
Ashoka University
Economics Discussion Paper 92

The Newsroom Dilemma*

January 2023 

Ayush Pant, Ashoka University
Federico Trombetta, Università Cattolica del Sacro Cuore



The Newsroom Dilemma∗

Ayush Pant† Federico Trombetta‡

January, 2023

Abstract

Conventional wisdom suggests that competition in the modern digital environ-
ment pushes media outlets toward the early release of less accurate information.
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determine the resolution of the speed-accuracy tradeoff: preemption and repu-
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1 Introduction

On April 18, 2013, the New York Post plastered its cover page with a picture of two

men under the headline “BAG MEN: Feds seek these two pictured at Boston Marathon.”

The Post was hinting that the duo was responsible for the Boston Marathon bombings

and had carried the bombs in their bags. They were innocent, and the Post was wrong.

16-year-old Salaheddin Barhoum and 24-year-old Yassine Zaimi later filed a lawsuit, and

the New York Post’s credibility was damaged. Similarly, in September 2008, Bloomberg

incorrectly reported that United Airlines was filing for bankruptcy. Before Bloomberg

issued a correction, United Airlines’ stock price nosedived 75 percent.

Media critics often cite such examples to argue that competitive pressures in the

modern digital environment have pushed outlets towards the early release of less accurate

information (Cairncross, 2019).1 Matt Murray, Editor-in-Chief of the Wall Street

Journal, acknowledged in a recent interview that the Internet had created both time

and competitive pressures. However, part of the pressure, he noted, “is to stay true to

what has worked and works (really) well, which is reporting verified facts.” In a similar

vein, some media scholars argue that the fears surrounding the effect of competition

may be overblown (Knobel, 2018; Carson, 2019).

In this paper, we discuss why competition among media outlets might not privilege

speed over accuracy. We also consider the implications of competition on audience

welfare and information dissemination. We argue that two opposing forces determine the

resolution of the speed-accuracy tradeoff: preemption and reputation. While preemption

pushes outlets towards speed, reputation gives media outlets a reason to engage in

careful, detailed reporting.

1Such pressures towards speed-driven journalism are a cause of concern for modern democracies.
Media outlets, through fact-checking and investigative journalism, deliver revelations that have a
profound impact on society and its institutions. For instance, The Hindu’s Bofors scam exposé in India
in 1987 brought the topic of political corruption to center stage and lead to the defeat of the government
in power in 1989. More recently, the New York Times’ exposé on sexual abuse in Hollywood and
corporate America has reignited discussions on gender discrimination in the workplace.
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We build a two-period model in which two career-concerned media outlets compete

against one another and fear preemption. There is a topic on which the outlets may

publish stories. Both outlets receive an initial informative signal about the topic. They

may research the topic further at a cost that depends upon their ability. We model

research as generating a perfectly-informative signal about the topic. There is a scoop

value associated with being the first outlet to publish a story on the topic. In addition

to valuing scoops, outlets also care about their reputations, which depends upon an

audience’s inference about the outlet’s ability to research.

Our model yields three main results. The first two speak to the changes in the

media landscape brought about by the Internet. The last result deals with how a source

disseminates information to media outlets facing the speed-accuracy tradeoff.

The Internet has reduced barriers to entry and contributed to a 24-hour news cycle

where reporters are always on deadline. Consequently, the competitive pressures on

media outlets have increased. We argue that while competition can push media outlets

to publish more quickly, it can also have the opposite effect – to push outlets to research

stories more thoroughly. We find that it is easier for outlets to build a reputation in

more competitive environments, increasing their willingness to hold back and research

stories thoroughly. Significantly, our argument relies upon the assumption that the

audience does not observe the amount of time outlets spend researching stories, but they

do observe which outlet publishes first. Knowing the sequence of publications rather

than the amount of research allows for additional observational learning in a competitive

environment. Consequently, it gives better outlets a reason to differentiate when facing

competition.

We show that when there is a high scoop value, competition drives media outlets to

publish more quickly; in contrast, when there is a low scoop value, competition drives

media outlets to research stories more. Therefore, the model suggests that breaking

news-type stories, such as those on terrorist attacks, malfeasance of senior government

2



officials, or adverse economic shocks, will suffer particularly from accuracy problems in

the Internet age. In contrast, outlets do better research on non-urgent stories that do not

influence immediate decision-making. Examples may include revelations of sexual abuse

by Hollywood executives, how terrorist organizations work, and illegal data hacking

used to influence public opinion.2

A second effect of the Internet has been to improve what quickly-released stories look

like. Journalists can quickly access sources and data by “contacting people, accessing

government records, filing Freedom of Information Act requests, and doing searches”

(Chan, 2014; Knobel, 2018). At the same time, however, the cost of doing in-depth

research has not changed much. For instance, one would not expect the cost of conducting

interviews and building trustworthy sources to have changed significantly. We model

such an effect as improving the quality of the initial signal without changing the cost of

research.

We find that a better initial signal can reduce the welfare of the audience. When the

initial signal becomes better, the audience is less able to attribute correct information

by the media outlets to their ability to conduct in-depth research. Thus, reputational

concerns get diluted and timing pressures become more salient, making the media outlets

move towards speed. If the audience values better reporting sufficiently, speed-driven

journalism can reduce welfare.

Lastly, our model also shows how a politically-motivated source can share rumors

with competing outlets to get “unverified facts” out to the audience. Our critical insight

here is that such a source may not necessarily share the rumor with both outlets. Indeed,

when the audience does not view the story as urgent, sharing the rumor with just one

outlet may be better to get the news out quickly.

Contributions to related literature. The speed-accuracy tradeoff is commonly

2The first story was published in both the New York Times and the New Yorker . The second story
appeared on the New York Times following more than a year-and-a-half’s research. The third story
broke out in The Guardian.
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recognized in the media studies literature.3 The literature highlights two critical

determinants of the rise of “speed-driven journalism” in the modern digital environment

– increasing competitive pressures (Rosenberg and Feldman, 2008) and 24-hour news

cycles (Lee, 2014; Starbird, Dailey, Mohamed, Lee, and Spiro, 2018), both of which

increase preemption risks. Importantly, however, reputational concerns remain relevant.

Knobel (2018) summarizes her interviews with the editors by saying that they realize

that readers can be induced to pay for quality journalism.4

The newsroom dilemma, however, is surprisingly understudied in media economics

despite agreement among media scholars on its importance. We primarily contribute by

explicitly modeling the newsroom dilemma and determining its effect on the quality of

news when reputation matters and it is endogenously determined.5

Relevant exceptions are Shahanaghi (2021b) and Shahanaghi (2021a). The former

provides a microfoundation for the speed-accuracy trade-off in a dynamic model of

learning and reporting where the sender is concerned about its reputation. The latter

applies that framework in a competitive setting showing that competition exacerbates,

through preemption motives, an already existent incentive to misreport. Our model has

a different structure in terms of information arrival – discrete, finite time and correlated

signals – and observability of time by the readership that leads to a different prediction in

terms of the effects of competition: its additional informational content can, sometimes,

increase the quality of the output.

Few other papers like Lin (2014), Andreottola and De Moragas (2021) and Oliver

3The BBC Academy website observes that “every journalist has to resolve the conflicting demands
of speed and accuracy. [...] If you are working on a breaking news story, it is important to remember
that first reports may often be confused and misleading. [...] That is why it is important to weigh the
facts you have.”

4She quotes Rex Smith, editor of the Albany Times Union, “What can separate great journalism
from everything else is our commitment to the journalism of verification and watchdog reporting. It
will give us credibility that other organizations do not have.” See Appendix F for a summary of Knobel
(2018)’s results and how it relates to our findings.

5Andina-Dı́az, Garćıa-Mart́ınez, and Parravano (2019) studies how a market of non-strategic outlets
competing for scoops evolves depending on how harshly society punishes the publication of false stories.
In our case, both outlets and the readership are strategic players.
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(2022) study the speed-accuracy trade-off but do so typically in different contexts and

without explicitly endogenizing the effects on reputation. Our approach is different as

we consider a preemption game where competition plays a direct role, and any effect on

reputation is endogenously determined by Bayesian updating in equilibrium.

Focusing more on reputation-building and signaling in media markets, Gentzkow

and Shapiro (2006) model media bias and reputation building, showing that competition

reduces bias. The model explores an entirely different tradeoff looking at the content of

the reporting directly rather than the timing. Gentzkow and Shapiro (2008) later outline

a model that may incorporate reputation-building incentives like ours, but they do not

consider preemption. Shapiro (2016) shows that reputational concern for unbiasedness

may induce journalists to report evidence as ambiguous even when it is not. Preemption

concerns and endogenous choice of research are not considered there.6

We also contribute to the literature on strategic information release. We differen-

tiate from Guttman (2010) and Guttman, Kremer, and Skrzypacz (2014) by adding

reputational concerns and endogenizing the information acquisition choice. Therefore,

our results are driven by entirely different incentives. Relatedly, Aghamolla (2016) looks

at a model of (anti-)herding between financial analysts with observational learning and

endogenous information acquisition. Observational learning is relevant only for the

audience in our model because it signals the type of outlet.

Finally, by adding reputational concerns, we contribute to the literature on preemp-

tion games and R&D races. Preemption games have long been studied in economics

(Fudenberg and Tirole, 1985), but our paper contributes to the more recent literature

on preemption games with private information (Hopenhayn and Squintani, 2011, 2015;

Bobtcheff, Bolte, and Mariotti, 2016). It is worth noting that Bobtcheff et al. (2016)

6Our modelling strategy shares some features with Hafer, Landa, and Le Bihan (2018, 2019). Like
us, they have a two-period model where competing outlets can acquire information about a politically
relevant state of the world and choose when to release it. However, we do not focus on media bias and
the possibility of claiming credit for a story but rather on the trade-off between time pressure and the
quality of journalism. See Prat and Strömberg (2013) and Strömberg (2015) for recent developments in
the political economy of media literature, and other related papers.
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have a similar “separating” result for different types of firms, but in a setup without

reputation. Here we point out that reputation, combined with actions that partially

reveal an opponent’s type, can be a different force leading to separating strategies in

preemption games.

2 A model of the newsroom dilemma

We build a simple two-period model indexed by t = 1, 2 featuring three players: two

strategic media outlets i, j and a fixed mass of audiences. We also consider a version

with just one media outlet.

State of the world. The state of the world ω is binary and unknown to the players.

Formally, ω ∈ Ω := {a, b} with common prior Pr(ω = a) = 1
2
. Ω pertains to the topic

on which the media outlets are digging a story and the relevant information for the

audience. This could be, for instance, who is responsible for a terrorist attack, whether

a senior government official is involved in corruption or not, who is an appropriate

candidate to vote for in the election, etc.

Media outlets. Initially, each outlet privately observes a signal si about the state

of the world in t = 1. We call this the story that the outlets have. We assume that si is

free and i.i.d. conditional on the state. Its precision is Pr(s = ω|ω) = π > 1
2
. Outlet i’s

decision di at t = 1 is to choose between publishing immediately in t = 1, pub, or doing

more research and then publishing in t = 2, res. The two outlets make their decisions

simultaneously.

Publishing is equivalent to endorsing a particular state of the world (independent of

whether published in t = 1 or 2). When an outlet publishes its story, it sends a message

mi ∈M = {a, b} where each message is understood as endorsing that particular state.

Conducting further research is costly. In particular, there is a type-specific cost of

research that perfectly reveals the true state of the world in t = 2. Outlets can be of

6



two types, high or low, depending on how efficient they are at digging into stories, and

this is the private information of each individual outlet. Formally, the type of outlet i is

θi ∈ {h, l} with a common prior Pr(θi = h) = q = 1
2
.7 The types are independent.

θ = l faces an infinite cost of conducting research. The low outlet never digs stories

further and chooses d = pub in t = 1. The cost c for the high outlet is private information

of that outlet and is story-specific. It comes from a uniform distribution F with support

[−ε, c̄] and is drawn independently for each high outlet. ε is greater than zero but small

to capture the idea that some high outlets may still want to conduct research even in

the absence of other rewards.8 We assume c̄ ≥ 2 so that the support of the distribution

F is sufficiently large.

Audience. The audience enters the game when one or both of the outlets publish

their story. They only rationally form beliefs about the types of outlets. They enter

with the knowledge of the priors and an understanding of the competition between the

outlets. Other than this, the precise information of the audience at the time of belief

formation is denoted by the set I.

We assume that the audience observes the sequence of publication but not the

actual time of publication, or whether the outlets conducted research. The sequence is

denoted by t̃i ∈ {I, II,∅}, which shows whether outlet i was first, second, or it moved

simultaneously with j. This assumption is discussed in more detail in Section 2.2, and

its implications are described in the main analysis in Section 3.

In addition, after both outlets publish their stories, the state is revealed exogenously.

If mi = ω, then outlet i is said to be right, or R. Otherwise, the outlet is wrong, denoted

by W . We call this the outcome O of verification. The audience sees the outcome.

7The assumption on q is just for analytic convenience. A generic q ∈ (0, 1) does not qualitatively
alter the results. We show this case in Appendix D.

