you will receive a 3 Euros partic-
ipation fee. Your earnings will be paid using a bank transfer during a maximum of 4 weeks .
All the decisions which you will take during this experiment are anonymous. You will never
have to identify yourself on the computer.
The experiment consists of several periods. At the beginning of every period the groups
of players are randomly formed. The links between the members of the same group are
represented in the form of a graph. In a graph a player can form a pair with his direct
neighbors but not with the other players. The number of players and the structure of the
graph change every five periods. The first two periods of the first sequence are trial periods
which are not taken into account to determine your earnings. This experiment contains a
total of 27 periods.
Example 1 :

1

2

3

45

In this group of 5 players, player #1 can form a pair with players #2 and #5 but not with
players #3 and #4.
A player is chosen randomly among every group to be the claimant. All the players in the
graph have an equal chance to be chosen. A neighbor chosen randomly among the neighbors
of the claimant is requested to form a pair with the claimant. All the neighbors of the
claimant have an equal chance to be chosen.
If this chosen neighbor accepts to form a pair with the claimant, then:

• The pair leaves the graph: all the links that linked the pair to the rest of the graph
are deleted. The period ends for the two players of the pair.
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• The claimant earns 20 ECU.

• The neighbor that accepted to form the pair with the claimant earns 20 - 8 ECU, so
12 ECU.

• If there is another possibility of forming a new pair in the remaining graph, another
player is chosen randomly among the remaining players to be the new claimant.

If this chosen neighbor refuses to form a pair with the claimant, then:

• The link that linked the claimant to this neighbor is deleted.

• A neighbor is chosen randomly among the remaining neighbors to form a pair with the
claimant.

• If the claimant has no remaining neighbors, then if there is another possibility of form-
ing a new pair in the remaining graph, another player is chosen among the remaining
players to be the new claimant.

Example 2 : In the graph of example 1. We suppose that player #5 is chosen to be the
claimant. We suppose that among the neighbors of player #5 (in this case player #1 and
#4), player #1 is chosen to form a pair with player #5.
If player #1 accepts to form the pair with player #5.

• Players #1 and #5 are no longer linked to the remaining graph.

• Player #5 earns 20 ECU for this period.

• Player #1 earns 12 ECU for this period.

• A new claimant is randomly chosen among the players of the remaining graph formed
by players #2, #3 and #4.

1

2

3

45

If player #1 refuses to form a pair with player #5.

• Players #1 and #5 are no longer linked in the graph.
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• Player #4 has the opportunity to form a pair with player #5.

1

2

3

45

In the end, a claimant that forms a pair earns 20 ECU. A neighbor player who was chosen
to form a pair and he accepts, earns 12 ECU. A player that doesn’t belong to any pair at
the end of a period, earns 0 ECU.
After the last period of the last sequence, 10 periods will be drawn randomly among the
periods except the trial periods. The earnings obtained for these 10 periods will determine
your earnings for this experiment. Every period has an equal chance to be drawn.
You are 21 participants in the room. When the number of players in the group is 4 or 5,
there is then a participant that is randomly chosen, that won’t be able to participate during
one period. In this case, his earning for this period is 10 ECU.
It is totally forbidden to communicate between each other during the experiment. Any
communication may cause the exclusion of the participant from the experiment without
compensation. We kindly ask you to reread carefully these instructions and answer the
questionnaire which is going to appear on your screens. Every correct answer to this ques-
tionnaire will yield a profit of 2 ECU . If you have questions - now or during the experiment,
kindly call us by pressing your call button. We shall come to answer you in private.
A series of questions will be given to you after the 27 periods of the experiment. Some of
these questions will allow you to win additional earnings
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