8Interviews with editors often confirm such motivations; often they feel a sense of responsibility in
their positions. For instance, Knobel quotes Marcus Brauchli, Washington Post ’s former editor, “Doing
investigative journalism is in the Post ’s DNA and has been as long as any of us have been around in
journalism.” Similarly, Kevin Riley, the Editor of the Atlanta Journal-Constitution explains, “People
want us to do this. They don’t think anyone else will if we don’t.”
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Therefore, the information of the audience I at the end of the game is denoted by a

tuple (Oi
t̃
, Oj

t̃
) that consists of four pieces of information, i.e., the position of each outlet

in the sequence of publication and their outcomes. Using I, the audience updates its

beliefs about each outlet’s type. Denote the posterior belief about θ = h by γ(I) when

the information held by the audience is I.

Payoffs. The outlets’ payoffs are composed of three elements.

1. The first is a scoop value v, which is the benefit to the first outlet publishing

the story. It captures the preemptive nature of the media market (Besley and

Prat, 2006). One may interpret it as the advertising revenue associated with the

audience that is drawn to the first media outlet breaking the story.

2. The second is a reputation value of γi or the audience’s posterior on the quality

of outlet i calculated after the revelation of the true state. This captures the

extent to which the outlets care about their reputation. For instance, the future

audience of the outlets and the advertising revenue they bring might depend

on their reputations. We assume that reputation enters linearly in the outlets’

payoffs.9

3. The third is the cost c that the high-type outlet chooses to pay if it does research.

We currently refrain from defining the audience payoffs as they only form beliefs.

However, microfoundations are provided later in Section 4.

Timing. The timing of the game can now be summarized as follows:

0. Nature draws ω, θi and θj . θ is privately observed by each outlet. ω is unobserved.

1. At t = 1 each outlet privately observes si. A cost c of digging into the story is

drawn from a uniform distribution F [−ε, c̄] for the high type.

9Note that the audience cares about whether the outlet is high or low type, not about c. A new c
is drawn for every new story, and only the high type has the ability to conduct further research.
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2. The outlets simultaneously decide di ∈ {pub, res} and if di = pub then also choose

m. As stated before, this is a relevant decision only for the high type. The low

type always chooses pub.

3. If both outlets publish, the game ends. Otherwise, the game goes to period 2.

4. At t = 2, the state is revealed to every outlet that chose di = res. Those who did

not publish in t = 1, publish now by choosing m.

5. Once both outlets have published, the state ω is revealed to the audience. They

observe I and update beliefs on the type of each outlet. Payoffs are realized.

2.1 Solution concept and equilibria selection

The solution concept we use is the Perfect Bayesian Nash Equilibrium in pure

strategies. We focus on equilibria where outlets optimally follow the signal they receive,

i.e, they endorse the state that is more likely to be the true one given their signal. We call

such equilibria signal-based equilibria.10 For the rest of the paper, we use “equilibrium”

and “signal-based equilibrium” interchangeably.

2.2 Discussion of assumptions

The first assumption we make is regarding what the audience observes about the

timing of the game. The fact that the audience only observes the content of what was

published and the sequence of publication captures the idea that it is unaware of how

much the outlets researched the story. We believe this is a realistic assumption in that

the amount of research is hardly observable from outside the newsroom. Consequentially,

player i’s decision to publish or not potentially conveys information about player j’s

10This means that we ignore equilibria where outlets choose to endorse one particular state to signal
their type. Those equilibria may exist, but we argue that they do not make much sense given the
environment we are considering. Alternatively, we can assume that signals are hard information, but
the reader cannot infer the level of precision: the result would be exactly the same.
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type. For example, if the two outlets move sequentially and only a high type is expected

to conduct research, moving later is a signal of the first outlet being a low type. We

show how relaxing this assumption changes our result in Section 3.4.

The second assumption we make is about who possesses stories on a topic. In

reality, competing media outlets are often unaware of whether their competitors are

also exploring the same story. We assume that both of the media outlets are aware

that their competitor also possesses the story. Doing so pushes the incentives of the

outlets the most towards speed and keeps our model tractable. Still, we show that more

research is possible under competition.

The third assumption we make is that outlets build a reputation on their consistent

types, and not on the cost of digging into each independent story. As outlets usually

have different “expertise”, it is reasonable to assume that they face different costs when

exploring different stories. For instance, The Wall Street Journal is a business-centric

daily and has invested in building sources and methods for dealing with business stories

(such as avoiding lawsuits when potentially sensitive corporate information is published).

However, in general, some outlets have a culture of research while others do not. Our

notion of type captures such a culture.

We also make a few assumptions for tractability reasons. First, we do not allow for

the outlets to “sit on information” or wait for a period before publishing.11 Second, we

assume that the audience correctly finds out the state at the end of the game. Third,

we assume that the media outlet correctly finds out the state upon choosing to research.

Almost all of these assumptions can be relaxed to some degree without altering our

predictions.

2.3 Preliminary observations and strategies

We start with a few simplifying observations. All the proofs are in Appendix A.

11We show in Appendix C that for a sufficiently high v and relevant off-path beliefs, the outlets
never choose to wait.
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Observation 1 Suppose there are reputational gains in matching the state. If an outlet

decides to publish in t = 1, it follows its signal s, i.e., sends m = s. If an outlet decides

to do research and then publish in t = 2, it follows the outcome of the research.

Observation 1 follows from the fact that in t = 1, the most informative signal is s.

Therefore, the most likely state is the one given by the signal. Moreover, in t = 2, the

outlet choosing to research has learned the actual state and publishes it. Thus, as long

as there is a gain in matching the state, each outlet follows its last signal, which is also

the most informative.

There is also a helpful result arising from our particular signal structure and flat

priors.

Lemma 1 If each outlet follows its last signal when publishing, then (1) the probability

of matching the state after only s is π, and (2) regardless of whether i decides to publish

or research, from its point of view, the expected probability of player j matching the state

without research is π.

Lemma 1 will help write the incentive compatibility conditions for the players. Doing

so will require each outlet to consider whether the other will do research and the

subsequent probability of matching the state.

It is useful to define the strategies we will focus our attention on. First, the only

relevant and meaningful decision is one of the high-type outlets in period 1. From the

outlet’s point of view, there is a threshold on cost, cD, such that it researches only if the

realized cost is below it.12 From the other outlet’s (and the audience’s) point of view,

define σi, the conjectured probability that outlet i chooses to research further in t = 1,

12Subscript D represents the case of a two-firm duopoly. Similarly, we represent a single-firm
monopoly case with subscript M .
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conditional on outlet i being a high type. Therefore,

σi = Pr(c ≤ cD) = F (cD) =


0 cD < −ε

cD+ε
c̄+ε

−ε ≤ cD ≤ c̄

1 cD > c̄

We are now ready to move to the equilibrium analysis in different market configura-

tions.

3 Competition leads to better reporting

3.1 Newsroom dilemma with a single firm: Monopoly

We start with the simplest case: there is a single media outlet, and its type is known.

Proposition 1 If there is one media outlet and its type is known to the audience, then

the high outlet conducts research with probability F (0) = ε
c̄+ε

.

In this case, none of the above incentives are at play, neither preemption nor

reputation. The outlet is driven to research only because of its intrinsic motivation.

The case of monopoly with unknown type is more interesting.

Proposition 2 If there is one media outlet and its type is not known to the audience,

there exists a unique equilibrium in which the high outlet conducts research if and only

if c ≤ (1 − π)(γ(R;σ∗) − γ(W ;σ∗)) := cM(σ∗). As a consequence, σ∗ = F (cM(σ∗)) =

cM (σ∗)+ε
c̄+ε

.

Begin by noting that preemption risk is absent in this case; v does not play any role.

Proposition 2 then captures the idea that cM is defined so that the expected reputational

gains from endorsing the correct state more than compensates the additional cost c of
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doing research. To see these reputational gains, suppose that the high outlet is expected

to research with probability σ. The audience only observes whether the outlet is right

(R) or wrong (W ); there is no sequence to observe. Therefore, the two relevant belief

updates are

γ(R;σ) =
σ + (1− σ)π

σ + (1− σ)π + π
and γ(W ;σ) =

(1− σ)(1− π)

(1− σ)(1− π) + (1− π)
=

1− σ
2− σ

from Bayes’ rule. The cost threshold, cM(σ), then shows that the reputational gains,

γ(R;σ) − γ(W ;σ), arise only if doing research helps match the state. Since this was

already happening with probability π by not researching, the additional benefits of

doing research occur with probability 1− π.

Note that the equilibrium σ, σ∗, is the solution to the fixed point equation σ∗ =

F (cM (σ∗)) = cM (σ∗)+ε
c̄+ε

. Proposition 2 further shows that such a fixed point exists and is

unique.

3.2 Newsroom dilemma with two firms: Duopoly

The main effect of the competition is the introduction of preemption risk. When

preemption is relevant, and reputation building is not, the equilibrium where the high

outlet conducts research becomes even rarer than in Proposition 1. Notably, if the scoop

value is sufficiently small relative to the intrinsic motivation, i.e., if v < 2ε, there will

still be some high outlets willing to investigate. Proposition 3 below highlights these

altered incentives.

Proposition 3 If there are two media outlets and their types are known to the audience,

there exists a unique symmetric equilibrium in which the high outlets conduct research

with probability σ∗D = F
(
−v

2

)
.

The case of competition with unknown types is the most interesting one. In this

case, both preemption risk and reputation-building concerns simultaneously interact.
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Proposition 4, below captures these two effects in the new cost threshold, cD.

Proposition 4 If there are two media outlets and their types are not known to the

audience, there exists a unique and symmetric equilibrium where the probability that a

high outlet conducts research is σi∗ = σj∗ := σ∗ = F (cD(σ∗)) such that

cD(σ∗) =
1

2

[
(γ(∅;σ∗)− γ(1;σ∗)) (σ∗ − (2− σ∗)π2) + 1

]
− 1

2
v

where γ(∅) = (σ∗)2+(1−σ∗)(2−σ∗)π2

(σ∗)2+(2−σ∗)2π2 and γ(1) = 1−σ∗

2−σ∗ .

Recall that the audience observes both the outcome of verification O ∈ {R,W} and

the sequence of publication t̃ ∈ {I, II,∅} for both i and j. So, for a given conjectured

level of σi and σj, the relevant audience’s on-path beliefs need to be defined for the

following events:

(R∅, R∅), (R∅,W∅), (W∅,W∅), (W∅, R∅), (RI, RII), (WI, RII), (RII, RI), (RII,WI),

where the first outcome-sequence element in each information set is outlet i’s and the

second is outlet j’s.13

Three belief updates can summarize these eight events.

1. No information about timing: When both outlets get the state correct and publish

simultaneously, the audience cannot determine the publication timing. It cannot

distinguish between them conducting research, i.e., both are high types with low

costs or publishing immediately. The latter happens because both are low types,

or because there is only one high type and it faces a high cost, or because both

are high types but face high costs. With some abuse of notation, we denote the

13Note that it never happens that an outlet moves second in the sequence and gets the state incorrect.
Any outlet that moves second has conducted research and matches the state perfectly. Therefore, any
event with WII does not occur on-path.
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updated belief here by γ(∅;σi, σj) so that,

γi(R∅, R∅) =
σiσj + (1− σi)(2− σj)π2

σiσj + (2− σi)(2− σj)π2
:= γi(∅;σi, σj).

2. Published in period 1 without research: In the events {(R∅,W∅), (W∅,W∅),

(W∅, R∅), (RI, RII), (WI, RII)} the audience is able to determine that outlet i moved

in the first period without research. Specifically, the presence of a competitor

who gets the state wrong when both publish simultaneously or a competitor who

moves second conveys that the outlet under consideration did not research. Here

the only uncertainty for the audience is whether the outlet is a high type that

faces a high cost or a low type. We denote the updated belief by γi(1;σi) in these

events and it equals 1−σi
2−σi .

3. Published in period 2 after research: If outlet imoves second and gets the state right,

the audience understands that such an outlet is high type. Thus, γi(RII, RI) =

γi(RII,WI) = 1 := γi(2).

Using these updated beliefs, a high outlet’s incentive compatibility can be written as

ci ≤ ciD(σi, σj), where

ciD(σi, σj) ≡
1

2

[
σj
(
γi(∅)− γi(1)

)
+ (2− σj)

(
1− π2γi(∅)− (1− π2)γi(1)

)]
︸ ︷︷ ︸

net reputational gains

− 1

2
v︸︷︷︸

preemption
loss

To understand ciD, we can break down the various components of the net reputational

gain. First, 1
2
σj(γi(∅)− γi(1)) captures the gain of researching when j does research

as well, which happens with probability 1
2
σj. Here, outlet i benefits by increasing its

reputation from γi(1) to γi(∅). Second, 1
2
(2− σj)(1− π2γi(∅)− (1− π2)γi(1)) is the

gain of researching when j does not research, which happens with probability 1
2
(2− σj).

Now, the benefit of inducing a belief of 1 is weighed against the loss of inducing a belief
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of γi(∅) if the two would have matched the state by not researching, which happens

with probability π2, and that of inducing a belief of γi(1) if either would have gotten

the state wrong, which happens with the complement probability.

As before, the cost threshold cD(.) is endogenous to the conjectured strategies σi

and σj . In equilibrium, it is required that both σi and σj are solutions to the fixed point

equations σi = F (cD(σi, σj)) and σj = F (cD(σi, σj)). Proposition 4 then follows.

3.3 Competition may lead to better reporting

The comparison between monopoly and duopoly when reputation building is relevant

(Propositions 2 and 4) provides interesting insights.

Lemma 2 The reputational gains are always higher in a duopoly than in a monopoly.

The reason lies in the availability of additional information in the duopoly case. The

audience’s ability to separate the outlet that publishes second and matches the state

correctly allows it to confer a higher reputation. In turn, this makes the outlet i more

willing to pay the cost of research. However, the additional preemption concerns in

duopoly counterbalance this positive information effect and makes cD decrease in v (see

Proposition 4). The two effects combined yield our first main result about the effect of

Internet-driven competition on reporting.

Proposition 5 There exists a nonempty interval of scoop values, v, where σ∗D > σ∗M .

Proposition 5 says that there is a non-empty set of parameters where research is

more likely in a duopoly than in a monopoly. Therefore, competition may lead to better

reporting. We illustrate this result in Figure 1. The orange line is F (cD), the green line

is F (cM), and the blue one is the 45° line. The equilibrium probability of research is

given by the point of intersection of Fc(cD) and Fc(cM) with the 45° line. Increasing

v parallelly lowers the orange line without affecting the green line. It is clear that

σ∗D > σ∗M for sufficiently small v.
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Figure 1: Equilibrium σ∗D and σ∗M for when π = .6, v = .3, c̄ = 2 and ε = .1

The main point of Proposition 5 is that, contrary to the wisdom of the crowd in

media studies literature, competition does not necessarily lead to a faster release of less

accurate information.14

3.4 The role of audience’s information

The previous results relied critically on what the audience observes from the competi-

tion, or simply the “transparency”. To build further intuition, we analyze how changing

transparency affects our results. Consider the two other possibilities – nothing about

the timing is observable, and the timing of research is fully observable. Our original

assumption lies in the middle of this increasing transparency spectrum. Of course, the

publication’s content is always visible to the audience, i.e., the audience observes m.

Unobservable timing or zero transparency. Without any information on timing

or sequence, the audience consumes the content of the outlet publishing the story,

considering each outlet separately. The behavior of the monopolist is exactly as before.

Hence, cM = (1 − π)(γ(R) − γ(W )) does not change. In a duopoly, however, the

14In Drago, Nannicini, and Sobbrio (2014), the authors empirically show a positive effect of new
newspaper outlet entry on voter turnout in municipal elections, the reelection probability of the
incumbent mayor, and the efficiency of the municipal government using Italian municipal elections data
between 1993-2010. While not direct evidence of our results, more information that the voters get with
more outlets can drive the result in their paper.
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endorsement of the other outlet does not matter anymore in the updating. Therefore,

γ(R, .) = γ(R) and γ(W, .) = γ(W ).

Corollary 1 If neither time nor the sequence of publication is observable, the cost

threshold, c′D, of a high outlet in a duopoly is c′D = cM − 1
2
v, and therefore, c′D < cM for

every strictly positive scoop value v.

Intuitively, there are no additional reputational gains because one cannot “look good”

in the presence of a competitor. But the additional risk of preemption pushes cD down.

Observable timing or full transparency. If the timing of publication is observ-

able, a high-type monopolist can fully differentiate itself by conducting research and

publishing in period 2. Moreover, this is true in duopoly as well. The actual content of

the publication does not matter for reputation-building, and differentiation is driven

entirely by the timing. Consequently, there is no additional learning in the duopoly, but

preemption concerns reduce the incentives to investigate and conduct research.

Corollary 2 If the timing of publication is observable, the cost thresholds, c′′M and c′′D,

for a high outlet in a monopoly and a duopoly, respectively are c′′M = 1− γ(1) and c′′D =

1− γ(1)− 1
2
v, where γ(1) = 1−σ

2−σ . Therefore, c′′D < c′′M for every strictly positive scoop

value v.

Note that the cost thresholds are now larger than in the previous information

environments due to the maximum distinction between outlets moving in two time

periods. Therefore, the actual levels of reputational benefits are also higher. Notably,

there is no belief update like γ(∅).

It is worth emphasizing that these extreme transparency assumptions do not fit

our environment well - completely unobservable timing clashes with the idea of the

preemptive nature of the media market. If the audience does not understand when the

publication happened, there is nothing to gain from being first. This is not true in reality.

On the other hand, perfectly observable timing implies that the reader understands
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precisely how much research went into an article. Therefore, the whole differentiation

happens on the time dimension rather than on the story’s truthfulness. Again, this

hardly seems true in reality.

4 Stories and the effect of better initial information

We are now in a position to discuss the kinds of stories that are more or less

susceptible to speed-driven journalism. To do so, we place more restrictions on audience

preferences.

Let there be a unit mass of audience. The audience decides whether to take a given

action or not. Let this action be denoted by α ∈ {a, b} and interpreted as “matching the

state”. The audience seeks out the information published by the outlets and consumes

its content to the extent it wants to match its action to the story. Examples include

decisions on who to vote for or to form opinions.

For any given story, a fraction u of the audience requires the information urgently,

and the remaining 1− u is patient. The preferences of the urgent audience are given by

Vu =


1 if deciding today and α = ω,

0 if deciding today and α 6= ω,

−k if remaining undecided or deciding tomorrow,

where “today” happens for the audience when the first outlet publishes its content. The

preference of the patient audience, on the other hand, is given by

V1−u =


1 if α = ω,

−k if α 6= ω,

0 if remaining undecided.
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The patient audience does not care about when it makes the decision; making an

accurate decision matters more. So, for k sufficiently large (assume so), the patient

audience does not consume any content if outlets publish simultaneously as it is unsure

whether the story has been researched. In such cases, only a fraction u of the audience

consumes the content. On the other hand, it matters more to the urgent audience

to make a decision as soon as the first outlet publishes. Thus, when outlets publish

sequentially, a fraction u of the audience consumes the first publication, and 1 − u

consumes the second. We further assume that the entire audience mass is available for

reputation-building.

u is story-specific, and when the outlets get a story they also learn perfectly the

value of u. The idea is that those stories with a relatively high u are more urgent than

others. These could include, for example, information about whether a company has

gone bankrupt, whether the authorities caught the terrorists, etc. Therefore, u is akin

to v, or the scoop value from the previous analysis.

We begin by noting that the monopoly case discussed in Proposition 2 remains

unchanged. The result of the duopoly case also remains qualitatively unchanged, albeit

with a new cost threshold, c̄D, in the symmetric equilibrium, σ̄∗ = F (c̄D(σ∗)). The

precise expressions of these objects are presented in Appendix B.

An increase in the fraction of urgent audience u still reduces c̄D and decreases σ̄∗.

Therefore, a high fraction of the urgent audience for a story pushes the outlets towards

speed. The next proposition compares the probabilities of research in the no-competition

monopoly case with the duopoly case on the basis of u.

Proposition 6 There exists a fraction of urgent audience, ū ∈ (0, 1) such that

• for stories with at most ū fraction of urgent audience, research by high outlets in

a duopoly is at least as likely as in monopoly, i.e., σ̄D ≥ σM , and

• for stories with more than ū fraction of urgent audience, research by high outlets
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in a duopoly is less likely than in monopoly, i.e., σ̄D < σM .

We, therefore, hypothesize that competitive environments are better for research on

non-urgent topics. One such example is the recent New York Times exposé on sexual

abuse in Hollywood. It is reasonable to believe that sexual abuse by an influential movie

producer does not directly impact the decision-making of a large fraction of society. Yet,

it was an important finding that will have a long-run impact as women come forward and

demand justice, and organizations respond. On the flip side, investigations and research

on urgent topics are less likely in competitive environments. The example of terrorist

attacks fits perfectly in this setting. In fact, after the Boston Marathon bombing in

April 2013, there was much confusion in the media, and articles were published without

fact-checking.

We can now also make assessments about the audience’s welfare.15 The audience’s

welfare V is defined as follows

V =

[(
1

2

)2

+ 2
1

4
(1− σ̄∗) +

(
1

2

)2

(1− σ̄∗)2

]
πu+

+ 2
1

4
σ̄∗ [1 + (1− σ̄∗)] (1− u+ πu) +

(
1

2

)2

(σ̄∗)2u

The first term is the probability that the two outlets move together but do not research.

As a result, the probability of matching the state is π, and only a fraction u of the

audience gets this payoff. The second term is the probability that the outlets move

sequentially, in which case the fraction 1 − u matches the state, but fraction u only

matches it with probability π. Finally, the third is when both outlets move together

after researching the story. In this case, they match the state perfectly but fraction

1− u does not receive this payoff.

As discussed in Section 1, another important effect of the Internet has been to make

15Note that even if the audience knows that outlets may be publishing without research, it is still
better to listen to the outlets rather than follow the priors in decision-making.
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it easier to conduct preliminary research. Emails and social media make it particularly

easy to share pictures, videos, and text from any part of the world. One way to interpret

it is as an increase in π, the precision of the outlets’ initial signal. This effect, Knobel

(2018) argues, should lead to better reporting. We show below that that is not necessarily

true. Our next proposition shows that the overall effect of an increase in π on the

audience welfare is dependent on the kind of story u being explored.

Proposition 7 There exists an interior u, ūV ∈ (0, 1), such that if the story has less

than ūV fraction of urgent audience, an increase in precision π of initial signal s decreases

the overall welfare V .

The intuition for this somewhat surprising result is straightforward. The equilibrium

probability of research falls as precision π increases because a more precise initial signal

reduces the reputational gain that comes with separation. The audience attributes

correctly matching the state more to technology-driven better initial information rather

than actual research. Preemption concerns, therefore, become more salient and push

the outlets toward speed. In turn, it hurts the average audience if it is composed of

more patient types, i.e., u is low.

5 Information dissemination by a source

We now turn back to our original model and use it to determine how a source can

share her signal with media outlets. In general, a strategic source’s preferences may be

summarized by the following objective function,

1{publication in t = 1}+ µPr(matching the state),

where the parameter µ ≥ 0 captures the weight that the source places on accurate

information from at least one outlet vis-à-vis having at least one outlet publishing in
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period 1. For instance, a concerned citizen or an employee in a firm witnessing some

wrongdoing might have a high preference for accuracy. On the flip side, a politically-

motivated source who merely wants to get some potentially incorrect information out

quickly will have a low preference for accuracy.

Our aim is to determine whether the source wants to share her signal with one or

both the outlets to fulfill her objective.16

First, we make a simple observation that follows from our analysis of monopoly

and duopoly. In what follows, we drop the star notation for convenience with an

understanding that we are talking about equilibrium values.

Corollary 3 The equilibrium probability of research by a high outlet in monopoly is

σM > 0 while in duopoly is σD ≥ 0.

Corollary 3 is an important one. It highlights that while in a monopoly the probability

of research is always positive; in a duopoly, it might be zero if v is sufficiently high. This

corollary will help us outline the behavior of a source who is aware of the scoop value v

associated with her story.

Second, we write down the expected utility of the source for the equilibrium research

probabilities that will be induced in the following subgame. The expected payoff from

sharing the story with one outlet is

1

2
(1 + µπ) +

1

2
[σMµ+ (1− σM)(1 + µπ)], (1)

16In line with our model, we will assume that if the source shares a story with both of the outlets,
both are aware that the other also possesses the same story. Therefore, the information is shared
“publicly”. But when the source shares the signal with just one outlet, we will assume that the other is
unaware and the former outlet knows so. This assumption allows the outlet with a story to effectively
behave as a monopolist from our analysis in Section 3.1. We also assume that the source possesses a
story of a fixed precision π. She makes her decision about who to share the story with at the beginning
of the game before time 0. The type of the outlet is still each outlet’s private information; the source
does not have this information when making her decision.
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while from sharing with both outlets is

1

4
(1 + µπ) +

1

4
[1 + µ(σD + (1− σD)π)]2+

+
1

4
[(1− σD)2(1 + µπ) + 2σD(1− σD)(1 + µ) + σ2

Dµ].

(2)

The following lemma helps simplify the source’s optimal response for a given σM and

σD.

Lemma 3 The source’s best response can be summarized as follows:

• The source prefers to share the story with both the outlets unambiguously for any

µ ≥ 0 if
σ2
D

2
≤ σM ≤ σD(4−σD)

2
.

• Otherwise, the source prefers to share the story with both (one) outlets if µ(1−

π)(2σM − σD(4− σD)) ≤ (>)2σM − σ2
D.

The lemma shows that there is a range of equilibrium σM and σD for which the source

always prefers to send information to both the outlets independent of µ. Interestingly,

this region lies around the σD = σM line. Therefore, the lemma shows that for σM and

σD close to each other, there is reason to prefer both outlets. To understand why let us

break this down into two further statements.

First, there are parameters where one outlet alone is more likely to research than

when it is competing with another, i.e., σM > σD and µ is very large, and yet the source

prefers to share the story with two outlets. Doing so makes sense for the source because

the total probability of research from sharing the story both outlets is larger than when

shared with one. When shared with one it is equal to 1
2
σM . When shared with both

it is given by 1
4
[σ2
D + 2σD(1− σD)] + 2

4
σD = σD −

σ2
D

4
. Therefore, despite σM > σD the

source shares the story with both outlets if σM ≤ 2σD −
σ2
D

2
.

Second, there are parameters where one firm is less likely to research than two, i.e.

σM < σD, and µ is very low, and yet the source prefers to share the story with two
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Figure 2: Equilibria in σD − σM space and the behavior of the source

outlets. Doing so is rational because competition between two firms ensures the total

probability of being published in t = 1 is larger under a duopoly. When shared with

one, this probability is equal to 1
2

+ 1
2
(1− σM) = 1− σM

2
. When shared with both it is

given by 1
4

+ 2
4

+ 1
4
[(1− σD)2 + 2σD(1− σD)] = 1− σ2

D

4
. So, now despite σM < σD the

source shares the story with both outlets if σM ≥
σ2
D

2
.

We now look at possible equilibria that can arise in the σD − σM space relative to

the source’s preferences. We begin with the following definition.

Definition 1 (Equilibrium frontier) The equilibrium frontier is given by the combi-

nation of equilibrium σD and σM generated by varying π ∈ [.5, 1] for v = 0 and a fixed c̄

and ε.

The equilibrium frontier shows the maximum equilibrium value that σD can take for

any equilibrium σM . As proved in Lemma 2, when v = 0, σD > σM . Therefore, the

frontier lies to the right of the 45° line. In addition, note that it is upwards-sloping. The

positive slope is a result of the fact that both σM and σD are decreasing functions of
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π.17 A northeast movement along the frontier arises due to a decrease in π.

With the equilibrium frontier plotted graphically, one can see the set of all possible

equilibrium values that might arise for different parameter ranges. Particularly, increasing

v is a leftward movement from the frontier along the same σM . For v sufficiently high,

σD = 0 while σM > 0 (see Corollary 3). We are now left with comparing these equilibrium

values with what the source wants.

We show our third main result for the case of µ = 0 so that the source only cares

about getting the story out quickly independent of its accuracy level. Political actors are

often interested in doing so to highlight their achievements or to bring out potentially

damaging information about their competitors. Twitter and other social media platforms

are one way to communicate such stories, which are then picked up by media outlets

and relayed to the public without further research.

Proposition 8 When the source does not care about accuracy, i.e., µ = 0,

• there exists an ε > 0 small enough and v̄ such that for v < v̄, the source sends the

story to one outlet and sends to two in all other cases, and

• there exists an ε > 0 large enough such that the source sends the story to both

outlets.

When the intrinsic motivation to conduct research is high then outlets in either

situation are more likely to conduct research. By sending to both outlets, she is able to

create preemption risk as well. On the other hand, when intrinsic motivation is low,

outlets are less likely to research. Now, the source does not always want to share the

story with both. Notably, when v is low the source wants to share information with

just one. Sending to both risks the outlets trying to separate by doing research, thereby

increasing the overall probability of research. However, again when v is high, the source

17The proofs have been omitted from the main text for the sake of brevity.
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is happy to share the story with both as preemption concerns will become salient for

the outlets.18

6 Conclusion

There have been increasing concerns in the past decade about how the Internet has

altered the incentives of media outlets pushing them towards speed-driven journalism.

Our model showed that conventional wisdom about the effect of competition and the

modern digital environment on the media market should be taken cum grano salis. We

proved that competition in itself may make it easier for better outlets with a culture of

researching stories to engage in more research-driven journalism to separate themselves

from those that do not. This result and intuition find support in some of the new media

studies literature such as in Knobel (2018) and Carson (2019).

It is, however, worth emphasizing the importance of a “sophisticated” audience that

values accuracy and can observe the sequence of publication. Regarding the first kind

of sophistication, Gentzkow and Shapiro (2008) suggest that scoop value is usually not

too high in the media markets. But at the same time, some media scholars have argued

that the audience usually seeks information earlier on social media. The latter kind

might also be an issue if technology deters the audience from seeing the sequence. Lionel

Barber, the Editor of Financial Times, points out, “Technology has (also) flattened the

digital plain, creating the illusion that all content is equal. It has made it possible for

everyone to produce and distribute content that looks equally credible”.

Our paper is one of the first to incorporate preemption and reputation concerns

in a single model by thinking of a natural setting where both incentives play a role.

It generally covers settings that have both of these features. For instance, competing

researchers working to solve similar problems and hoping to convince a market about

18We present the proof for a general µ, but since that case does not produce sharp predictions, we
have not included it in the main text.

27



their ability face a similar newsroom dilemma. Technology firms face a speed-accuracy

tradeoff as they build products and technology to match consumer preferences. Our

main results have a natural interpretation in these situations. Notably, better research in

competitive environments requires that the initial research idea is not too well-developed.

Lastly, our model also produces important testable predictions about how the

modern digital environment has altered the media landscape. First, we should see better

reporting of non-urgent issues in the Internet age as the outlets try to build a reputation

on such stories. Second, the effect of the Internet on the reporting of breaking news-type

stories is ambiguous. It might improve because of better source information but might

deteriorate because of more time pressure.
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Appendices

A Proofs from the main text

Proof of Observation 1

Proof. Suppose that the outlet chooses d = pub. Without loss of generality, suppose

that si = a. It is easy to see that Pr(ω = a|si = a) > Pr(ω = b|si = a) because

π 1
2

π 1
2

+ (1− π)1
2

>
(1− π)1

2

π 1
2

+ (1− π)1
2

which is true because π > 1
2
.

Proof of Lemma 1

Proof. First part. Without loss of generality, suppose that si = a. Then, if i chooses

to publish, it will endorse state a, i.e. send message m = a. by Bayes’ rule,

Pr(ω = a|si = a) =
π 1

2

π 1
2

+ (1− π)1
2

= π

as claimed.

Second part. We are interested in the probability that j matches the state from

choosing d = pub when i has received a signal si. This is equal to

Pr(sj = a|si)Pr(ω = a|sj = a and si) + Pr(sj = b|si)Pr(ω = b|sj = b and si) (A.1)

Note that, for a generic sj, by Bayes’ rule we have that Pr(sj|si) = Pr(sj and si)
Pr(si)

and

Pr(ω = sj|sj and si) =
Pr(sj and si|ω = sj)Pr(ω = sj)

Pr(sj and si)
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As a consequence, (A.1) can be simplified to

Pr(sj = a and si|ω = a)Pr(ω = a)

Pr(si)
+

Pr(sj = b and si|ω = b)Pr(ω = b)

Pr(si)
(A.2)

However, since signals are independent, conditional on the state,

Pr(sj and si|ω = sj) = Pr(sj|ω = sj)Pr(si|ω = sj)

Moreover, Pr(sj|ω = sj) = π. Hence, (A.2) becomes

π
Pr(si|ω = a)Pr(ω = a) + Pr(si|ω = b)Pr(ω = b)

Pr(si)
= π

as claimed.

Proof of Proposition 2

Proof. Suppose that a high outlet chooses d = res with probability σ. Reminding

ourselves from the main text that

γ(R) =
σ + (1− σ)π

σ + (1− σ)π + π

γ(W ) =
(1− σ)(1− π)

(1− σ)(1− π) + (1− π)
=

1− σ
2− σ

from Bayes’ rule and using the fact that a low outlet always chooses pub.

A high outlet optimally chooses res if

γ(R)− c ≥ πγ(R) + (1− π)γ(W ) =⇒ c ≤ (1− π)(γ(R)− γ(W )) := cM
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In equilibrium the conjectured σ must be equal to the actual one, hence it must be that

σ∗ = F (cM(σ∗)) =
cM(σ∗) + ε

c̄+ ε
. (A.3)

We need to check if such a fixed point exists. To do so, three observations are

in order. First, note that both the LHS and RHS of the above are continuous in σ∗.

Second, LHS(σ∗ = 0) = 0 < RHS(σ∗ = 0) = ε
c̄+ε

(as cM = 0 at σ∗ = 0). Third,

LHS(σ∗ = 1) = 1 > RHS(σ∗ = 1) = F (1−π
1+π

). Therefore, the above is true.

Finally, we need to check for the uniqueness of the fixed point. Note that

∂RHS

∂σ∗
=

1− π
c̄+ ε

[
π(1− π)

(σ∗ + (1− σ∗)π + π)2
+

1

(2− σ∗)2

]
> 0,

but the sign of

∂2RHS

∂(σ∗)2
=

2(1− π)

c̄+ ε

[
− π(1− π)2

(σ∗ + (1− σ∗)π + π)3
+

1

(2− σ∗)3

]

is not clear immediately. ∂2RHS
∂(σ∗)2

> 0 requires

−π(1− π)2(2− σ∗)3 + (σ∗ + (1− σ∗)π + π)3 > 0 (A.4)

It is easy to see that the LHS of (A.4) is strictly increasing in σ∗ for all π ∈ (0.5, 1].

Moreover, the LHS of (A.4) when we substitute σ∗ = 0 is −1+2π > 0. As a consequence,

the RHS of (A.3) is strictly increasing and convex. Combined with the above, it means

that there is only one fixed point in the [0, 1] interval.
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Proof of Proposition 3

Proof. If θ is known, then by choosing pub in t = 1 a high quality outlet receives a

payoff of

1

2

v

2
+

1

2

[
vσ +

v

2
(1− σ)

]
+ 1{θ = h},

where σ is the (symmetric) probability that the high-type competitor engages in more

research. By instead choosing res and publishing in t = 2 a high type outlet gets a

payoff of 1
2
σ v

2
+ 1{θ = h}− c. Comparing the two, each outlet is willing to investigate if

and only f c ≤ −v
2
. As a consequence, σ∗D = F

(
−v

2

)
in symmetric equilibrium. Research

happens with positive probability when −v
2
> −ε, which can be rearranged to v < 2ε.

Proof of Proposition 4

Proof. We complete this proof in several steps. To begin with, we conjecture that

whenever an outlet chooses to publish, it is optimal to endorse the state suggested by

the signal. This will be verified at the end of the proof.

Step 1: We begin by showing that in any signal-based equilibria outlets’ period 1

decision on whether to research or publish is described by a threshold on c. This follows

from the discussion in the text. Let σi and σj be the conjectured strategies. Then

equation (A.5) defines the threshold ciD for outlet i.

ci ≤ 1

2

[(
γi(∅)− γi(1)

)
(σj − (2− σj)π2) + (2− σj)

(
1− γi(1)

)]
− 1

2
v := ciD (A.5)

where γ(∅) = σiσj+(1−σi)(2−σj)π2

σiσj+(2−σi)(2−σj)π2 and γ(1) = 1−σi
2−σi . The problem is identical for player

j.

Step 2: Next, we show that for any σj there is only one σi that solves the equilibrium
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fixed point for player i.

Given that cost is uniformly distributed in [−ε, c̄] and that, in equilibrium the

conjectured probability of investigation must be equal to the actual probability, the

equilibrium levels of σi and σj must be the solutions of

σi = F (ciD(σi, σj)) and σj = F (cjD(σj, σi))

where

F (ciD(σi, σj)) =


0 ciD(σi, σj) < −ε

ciD(σi,σj)+ε

c̄+ε
−ε ≤ ciD(σi, σj) ≤ c̄

1 ciD(σi, σj) > c̄

and

f(ciD(σi, σj)) =


0 ciD(σi, σj) < −ε

1
c̄+ε

−ε ≤ ciD(σi, σj) ≤ c̄

0 ciD(σi, σj) > c̄

We want to show that, for every σj , there is only one σi that solves σi = F (ciD(σi, σj)).

1. The LHS is linear, with a slope equal to 1, starting at 0 and ending at 1.

2. As ciD(σi = 1, σj) < 1 < c̄, the RHS evaluated at σi = 1 < 1 = LHS at σi = 1;

3. The RHS evaluated at σi = 0 is greater than or equal to zero.

4. For any σj, both LHS and RHS are continuous in σi.

Hence, they cross at least once, and there is at least one solution to this fixed point

problem.

To show that they cross only once, we need to show that the slope of the RHS is never

above 1. First, note that the slope of the RHS is either 0 or f(ciD)
∂ciD
∂σi

. Second, ∂γi(∅)
∂σi

=

(σj−(2−σj)π2)π2(2−σj)
(σiσj+(2−σi)(2−σj)π2)2

, whose sign depends on the sign of (σj − (2− σj)π2) and ∂γi(1)
∂σi

=
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−1
(2−σi)2 < 0. Using these we can write

∂ciD
∂σi

= 1
2

[
(σj−(2−σj)π2)2π2(2−σj)
(σiσj+(2−σi)(2−σj)π2)2

+ 2−π2(2−σj)
(2−σi)2

]
where

both terms are always positive. Third, we can show that the sign of
∂2ciD
∂(σi)2

is ambiguous,

but
∂3ciD
∂(σi)3

≥ 0. As a consequence, the second derivative is always increasing in σi and

the first derivative is convex in σi. So,
∂ciD
∂σi
|σi=1 >

∂ciD
∂σi
|σi=0, and ciD reaches its steepest

point around σi = 1. Therefore, it is enough to show that
∂ciD
∂σi
|σi=1 ≤ 1. This requires

2(σj+(2−σj)π2)2 ≥ (σj−(2−σj)π2)2π2(2−σj)+(σj+(2−σj)(1−π2)(σj+(2−σj)π2)

which further simplifies to

(σj + (2− σj)π2)2(2− σj − 2 + σj) ≥ −4σj(2− σj)2π4.

This latter condition is always verified (strictly for positive σj, weakly when σj = 0).

Now, combining the above with the fact that ciD(σi = 1, σj) < 1, implies that they

cannot cross more than once.

Step 3: Third, we show that if an equilibrium exists, it is unique for c̄ ≥ 2.

Define σ̂i(σj) the optimal σi for a given σj. In equilibrium, it must be that

σ̂i(σ̂j(σi)) = σi (A.6)

Rearranging, the equilibrium is the solution of σ̂i(σ̂j(σi))− σi = 0. Differentiating with

respect to σi, we obtain ∂σ̂i

∂σ̂j
∂σ̂j

∂σi
− 1 = 0. For the equilibrium to be unique (conditional

on its existence), it is now sufficient to show that the LHS is negative. This implies that

only one fixed point of (A.6) can be found. This happens when ∂σ̂i

∂σ̂j
and ∂σ̂j

∂σi
are between

−1 and 1. As the players are identical, it is enough to show that this holds for one of

them.

To show the above, begin by noting that σi(σj) is implicitly defined by the unique

solution of σi − F (ciD(σi, σj)) = 0. (Going forward we drop the ˆ notation with an
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understanding that we are concerned with optimal responses.) As
∂ciD
∂σi
|σi=1 ≤ 1, we can

use implicit function theorem. Therefore,

∂σi

∂σj
=

∂F (ciD)

∂σj

1− ∂F (ciD)

∂σi

(A.7)

Consider first the denominator of (A.7). From Step 2, we know that it is always

positive. Moreover, it will be smaller the bigger is
∂F (ciD)

∂σi
. On the other hand, it is the

biggest when
∂F (ciD)

∂σi
is zero. When

∂F (ciD)

∂σi
is non-zero, it is linear and increasing in

∂ciD
∂σi

.

As this reaches its maximum for σi = 1, we simply replace it and look for a maximum

with respect to σj.

maxσj
∂ciD
∂σi
|σi=1 =

1

2

[
(σj − (2− σj)π2)2π2(2− σj)

(σj + (2− σj)π2)2
+ 2− π2(2− σj)

]
=

1

2

[
2− 4σj(2− σj)2π4

(σj + (2− σj)π2)2

]
= 1

where the second equality is a rearrangement and the third one follows from the fact

that this is maximized for σj = 0.

As a consequence, maxσi,σj
∂F (ciD)

∂σi
= 1

c̄+ε
and the smallest the denominator can be is

1
c̄+ε

.

Second, consider the numerator.
∂F (ciD)

∂σj
is either zero or 1

c̄+ε

∂ciD
∂σj

. Further, note that

∂ciD
∂σj

=
1

2

[
∂γi(∅)

∂σj
(σj − (2− σj)π2) + γi(∅) + π2(γi(∅)− γi(1))− 1

]
. (A.8)

Finding the overall maximum and minimum is complicated, so we look for sufficient

conditions. We start out by looking at ∂γi(∅)
∂σj

. After a few algebraic manipulations, we

derive

∂γi(∅)

∂σj
=

2σiπ2

(σiσj + (2− σi)(2− σj)π2)2
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Its sign is positive, but it is hard to determine the maximum. We proceed as follows.

First, note that

∂2γi(∅)

∂(σj)2
=
−4(σi − (2− σi)π2)σiπ2

(σiσj + (2− σi)(2− σj)π2)3

whose sign is ambiguous. However,

∂3γi(∅)

∂(σj)3
=

12(σi − (2− σi)π2)2σiπ2

(σiσj + (2− σi)(2− σj)π2)4

which is positive. This implies that (for any σi) ∂γi(∅)
∂σj

is a convex function in σj which

is maximized either at σj = 0 or at σj = 1. By substitution,

∂γi(∅)

∂σj
|σj=0 =

σi

2π2(2− σi)2

∂γi(∅)

∂σj
|σj=1 =

2σiπ2

(σi + (2− σi)π2)2

Still, we are left to determine the maximum possible value of ∂γi(∅)
∂σj

because the

comparison is not straightforward. But we can show that for every π, maxσi
∂γi(∅)
∂σj
|σj=0 >

maxσi
∂γi(∅)
∂σj
|σj=1. To prove this, first, see that

maxσi
∂γi(∅)

∂σj
|σj=0 =

1

2π2

But to get maxσi
∂γi(∅)
∂σj
|σj=1,

∂

∂σi

(
∂γi(∅)

∂σj
|σj=1

)
=

∂

∂σi

(
2σiπ2

(σi + (2− σi)π2)2

)
=

2π2(σi + (2− σi)π2)− 4(1− π2)σiπ2

(σi + (2− σi)π2)3

(A.9)

Note that the relevant expression in (A.9) is always positive for σi ≤ 2π2

1−π2 . For a

sufficiently high π, this includes the whole range of values of σi. Hence, the function is
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maximised at σi = 1, and

maxσi
∂γi(∅)

∂σj
|σj=1 =

2π2

(1 + π2)2
.

But now it is easy to see that 1
2π2 ≥ 2π2

(1+π2)2
requires 1 + 2π2 − 3π4 ≥ 0, which is always

true for π ∈ (0.5, 1]. Therefore, our claim of maxσi
∂γi(∅)
∂σj
|σj=0 > maxσi

∂γi(∅)
∂σj
|σj=1 is true.

However, for low π, we have that argmaxσi
∂γi(∅)
∂σj
|σj=1 = 2π2

1−π2 ∈ [0, 1]. In par-

ticular, this happens for π2 ≤ 1
3
. Even in this case, it is easy to show that

1
2π2 ≥

2π2
(

2π2

1−π2

)
(

(1−π2)
(

2π2

1−π2

)
+2π2

)2 requires π2 ≤ 2
3
, i.e. it is always the case in the range of param-

eters of interest. As a consequence, we have that maxσi
∂γi(∅)
∂σj
|σj=0 > maxσi

∂γi(∅)
∂σj
|σj=1.

Since we want ∂γi(∅)
∂σj

as big as possible, we can set it as 1
2π2 for our sufficiency conditions.

Given this, the lowest value of the numerator of ∂σi

∂σj
from (A.7) can be found by

making the relevant replacement from above to (A.8). Therefore,

minσi,σj
∂F (ciD)

∂σi
≥ 1

c̄+ ε

1

2

[
1

2π2
(−2π2)− 1

]
=
−1

c̄+ ε
.

To see this, note that minσi,σj(σ
j − (2 − σj)π2) = −2π2, minσi,σjγ

i(∅) ≥ 0,

minσi,σj(γ
i(∅)− γi(1)) ≥ 0. Therefore, our first sufficient condition for the uniqueness

of the equilibrium is
− 1
c̄+ε

1− 1
c̄+ε

> −1,

which simplifies to c̄ ≥ 2, as assumed.

Looking now at the upper bound, again by replacing in (A.8), note that

maxσi,σj
∂F (ciD)

∂σi
≤ 1

c̄+ ε

1

2

[
1

2π2
(1− π2) + 1 + π2 − 1

]
=

1

2(c̄+ ε)

[
1− π2

2π2
+ π2

]
.

To see this, note that maxσi,σj(σ
j − (2 − σj)π2) = 1 − π2, maxσi,σjγ

i(∅) ≤ 1,

maxσi,σj (γ
i(∅)−γi(1)) ≤ 1. Therefore, our second sufficient condition for the uniqueness
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of the equilibrium is
1

2(c̄+ε)

[
1−π2

2π2 + π2
]

1− 1
c̄+ε

< 1

The numerator is maximised at π = 1
2
, hence the condition simplifies to c̄ + ε > 15

16
.

Again, this is satisfied for c̄ ≥ 2.

Step 4: Fourth, we show that a symmetric equilibrium where σi∗ = σj∗ = σ∗ always

exists. Therefore, it is also unique among the set of signal-based equilibria.

Because of symmetry, the equilibrium must be the fixed point of

σi = σj = σ∗ = F (cD(σ∗)) (A.10)

where from (A.5)

cD(σ∗) =
1

2

[(
(σ∗)2 + (1− σ∗)(2− σ∗)π2

(σ∗)2 + (2− σ∗)2π2
− 1− σ∗

2− σ∗

)
(σ∗ − (2− σ∗)π2) + 1

]
− 1

2
v

Looking at (A.10), note that both LHS and RHS are continuous on the [0, 1] interval.

Moreover, RHS(σ∗ = 0) ≥ 0 = LHS(σ∗) and RHS(σ∗ = 1) < 1 = LHS(σ∗ = 1).

Consequently, a solution exists in the [0, 1] interval. From the previous steps, we know

that this solution is unique.

Step 5: Finally, in the symmetric equilibrium, it is optimal to endorse the state

suggested by the most informative signal.

Assume that player j behaves as in the equilibrium described above. Now, by

endorsing the wrong state in period 2, player i shifts beliefs from γi(2) = 1 to γi(1) if it

is the only one publishing in that period, and from γi(∅) to γi(1) if both outlets publish

in period 2. In both cases, sticking to the correct state is weakly dominant.

If outlet i chooses to publish in period 1, it is indifferent by endorsing the least likely

state if it is the only one to publish in that period. If instead outlet j publishes in

period 1 as well, the expected reputation of outlet i by endorsing the state suggested
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by the signal is π2γi(∅) + (1− π2)γi(1). By endorsing the opposite state, the expected

reputation is πγi(1)+(1−π) [πγi(∅) + (1− π)γi(1)]. Again, the former is strictly bigger

than the latter because γi(∅) ≥ γi(1).

Proof of Lemma 2

Proof. To show this, we compare the cost threshold in monopoly and duopoly shutting

down the preemption concerns, i.e., assuming v = 0. We want to show that, in this case,

cD > cM . This would require

1

2

[
(γ(∅)− γ(1)) (σ − (2− σ)π2) + 1

]
> (1− π)(γ(R)− γ(W )) (A.11)

Observe that γ(1) = γ(W ) = 1−σ
2−σ . Moreover, define γ(∅) − γ(1) := A. We can now

rearrange equation (A.11) so that it becomes

1

2
[Aσ + 1] > (1− π)(γR −X) +

1

2
A(2− σ)π2 (A.12)

Now, after the relevant substitutions A can be simplified as A = σ2

(2−σ)(σ2+(2−σ)2π2)
.

As a consequence,

∂A

∂σ
=

2σ(2− σ)(σ2 + (2− σ)2π2)− σ2(σ2 + 3(2− σ)2π2 − 2σ(2− σ))

((2− σ)(σ2 + (2− σ)2π2))2
(A.13)

Signing (A.13) is not easy in its current form. However, it is clear that limσ→0
∂A
∂σ

= 0.

Moreover, we can rearrange A in a more tractable way. In particular, A = 1
(2−σ)(1+π2B2)

where B = 2−σ
σ

. Since B > 0 and ∂B
∂σ

= − 2
σ2 < 0, it is now easy to see that

∂A

∂σ
=

1 + π2B − 2π2B ∂B
∂σ

(2− σ)

((2− σ)(1 + π2B2))2
> 0.

The sign of ∂
2A
∂σ2 is even more complicated, but as A is defined over just two parameters,
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∂2A

∂σ2

Zero

Figure 3: Proof of Lemma 2: Proving ∂2A
∂σ2 > 0. Orange plane: ∂2A

∂σ2 , blue plane: 0.σ+ 0.π
in π − σ space.

σ ∈ [0, 1] and π ∈ (0.5, 1], we can prove graphically that ∂2A
∂σ2 > 0. In particular, Figure

3 shows that ∂2A
∂σ2 (the orange plane) is always strictly above the zero (blue plane) for

the entire set of relevant parameters.

It is now straightforward to see that in equation (A.12) ∂LHS
∂σ

> 0 and ∂2LHS
∂σ2 > 0 so

the LHS is strictly increasing and convex. Moreover, ∂RHS
∂σ

> 0.

To complete the proof, we show that LHS(σ = 0) >RHS(σ = 1) for all π ∈ (0.5, 1).

This requires

1

2
>

1− π
1 + π

+
1

2

π2

1 + π2

which further simplifies to

1− 3π + 2π2 − 2π3 < 0

Noticing that the LHS of the above is strictly decreasing in π, and it remains negative

for both π = 1
2

and π = 1, completes the proof.
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Proof of Proposition 5

Proof. This follows directly from the strict inequality of equation (A.11) and the fact

that v only reduces its LHS without affecting the RHS.

Proof of Corollary 1

Proof. The behavior of the monopolist is unchanged from Section 3.1. Looking at the

duopoly case, by Bayes’ rule

γi(R, .) =
(1− σi)π + σi

(1− σi)π + σi + π
= γi(R)

γi(W, .) =
1− σi

2− σi
= γi(W )

Therefore, the cost threshold for research is given by

1

2

[
σj
(v

2
+ γi(R)

)
+ (1− σj)γi(R)

]
+

1

2
γi(R)− c ≥

1

2

[
σj
(
v + πγi(R) + (1− π)γi(W )

)
+ (1− σj)

(v
2

+ πγi(R) + (1− π)γi(W )
)]

+

+
1

2

(v
2

+ πγi(R) + (1− π)γi(W )
)
,

which simplifies to

c ≤ (1− π)(γi(R)− γi(W ))− 1

2
v := c′D (A.14)

Note that the first part of (A.14) is the same as cM , and the only term that changes

is −1
2
v, making it smaller than cM .

In terms of the existence and uniqueness of the equilibrium in this setup, note that

σi∗ and σj∗ are the solution of the same fixed point problem, i.e.

σ∗ = F (c′D(σ∗))
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where c′D = cM − 1
2
v. The same logic of the proof of Proposition 2 applies here as well.

Hence the equilibrium exists, and it is unique and symmetric.

Proof of Corollary 2

Proof. Consider first the case of monopoly. Here, only the high outlet can publish in

period 2, which is observable. As a consequence,

γ(2) = 1

γ(1) =
1− σ
2− σ

The monopolist chooses to investigate when c ≤ 1− γ(1) := c′′M .

In a duopoly, the beliefs are updated the same way. Each outlet is considered

independently, and only the timing matters. The threshold is, therefore, given by

1

2

[
σj
(v

2
+ 1
)

+ (1− σj)
]

+
1

2
− c ≥

1

2

[
σj
(
v + γi(1)

)
+ (1− σj)

(v
2

+ γi(1)
)]

+
1

2

(v
2

+ γi(1)
)
.

It follows then that c′′D = 1− γi(1)− 1
2
v = c′′M − 1

2
v < c′′M as claimed.

In terms of existence and uniqueness, note that σ∗ is the solution of

σ∗ = F (c′′(σ∗))

The RHS is continuous on the [0, 1] interval, and irrespective of the market structure, it

is either strictly increasing and convex or flat. Moreover, RHS(σ∗ = 0) ≥LHS(σ∗ = 0)

and RHS(σ∗ = 1) < 1 =LHS(σ∗ = 1) since c̄ > 1.
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Proof of Proposition 6

Proof. We drop the bars for convenience. First, note that c̄D is decreasing in u. This

is so because it can be rearranged as

c̄D =
1

2

[
(γ(∅)− γ(1)) (σ∗ − (2− σ∗)π2)− σ∗

]
+

3

2
− u

(
3

2
− σ∗

2

)

where 3
2
− σ∗

2
> 0 for any σ∗ ∈ [0, 1]. Also, cM and σ∗M do not change with u.

Second, consider the case when u = 1. We will show that c̄D < cM . This requires

1

2

[
(γ(∅)− γ(1))(σ − (2− σ)π2)

]
< (1− π)(γ(R)− γ(W )).

Using the terminology introduced in Lemma 2, we can rewrite the above as

1

2
Aσ < (1− π)(γ(R)− γ(W )) +

1

2
A(2− σ)π2.

The LHS and the RHS of the above equation are only functions of two variables, π and

σ, defined on compact and continuous sets. Therefore, we can plot them in a graph (see

Figure 4) and check that the above is true.

Third, consider the case of u = 0. We want to show that c̄D > cM . This is equivalent

to showing that

1

2

[
(γ(∅)− γ(1))(σ − (2− σ)π2)− σ

]
+

3

2
> (1− π)(γ(R)− γ(W )).

We showed in Lemma 2 that cD(v = 0) > cM . It is easy to check that c̄D(u = 0) = cD(v =

0) + 1− 1
2
σ where 1− 1

2
σ > 0 for all σ ∈ [0, 1]. Therefore, c̄D(u = 0) > cD(v = 0) > cM .

Combining the three parts above, our result follows.
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RHS

LHS

Zero

Figure 4: Proof of Proposition 6: Proving LHS < RHS. Orange plane: RHS, blue plane:
LHS, and green plane: 0.σ + 0.π in the π − σ space.

Proof of Proposition 7

Proof. We drop the bars and stars for convenience. Reminding ourselves that

V =
(4− σ2)

4
πu+

2

4
σ(2− σ)(1− u) +

1

4
σ2u,

we first take the first derivative of V with respect to π (we drop the stars and D in

what follows for convenience).

∂V

∂π
= u

(4− σ2)

4
+

[
πu

2
(σ − 4) +

(1− u)

2
2(1− σ) +

(u)

2
σ

]
∂σ

∂π

= u
(4− σ2)

4
+

2(1− σ)− u[(2 + 4π)− σ(π + 3)]

2

∂σ

∂π
(A.15)

Now, we need to show under what conditions ∂σ
∂π
< 0. Reminding that σ is implicitly
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defined by (B.3) define

K := σ −
[

1

2

[
(γ(∅)− γ(1)) (σ − (2− σ)π2)− σ(1− u)

]
+

3

2
(1− u)

]
1

c̄+ ε
− ε

c̄+ ε

Further, using the definitions in the proof of Lemma 2, we can rewrite K as

K = σ − 1

2(c̄+ ε)

[
A(σ − (2− σ)π2)− σ(1− u)

]
− 3

2(c̄+ ε)
(1− u)− ε

c̄+ ε

Differentiating and simplifying, we first obtain

∂K

∂π
:= Kπ = − 1

2(c̄+ ε)

[
−2πB2(σ − (2− σ)π2)

(2− σ)(1 + π2B2)2
− 2π

1 + π2B2

]
=

1

2(c̄+ ε)

1 +B

(1 + π2B2)2
> 0, (A.16)

and second, we obtain

∂K

∂σ
:= Kσ = 1− 1

2(c̄+ ε)

[
∂A

∂σ
(σ − (2− σ)π2) + (1 + π2)A− (1− u)

]
= 1 +

1

2(c̄+ ε)
(1− u)− 1

2(c̄+ ε)

[
∂A

∂σ
(σ − (2− σ)π2) + (1 + π2)A

]
= 1 +

1

2(c̄+ ε)
(1− u)− 1

c̄+ ε

∂cD
∂σ

(A.17)

where cD is the cost threshold we derived in Proposition 4.

We can now show that ∂cD
∂σ
≤ 1 in the neighborhood of the equilibrium σ. The proof

for this is presented in Proposition D2 (Appendix D) for a generic prior q. Therefore, it

is also true in our special case of q = 1
2
.

Putting these two facts together and using the Implicit Function Theorem, we can

now conclude that ∂σ
∂π

= −Kπ
Kσ

< 0.

Finally, we want to find the condition under which ∂V
∂π

< 0. From (A.15), this

happens when
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u
(4− σ2)

4
<

2(1− σ)− u[(2 + 4π)− σ(π + 3)]

2
σπ,

where
(
−∂σ
∂π

)
:= σπ > 0. We wish to determine the behavior of the LHS and the RHS

above with u. Begin with the LHS and note that it is linearly increasing in u, with

it being 0 at u = 0 and 1 − σ2

4
> 0 at u = 1. For the RHS, begin by noting that

σπ > 0 for any u. Now, at u = 0, RHS = (1 − σ)σπ|u=0 > 0. But at u = 1, RHS

= π(−4+σ)+σ
2

σπ|u=1 < 0 because π(−4+σ)+σ
2

< 0. Since the RHS is a continuous function

of u, it must cross the LHS at least once. Therefore, ūV exists and lies between 0 and 1.

Proof of Lemma 3

Proof. Comparing the source’s expected utility given by expressions in (1) and (2) and

simplifying gives the following condition to prefer two firms:

µ(1− π)(2σM − σD(4− σD)) ≤ 2σM − σ2
D (A.18)

We discuss different cases based on possible values of σM and σD.

Case 1: v is very high so that σD = 0. Substituting in A.18 gives that the source

prefers to send the story to both outlets if

µ ≤ 1

1− π
> 1

Therefore, if v is very large, it is possible that µ > 1 (so that the source cares relatively

more about matching the state) and σD = 0 (so that in duopoly, no one does research),

but still the source prefers to share information with both the outlets. This happens

because π > .5, and the source still cares about getting the information out quickly.

Case 2: v is high enough so that σD < σM . Now, the RHS of equation (A.18) is
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greater than zero. But first, σD might not be too small so that in the LHS < 0 i.e.

2σM ≤ σD(4− σD). In this case, sending to both is always preferred independent of µ.

Therefore, sending it to both is preferred if

σD < σM ≤
σD(4− σD)

2
.

Second, σD might, in fact be very small so that on the LHS > 0 i.e. 2σM > σD(4−σD).

In this case, sending to both is preferred only if

µ ≤ 2σM − σ2
D

2σM − σD(4− σD)

1

(1− π)
.

Case 3: v is small so that σD > σM . Again there are two possible situations. First,

consider the case in which σD is not too large so that the RHS of equation (A.18) is still

positive, i.e., 2σM ≥ σ2
D =⇒ σM ≥

σ2
D

2
. Now, in this case, we want to see whether the

LHS can be negative i.e. if σM < σD(4−σD)
2

. But this must be true because σD > σM and

we know that σD(4−σD)
2

> σD. Therefore, the LHS is negative and the RHS is positive,

so the condition outlined in (A.18) is satisfied. Sending to both is always preferred if

σ2
D

2
≤ σM < σD.

Second, σD might, in fact be very large so that the RHS is negative, i.e. σM <
σ2
D

2
.

Now, it cannot be that the LHS is positive because that requires σM > σD(4−σD)
2

which

contradicts σM < σD. Therefore, LHS must also be negative. From condition (A.18),

the source prefers both outlets only if

µ ≥ σ2
D − 2σM

σD(4− σD)− 2σM

1

(1− π)
.

Case 4: v is such that σD = σM := σ. When this is the case, the condition (A.18)
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reduces to

−µ(1− π)(2− σ) < (2− σ)

which is always true. Therefore, sending it to both is preferred.

Our result follows from combining all the above cases.

Proof of Proposition 8

Proof. The proof is by construction. We have already constructed the equilibrium

frontier and the set of all possible equilibria for a given c̄ and ε.

We now show what happens as ε → 0. Consider σM first. From Proposition 2,

observe that as ε → 0 LHS(σ = 0) = 0 ≈ RHS(σ = 0) = ε
c̄+ε
→ 0 in equation (A.3).

Therefore, for any π the only fixed point equilibrium → 0.

Now, consider σD at v = 0. Fix a π. We know that as ε→ 0, since cD(σ = 0) = 1
2
,

we have that RHS(σ = 0) → 1
2c̄

in equation (A.10). But this is strictly greater than

LHS(σ = 0) = 0. Therefore, the equilibrium fixed point σD > 0 and also
σ2
D

2
> 0.

Moreover, this is true for any π.

Therefore, in the σD − σM space as ε → 0, the equilibrium frontier lies below the

σM =
σ2
D

2
line.

Now, let us look at what happens as ε→∞. Given that the fixed point is defined

by σ∗ = c∗+ε
c̄+ε

, both σM and σD approach 1 (without ever being exactly equal to 1).

However, because the frontier is defined for v = 0 case, the frontier lies close to and to

the right of the σM = σD line.

Combining the two observations above with Lemma 3, we get our proposition.
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Appendices B, C, D, E and F are for online publication.

B Duopoly case with microfounded audience pref-

erences presented in Section 4

Proposition B1 Let there be a fraction u of audience available to the first outlet

publishing and let c̄ ≥ 2.5. If there are two media outlets and their types are not known

to the audience, there exists a unique and symmetric equilibrium probability with which

a high outlet does research, σ̄i∗ = σ̄j∗ := σ̄∗ = F (c̄D) such that

c̄D =
1

2

[
(γ(∅)− γ(1)) (σ̄∗ − (2− σ̄∗)π2)− σ̄∗(1− u)

]
+

3

2
(1− u)

where γ(∅) = (σ̄∗)2+(1−σ̄∗)(2−σ̄∗)π2

(σ̄∗)2+(2−σ̄∗)2π2 and γ(1) = 1−σ̄∗

2−σ̄∗ .

Proof. We proceed in steps as outlined in Proposition 4. We drop the bars from σ for

convenience.

Step 1: We begin by showing that in any signal-based equilibria outlets’ period 1

decision on whether to research or publish is described by a threshold on c. This follows

from the discussion in the text. Let σi and σj be the conjectured strategies. Then

equation (B.1) defines the threshold ciD for outlet i.

ci ≤ 1

2

[(
γi(∅)− γi(1)

)
(σj − (2− σj)π2) + (2− σj)

(
1− γi(1)

)
− σj(1− u)

]
+ 1− 3

2
u := c̄iD

(B.1)

where γ(∅) = σiσj+(1−σi)(2−σj)π2

σiσj+(2−σi)(2−σj)π2 and γ(1) = 1−σi
2−σi . The problem is identical for player j.

Step 2: Next, we show that for any σj there is only one σi that solves the equilibrium

fixed point for player i.

All of the definitions from Proposition 4 remain unaltered.
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We want to show that, for every σj , there is only one σi that solves σi = F (c̄iD(σi, σj)).

1. The LHS is linear, with slope equal to 1, starting at 0 and ending at 1.

2. Now, c̄iD(σi = 1, σj) = ciD(σi = 1, σj, v = 0) + (1 − u)(1 − σj

2
), where each term

is less than or equal to 1. But since c̄ ≥ 2.5, therefore c̄iD(σi = 1, σj) < c̄. As a

result, the RHS evaluated at σi = 1 < 1 = LHS at σi = 1;

3. The RHS evaluated at σi = 0 is greater than or equal to zero.

4. For any σj, both LHS and RHS are continuous in σi.

Hence, they cross at least once and there is at least one solution to this fixed point

problem.

Further, note that c̄iD behaves the same way as ciD with respect to σi. Therefore, the

rest of the proof in this step is as before.

Step 3: Third, we show that if an equilibrium exists, it is unique for c̄ ≥ 2.5.

Other than changing the relevant definitions to include σ, nothing changes in this

step until we evaluate
∂c̄iD
∂σj

∂c̄iD
∂σj

=
1

2

[
∂γi(∅)

∂σj
(σj − (2− σj)π2) + γi(∅) + π2(γi(∅)− γi(1))− (2− u)

]
. (B.2)

Again, the rest of the proof remains unaltered until we find the first sufficient

condition. The lowest value of the numerator of ∂σi

∂σj
from (A.7) can be found by making

the relevant replacement from above to (B.2). Therefore,

minσi,σj
∂F (c̄iD)

∂σj
≥ 1

c̄+ ε

1

2

[
1

2π2
(−2π2)− (2− u)

]
=
−1

c̄+ ε

(
3− u

2

)
.

2



Therefore, our new first sufficient condition for the uniqueness of the equilibrium is

− 1
c̄+ε

(
3−u

2

)
1− 1

c̄+ε

> −1,

which simplifies to c̄ ≥ 5−u
2

. The highest value possible of 5−u
2

is 2.5 at u = 0, which is

assumed.

Looking now at the upper bound, again by replacing in (B.2) we get

maxσi,σj
∂F (c̄iD)

∂σi
≤ 1

c̄+ ε

1

2

[
1

2π2
(1− π2) + 1 + π2 − 2 + u

]
=

1

2(c̄+ ε)

[
1

2π2
+ π2 − 3

2
+ u

]
.

Therefore, our second new sufficient condition for the uniqueness of the equilibrium is

1
2(c̄+ε)

[
1

2π2 + π2 − 3
2

+ u
]

1− 1
c̄+ε

< 1

The numerator is maximised at π = 1√
2
, hence the condition simplifies to c̄+ ε > u+2

2
.

Again, this is satisfied for c̄ ≥ 2.5 since 5−u
2
> u+2

2
for u ∈ [0, 1].

Step 4: Fourth, we show that a symmetric equilibrium where σi∗ = σj∗ = σ∗ always

exists. Therefore, it is also unique among the set of signal-based equilibria.

Because of symmetry, the equilibrium must be the fixed point of

σi = σj = σ∗ = F (cD(σ∗)) (B.3)

where from (B.1)

cD(σ∗) =
1

2

[(
(σ∗)2 + (1− σ∗)(2− σ∗)π2

(σ∗)2 + (2− σ∗)2π2
− 1− σ∗

2− σ∗

)
(σ∗ − (2− σ∗)π2)− σ∗(1− u)

]
− 3

2
(1− u)

(B.4)

Looking at (B.3), note that both LHS and RHS are continuous on the [0, 1] interval.

Moreover, RHS(σ∗ = 0) ≥ 0 = LHS(σ∗) and RHS(σ∗ = 1) < 1 =LHS(σ∗ = 1).
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Consequently, a solution exists in the [0, 1] interval. From the previous steps, we know

that this solution is unique.

Step 5: Finally, we show that in the symmetric equilibrium, it is optimal to endorse

the state suggested by the most informative signal.

This is true because now there is more incentive to build a reputation. Since

reputation requires matching the state, there is even less reason not to endorse the state

suggested by the most informative equilibrium.
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C Allowing for sitting on information

In this appendix, we show that allowing outlets to “sit on information” (i.e. just

refrain from publishing until period 2 without acquiring the additional signal) does not

preclude the equilibrium outlined in Proposition 4. We prove it formally for sufficiently

low π and then use mathematical simulation to argue that it holds more generally.

The uniqueness of such an equilibrium (among signal-based equilibria), however, is not

obvious anymore. We make only one change to the model described in Section 2. Now

di ∈ {res, pub, wait}, where di = wait means that the outlet does not acquire the second

signal but still publishes in period 2.

This addition poses some challenges in the tractability of the model because the

choice is no longer just between two options and strategies are not necessarily just

thresholds in c. However, even in this more complicated setup, we can show a few results.

First, for sufficiently low π, it is possible to find values of v such that the equilibrium

described in Proposition 4 exists; waiting is never the best response if the other player

never waits, and σ∗D > σ∗M . Second, we can simulate the model showing that we can

assign values to v such that, for the resulting equilibrium σ∗D, publishing in period 1 is

better than waiting and at the same time σ∗D > σ∗M .

We begin with the following lemma considering that we are interested in the (candi-

date) equilibrium strategies described in Proposition 4 where di = wait is never played

in equilibrium.

Lemma C1 It is always possible to find off-path beliefs such that, for sufficiently high

v, Eui(di = wait) ≤ Eui(di = pub).

Proof. Note that γ(WII, .) is off-path in the equilibrium we are considering. For any

γ(∅) and γ(1) as defined above, the expected utility from choosing di = wait is

1

2
σj
(v

2
+ πγ(∅) + (1− π)γ(1)

)
+

(
1

2
(1− σj) +

1

2

)
(π + (1− π)γ(WII, .)) (C.1)
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On the other hand, the expected utility from publishing immediately is given by

1

2
σj (v + γ(1)) +

(
1

2
(1− σj) +

1

2

)
(
v

2
+ π2(γ(∅)− γ(1)) + γ(1)) (C.2)

Comparing (C.1) and (C.2) and solving for v, we find that Eui(di = wait) ≤ Eui(di =

pub) when

v ≥ σjπ(γ(∅)− γ(1))− (2− σj)
[
π2γ(∅) + (1− π2)γ(1)− π − (1− π)γ(WII, .)

]
(C.3)

Therefore, it is possible to find v and γ(WII, .) such that the above condition is satisfied.

This makes intuitive sense, as a sufficiently high scoop value should always deter

sitting on the information. From now on, we set γ(WII, .) = 0 and we define v̄ :=

σjπ(γ(∅)− γ(1))− (2− σj) [π2γ(∅) + (1− π2)γ(1)− π].

We can now move to the main proposition.

Proposition C1 For sufficiently low π, it is possible to find values of v such that the

equilibrium described in Proposition 4 exists. In such an equilibrium, waiting is never

the best response if the other player follows the equilibrium strategies and σ∗D > σ∗M .

Proof. Suppose that player j always publishes when it is low type and chooses just

between publishing or researching when high type. Moreover, suppose that the audience

conjectures that both players use the equilibrium strategies described by Proposition

4. For this to be an equilibrium in the new setup, it is sufficient to prove that, given

the correct audience’s beliefs updating, for every σ, Eui(di = wait) ≤ Eui(di = pub).

To show this, first we prove through Figure 5 that ∂v̄
∂π
> 0. Moreover, Figure 6 shows

that there exists a range of π such that argmaxσv̄(π) = 1. In the figure, it happens for

π ∈ [.5, .6]. As a consequence, for every v ≥ v̄(σ = 1, π ∈ [0.5, 0.6]) it is true that, for

every σ, Eui(di = wait) ≤ Eui(di = pub). In other words, if the audience conjectures

6



Figure 5: Proof of Proposition C1: Proving ∂v̄
∂π

> 0. Orange plane: ∂v̄
∂π

, blue plane:
0.σ + 0.π in the π − σ space.
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Figure 6: Proof of Proposition C1: Proving argmaxσv̄(π) = 1. Orange plane: v̄(π),
blue plane: 0.σ + 0.π in the π − σ space for π ∈ [0.5, 0.6].

an equilibrium where no types and no players choose to wait, and the choice for the

high type is just between publishing and researching described by a threshold strategy

on c, behaving in this way is an equilibrium strategy for the outlets.

Finally, Figure 7 plots cM and cD(v̄(σ = 1)) for sufficiently small π, proving that

we can still increase v from v̄(σ) maintaining the necessary condition for σ∗D > σ∗M , i.e.

cD ≥ cM .

When π > 0.6, we can show the existence of our candidate equilibrium through

mathematical simulations. Consider, for example the following set of parameters:

π = 0.75, v = 0.7, c̄ = 2, ε = 0.1. In this case, the equilibrium described in Proposition

4 (assuming it still exists) gives a solution σ∗D = 0.118219.19 Suppose now that player i

expects player j to never wait and choose to research (if it is high type) with probability

0.118219. Further, suppose the audience thinks that both outlets never wait and

research (if they are high types) with probability 0.118219. In this case, Eui(di =

19We simulated the model with Mathematica. The code is available upon request.
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Figure 7: Proof of Proposition C1: Proving cD(v̄(σ = 1)) > cM . Orange plane:
cD(v̄(σ = 1)), blue plane: cM in the π − σ space for π ∈ [0.5, 0.6].
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Figure 8: cD > cM for π = 0.75 and v = 0.7. Orange line: cM , blue line: cD as a function
of σ)

wait) = 0.754218 and Eui(di = pub) = 0.841236. Hence, there is no incentive to choose

to wait instead of publishing, and the meaningful choice is just between researching and

publishing. The solution to this problem is the same as that described by Proposition 4.

Finally, Figure 8 shows that, for π = 0.75 and v = 0.7, it is still true that cD ≥ cM for

every σ. More generally, Figure 9 plots cM and cD (in the π − σ space) by replacing v

with the corresponding v̄. Still, cD is above cM throughout the entire range of parameters

of our model.
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Figure 9: cD(v = v̄ > cM for every combination of σ and π. Orange plane: cD(v = v̄),
blue plane: cM in the π − σ space.

D Generic prior on the type

This appendix shows that our main results are qualitatively unaffected by the

assumption of prior Pr(θi = h) = 1
2
. In this section, we assume a generic prior

Pr(θi = h) = q ∈ (0, 1), leaving the rest of the model unchanged. We consider monopoly,

duopoly, and their comparison for when θ is unknown to the reader.

Monopoly

The proposition of the main result is unchanged in monopoly, as q enters only in the

readers’ beliefs updating.

Proposition D1 If there is one media outlet and θ is not known to the audience, there

exists a unique equilibrium in which the high outlet conducts research in t = 1 if and
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only if

c ≤ (1− π)(γ(R)− γ(W )) := cM

where γ(R) and γ(W ) are the audiences’ beliefs about the outlet’s quality after it gets

the state right and wrong respectively. As a consequence, σ∗ = F (cM(q)) = cM (q,σ∗)+ε
c̄+ε

.

Proof. Suppose that a high outlet chooses d = res with probability σ. Reminding

ourselves from the main text that by Bayes’ rule,

γ(R) =
q(σ + (1− σ)π)

q(σ + (1− σ)π) + (1− q)π

γ(W ) =
q(1− σ)(1− π)

q(1− σ)(1− π) + (1− q)(1− π)
=
q(1− σ)

1− qσ
.

A high quality optimally chooses res if

γ(R)− c ≥ πγ(R) + (1− π)γ(W ) =⇒ c ≤ (1− π)(γ(R)− γ(W )) := cM(q)

In equilibrium the conjectured σ must be equal to the actual one, hence it must be that

σ∗ = F (cM(q, σ∗)). (D.1)

We need to check if such a fixed point exists. To do so, three observations are

in order. First, note that both the LHS and RHS of the above are continuous in σ∗.

Second, LHS(σ∗ = 0) = 0 < RHS(σ∗ = 0) = ε
c̄+ε

(as cM(q) = 0 at σ∗ = 0). Third,

LHS(σ∗ = 1) = 1 > RHS(σ∗ = 1) = F
(

(1−π)q
q+(1−q)π

)
, so the equilibrium is the solution of

σ∗ = cM (q,σ∗)+ε
c̄+ε

and LHS and RHS must cross at least once.

Finally, we need to check for the uniqueness of the fixed point. To show this, it is

sufficient to prove that the derivative of the RHS with respect to σ is smaller than 1.
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Note that

∂RHS

∂σ∗
=

1− π
c̄+ ε

[
π(1− π)q(1− q)

(q(σ + (1− σ)π) + (1− q)π)2
+

q(1− q)
(1− qσ∗)2

]
> 0

Moreover, we can rewrite the equation as

∂RHS

∂σ∗
=

(1− π)q(1− q)
c̄+ ε

[
π(1− π)

(q(σ + (1− σ)π) + (1− q)π)2
+

1

(1− qσ∗)2

]
.

It is easy to see that, in the range of parameters of the model, (1 − π)q(1 − q) ≤ 1
8
;

π(1−π)
(q(σ+(1−σ)π)+(1−q)π)2

≤ 1 because π(1− π) is at most 1
4

and q(σ + (1− σ)π) + (1− q)π is

at least 1
2

(when σ = 0 and π = 1
2
); 1

(1−qσ∗)2
≤ 1. As a consequence,

∂RHS

∂σ∗
<

1

8
[1 + 1] < 1

and this completes the proof.

Duopoly

For the case of duopoly, we look directly at symmetric equilibria, showing that there

exists a unique symmetric equilibrium.

Proposition D2 If there are two media outlets and θ is not known to the audience,

there exists a unique symmetric equilibrium where σi∗ = σj∗ := σ∗ = F (cD(q)) such that

cD(q) =
[
(γ(∅)− γ(1)) (qσ∗ − (1− qσ∗)π2) + 1− q

]
− 1

2
v

where γ(∅) = q((σ∗)2q+(1−σ∗)(1−qσ∗)π2)
(qσ∗)2+(1−qσ∗)2π2 and γ(1) = q(1−σ∗)

1−qσ∗ .

Proof. We focus directly on symmetric equilibria where each high outlet uses a threshold

strategy on c in the decision on whether to publish or investigate. Define σ as the
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probability (from the point of view of the other players) that a high outlet chooses to

do research. For the same logic as in Proposition 4, the threshold is given by

ci ≤
[
(γ(∅)− γ(1)) (qσ − (1− qσ)π2) + (1− qσ) (1− γ(1))

]
− 1

2
v := cD(q) (A.5)

where, by Bayes’ rule, γ(∅) = q(σ2q+(1−σ)(1−qσ)π2)
q2σ2+(1−qσ)2π2 and γ(1) = q(1−σ)

1−qσ .

Given that cost is uniformly distributed in [−ε, c̄] and that in equilibrium the

conjectured probability of investigation must be equal to the actual one, the (symmetric)

equilibrium level of σ, if it exists, must be the solution of

σ = F (cD(q, σ)) (D.2)

where

F (cD(q, σ)) =


0 cD(q, σ) < −ε

cD(q,σ)+ε
c̄+ε

−ε ≤ cD(q, σ) ≤ c̄

1 cD(q, σ) > c̄

and

f(cD(q, σ)) =


0 cD(q, σ) < −ε

1
c̄+ε

−ε ≤ cD(q, σ) ≤ c̄

0 cD(q, σ) > c̄

Note that:

1. The LHS of equation (D.2) is linear, with a slope equal to 1, starting at 0 and

ending at 1;

2. RHS(σ = 0) ≥ 0 =LHS(σ = 0);

3. RHS(σ = 1) < 1 =LHS(σ = 1);

4. Both LHS and RHS are continuous in σ.
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Hence, they cross at least once and there is at least one solution to this fixed point

problem.

To show uniqueness, we can rewrite cD(q) as

cD = AE + 1− q − 1

2
v

where A := γ(∅)− γ(1) = q2(1−q)
(1−qσ)[q2+π2B2]

, B := 1−qσ
σ

and E := qσ− (1− qσ)π2. It is

easy to see that ∂E
∂σ
≥ 0. Moreover, it is also true that ∂A

∂σ
≥ 0. To see this, note that

∂A

∂σ
=
−q2(1− q)

[
−q(q2 + π2B2) + 2π2B ∂B

∂σ
(1− σq)

]
((1− qσ) [q2 + π2B2])2

≥ 0

because ∂B
∂σ
≤ 0. However, the sign of E is ambiguous, with E < 0 for σ < π2

q(1+π2)
:=

σT . We claim that the following two conditions are sufficient for uniqueness:

1. ∂cD(q)
∂σ
≤ 1 for σ ≤ σT ;

2. ∂2cD(q)
∂σ2 ≥ 0 for σ ≥ σT ;

The argument is as follows: as RHS(σ = 0) ≥ 0 =LHS(σ = 0) and RHS(σ = 1) <

1 =LHS(σ = 1), the fixed point is:

1. Only at σ = 0, as RHS(σ = 0) =RHS(σ = σT ) and below that in between.

Moreover, there cannot be any additional crossing point above σT because the

RHS would be coming from below, and, as it is convex, it cannot be that they

cross and RHS(σ = 1) < 1 =LHS(σ = 1).

2. If the solution is not at 0, the first time they cross it must be that the LHS comes

from below. There are two sub-cases:

• If the first crossing point is in σ ≤ σT , then there cannot be others in the

same interval as ∂cD(q)
∂σ
≤ 1. Moreover, there cannot be any other crossing
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point above σT because the RHS would be coming from below, and, as it is

convex, it cannot be that they cross and RHS(σ = 1) < 1 =LHS(σ = 1).

• If the first crossing point is above σT , it must be unique as a second solution

would violate RHS(σ = 1) < 1 =LHS(σ = 1).

We now prove that the two sufficient conditions outlined above apply to our model.

First, a sufficient condition for ∂cD(q)
∂σ

≤ 1 for σ ≤ σT is ∂E
∂σ
A ≤ 1. This implies

(1 + π2)q3(1− q) ≤ (1− qσ)(q2 + π2B2). As the RHS is decreasing in σ, this condition

must hold for the highest possible σ, i.e. for σ = σT . Substituting and simplifying, this

requires q(1− q) ≤ 1
π2(1+π2)

. The LHS is at most 1
4

while the RHS is at least 1
2
, hence

the condition is always satisfied.

Second, a sufficient condition for convexity of cD(q) for σ ≥ σT is ∂2A
∂σ2 ≥ 0. To show

that it is always the case, note that

∂2A

∂σ2
= −q2(1− q)

∂2D
∂σ2 D

2 − 2D ∂D
∂σ

2

D4
(D.3)

where D = (1 − qσ) [q2 + π2B2], ∂D
∂σ

= −q(q2 + π2B2) + π22B ∂B
∂σ

(1 − σq) < 0 and

∂2D
∂σ2 = −qπ22B ∂B

∂σ
+ 2π2

[(
∂B
∂σ

2
+ ∂2B

∂σ2B
)

(1− σq)− qB ∂B
∂σ

]
> 0. A sufficient condition

for (D.3) to be positive is 2∂D
∂σ

2 ≥ ∂2D
∂σ2 D.

By substitution, this implies

2

[
−q(q2σ2 + π2(1− qσ)2)

1

σ2
− 2π2 (1− qσ)2

σ3

]2

≥
[
qπ22σ

(1− qσ)

σ4
+ 2π2(1− qσ)

1

σ4
+

4(1− qσ)2

σ4
π2 + 2qπ2σ

(1− qσ)

σ4

]
(1− qσ)(q2 + π2B)

σ2

[
−q(q2σ2 + π2(1− qσ)2)− 2π2 (1− qσ)2

σ

]2

≥ 3π2(1− qσ)2(q2σ2 + π2(1− qσ)2)

σ2q2(q2σ2 + π2(1− qσ)2)2 + 4π4(1− qσ)4 + 4π2(1− qσ)2qσ(q2σ2 + π2(1− qσ)2) ≥ 3π2(q2σ2 + π2(1− qσ)2)(1− qσ)2

(D.4)

where the second line follows by the multiplication of both sides by σ4 and the third

by dividing both sides by 2 and working out explicitly the square on the LHS. Note

that σ and q always appear together in the last line of (D.4). As a consequence, we can
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Figure 10: Proof of Proposition D2: Proving LHS > RHS in (D.4). Orange plane:
LHS−RHS, blue plane: 0 ∗ x+ 0 ∗ π in the π − x space.

redefine σq := x and check whether the condition holds for x ∈ [0, 1] and π ∈ [0.5, 1].

We prove this graphically using figure 10. It plots the difference between LHS and RHS

of (D.4) for the whole range of possible values of x and π, showing that this difference

is always positive. This completes the proof.

Monopoly-Duopoly comparison

Finally, we show that sufficient conditions for competition leading to more research

than monopoly can be found in this setup as well.

Proposition D3 There exists a nonempty interval of v values where σ∗D(q) > σ∗M(q).

Proof.

A sufficient condition for the proposition to hold is that for some values of v,
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cD(q) > cM(q). Setting v = 0, and defining B = 1−qσ
σ

note that:

cD(q) = (γ(∅)− γ(1))(qσ − (1− qσ)π2) + 1− q (D.5)

= qσ
q2(1− q)

(1− qσ)(q2 + π2B2)
− π2(1− qσ)

q2(1− q)
(1− qσ)(q2 + π2B2)

+ 1− q

= (1− q)
(

q3σ

(1− qσ)(q2 + π2B2)
− π2q2

q2 + π2B2
+ 1

)
= (1− q)

(
q2 + (1− qσ)π2B2

(1− qσ)(q2 + π2B2)
− π2q2

q2 + π2B2

)
=

1− q
1− qσ

(
q2 + (1− qσ)π2B2

(q2 + π2B2)
− π2q2(1− qσ)

q2 + π2B2

)

where the first equality follows by substitution and the rest is a series of rearrangements.

Note that, as q ∈ (0, 1), neither 1− q nor 1− qσ are ever 0. Similarly, by substitution,

cM(q) = (1− π)

(
q(σ + (1− σ)π

qσ + q(1− σ)π + (1− q)π)
− q(1− σ)

1− qσ

)
(D.6)

= (1− π)q

(
σ + (1− σ)π

qσ(1− π) + π
− 1− σ

1− qσ

)
=

(1− π)qσ(1− q)
(1− qσ)(qσ(1− π) + π)

As a consequence, by comparison of (D.5) and (D.6), cD(q) > cM(q) implies

q2 + (1− qσ)π2(B2 − q2)

(q2 + π2B2)
>

(1− π)qσ

(qσ(1− π) + π)
(D.7)

Note that both LHS and RHS of (D.7) are decreasing in π. The case of RHS is

straightforward. For the LHS, a sufficient condition is

(1− σq)2π(B2 − q2)(q2 + π2B2 − 2πB2(q2 + (1− qσ)π2(B2 − q2)) < 0
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This simplifies to −σq2πq2B2 − (1− σq)2πq4 that is always negative.

As a consequence, a sufficient condition for cD(q) > cM (q) is LHS(π = 1) >RHS(π =

0.5). By substitution, this implies

q2 + (1− qσ)(B2 − q2)

(q2 +B2)
>

qσ

1 + qσ

After few simplifications and substituting back the value of B, we obtain

σ2q2 2qσ − 1

σ2
+

(1− qσ)3

σ2
> 0

A sufficient condition for this to hold is

1− 3qσ + 2q2σ2 + q3σ3 > 0

Noticing that qσ is bounded between 0 and 1, the condition is always satisfied and this

completes the proof.
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E Monopoly with public signal

In this appendix, we assume that the audience learns the actual timing with positive

probability z in monopoly. This helps us establish that additional learning in our

benchmark duopoly model happens not only because the timing is revealed with some

probability but also because the audience uses additional information from outlets

matching the state. In this setup, the outlet does not know whether the audience

has learned the timing or not when taking its decision. Then, the condition for doing

research is

zγM(2) + (1− z)γM(∅)− c ≥ zγM(1) + (1− z)(πγM(∅) + (1− π)γM(1)) (E.1)

Note that γM(2) = γ(2) = 1 and γM(1) = γ(1) = 1−σ
2−σ . However,

γM(∅) =
σ + (1− σ)π

σ + (1− σ)π + π
6= γ(∅) =

σ2 + (1− σ)(2− σ)π2

σ2 + (2− σ)2π2

because in a duopoly the audience can learn also from the other player getting the state

wrong. Hence, the audience is confused only if both outlets publish simultaneously and

they both get the state right.

For comparison, we can write the duopoly condition for v = 0 a bit differently. Define

χ the probability that the opponent behaves in a way that reveals the timing to the

reader. Note that χ is “artificial” because it is the probability that j does not research

when player i does (i.e. 1
2
(1− σj) + 1

2
on the LHS) and vice-versa (i.e. 1

2
σ on the RHS).

In such cases, the action of player j is fully revealing of the timing, irrespective of the

endorsement. The duopoly condition for research is then

χγ(2) + (1− χ)γ(∅)− c ≥ χγ(1) + (1− χ)(π2γ(∅) + (1− π2)γ(1)) (E.2)

Comparing (E.1) and (E.2) reveals that they are similar, but not identical. Even if
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we set z = χ, the difference in γ(∅) and in the π2 term of the RHS is still there. Hence,

our result is not just due to the fact that the publication timing of the opponent reveals

information about the timing of the other player. The content of the endorsements

plays a role as well.
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F Knobel (2018) results on watchdog reporting

Table 1: Deep (first row) and simple (second row) accountability reporting (as a % of total front-page
stories in April) in a sample of 9 newspapers in the US for 1991-2011 in five-year gaps

Newspaper group Newspaper 1991 1996 2001 2006 2011 Average

Large
Wall Street Journal 1.28 2.33 5.88 5.26 4.85 4.03

30.77 22.09 23.53 22.11 27.18 25.06
Washington Post 1.51 3.55 4.23 2.72 7.74 3.80

25.63 27.41 31.92 37.50 36.13 31.43
New York Times 0.34 0.93 4.35 5.43 3.19 2.46

10.51 9.29 18.26 19.57 28.72 15.82

Metropolitan
dailies

Albany Times Union (NY) 6.35 1.22 3.45 4.12 3.61 3.64
47.62 23.17 28.74 17.53 36.14 26.37

Denver Post 0.00 4.85 1.80 3.06 5.13 2.92
23.33 22.33 28.83 29.59 43.59 28.96

Minneapolis Star Tribune 2.46 1.15 1.83 2.86 5.00 2.68
31.97 36.78 22.02 34.29 41.00 32.89

Atlanta Journal-Constitution 1.20 0.00 1.06 1.75 11.84 2.30
14.97 11.11 13.30 30.70 48.68 20.52

Small
Bradenton Herald (FL) 0.93 1.61 1.14 1.27 1.44 1.26

19.44 33.87 32.95 21.52 19.42 24.16
Lewiston Tribune (ID) 0.00 0.00 0.00 0.00 1.45 0.32

22.22 15.25 40.74 28.33 23.19 25.80
Average 1.26 1.81 2.92 3.25 4.46 2.69

21.52 19.78 24.46 27.26 32.59 24.94

Source: The Watchdog Still Barks: How Accountability Reporting Evolved for the Digital Age. Knobel
(2018). The author analyzed the content of every front-page story that was published in the month of April
(randomly selected) in five-year gaps starting 1991 in a select sample of 9 newspapers. The stories chosen for
deep and simple categories involved the following procedure. First, the author eliminated stories that were
breaking news. Second, she eliminated stories that had no relation to public policy or politics. In all, she
analyzed 1,491 stories in depth using content analysis. Simple accountability reports/stories are those that
took a few hours or days to complete, relying on straightforward reporting such as interviews or reviewing
published documents. Deep accountability reports/stories are those that took weeks or months to develop
and would have remained secret without the journalists’ work.

We show in Table 1 the data from Knobel’s study in support of our theoretical

results. Her study paints a more positive image of the future of watchdog reporting.

While not exactly the same as reporting accurate stories, watchdog reporting, which

includes investigative journalism and fact-checking, takes time. The table shows an

increasing share of accountability reporting among a sample of 9 US newspapers for

1991-2011. In particular, note how there is an increase in accountability reporting across

categories since 2006. Note that by 2006 the broadband penetration rate in the USA was
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already 20.23 broadband subscriptions per 100 people (See this link). The increase is

visible for both deep and simple accountability reporting, and across newspaper groups.

While the increase may be due to several reasons, her data together with the interviews

hint at a similar path to that which we outline in this paper.
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