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Abstract

We consider large population Tullock contests in which agents are divided into different types

according to their strategy cost function. A planner assigns type specific bias parameters to affect

the likelihood of success with the objective of maximizing the Nash equilibrium level of aggregate

strategy. We characterize such optimal bias parameters and identify conditions under which

those parameters are increasing or decreasing according to the cost parameters. The parameters

are biased in favor of high cost agents if the cost functions are strictly convex and the likelihood

of success is sufficiently responsive to strategy. We also identify conditions under which a planner

can truthfully implement the optimal parameters under incomplete information. In fact, under

such conditions, dominant strategy implementation is equivalent to Nash implementation in our

model. Hence, our mechanism double implements the optimal bias parameters.
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1 Introduction

Contests are used to model a variety of competitive situations where contestants exert effort (or

make a payment) to obtain a fixed prize. The rules of a contest are usually set by a contest

administrator or a planner who may, therefore, exercise discretion and set rules that favor or

handicap certain types of contestants. The effects of such contest rules have been explored in a

variety of settings like labour and promotion tournaments (Lazear and Rosen [23], Tsoulouhas et al.

[35]), lobbying and public procurement (Baye et al. [3], Fang [12], Epstein et al. [11]), affirmative

action (Fu [15], Franke [13]), sports tournaments (Runkel [31]) and in more general abstract models

(Fu and Lu [16], Franke et al. [14], Fu and Wu [17]). Studying optimal contest design rules to meet

specific objectives is, therefore, an interesting research goal given the variety of contexts in which

they may be applied.

Perhaps the most well known and most widely used model of a contest is that of the Tullock

contest (Tullock [36]). Tullock contests are characterized by a contest success function (CSF) that

determines the probability or share of players winning the prize as a functions of their strategy.

Such contests are mathematically tractable, which accounts for their popularity in applications.1

There are multiple ways in which a designer may seek to influence the rules of a Tullock contest.

These include applying different bias parameters in the CSF of different players, modifying players’

valuation for the reward or giving some players a head start by adding some extra effort to what

they are already exerting (Mealem and Nitzan [25]). Some other means of contest design are

influencing the structure of prizes (Moldovanu and Sela [24]), the choice of contestants (Baye et al.

[3]) and the number of stages in a contest (Fu and Lu [16]). Typically, the objective of the contest

designer is to maximize the aggregate strategy of the contestants. This is relevant in contexts

like employment tournaments or lobbying and public procurement where the planner wishes to

maximize rent–seeking behavior.2 Or, alternatively, the planner may regard the aggregate effort

by contestants as being of intrinsic importance as in certain models of affirmative action (Franke

[13]).

In this paper, we consider one particular way of designing Tullock contests in order to maximize

the aggregate strategy by agents; that of finding the optimal way to bias the CSFs of different

players. Dasgupta and Nti [10] and Nti [27] are two early papers who examined this problem; the

former considered a contest with n homogeneous players while the latter considered two–player

contests with possible heterogeneity. Franke et al. [14] and Fu and Wu [17] have considered more

general versions of this question by considering n player Tullock contests with heterogeneity among

contestants. A key difference between these two later papers is that Franke et al. [14] consider

contests with linearities in both the CSF and effort cost functions while Fu and Wu [17] allow

non–linearities in the CSF, although cost functions are still linear. An important insight of such

1See, for example, Corchón [7] and Congleton et al. [5] for reviews of such applications. See also Skarpedas [33]
and Clark and Riis [9] for axiomatic foundations of Tullock contests.

2In rent seeking models, the fixed prize is interpreted as the rent in the sense that exertion of effort by contestants
cannot increase the size of the prize but only affect the likelihood of success.
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models is that symmetric CSFs allow effort maximization only when players are homogeneous.

With heterogeneity in cost functions, or equivalently, in players’ valuation of the prize, CSFs need

to be biased in order to maximize total effort. The important question then is whether the bias

should be in favor of stronger players or weaker players. Our paper also addresses these questions

but with two important differences. First, our setting is that of a large population of agents

or, technically, when each contestant is of measure zero. Second, we also analyze the possibility

of implementing the optimal bias parameters in an environment of incomplete information. We

provide more careful justifications of both these features of our approach after the following brief

description of our model.

Models of optimal contest design, including Franke et al. [14] and Fu and Wu [17], are usually

under the restriction that the contestants continue to play the Nash equilibrium of the contest.3

Following this approach, we divide our large population of agents into a finite number of types,

with each type having a distinct strategy cost function. Agents with lower cost parameters are

interpreted as stronger contestants. The planner assigns type specific bias parameters and for each

such allocation of parameters, there exists a Nash equilibrium and an associated level of aggregate

strategy. The objective of the planner, and the problem we solve, is to assign that vector of bias

parameters that maximizes this equilibrium level of aggregate strategy. As we show, the solution

depends upon two important parameters of the model; r and γ. The former captures how responsive

the CSF is to the strategy choice of an agent while the latter determines the convexity of the cost

function. We then examine whether the optimal bias parameters favor or discriminate against

weaker contestants. The answer, as we discuss in detail in Section 4, again depends upon r and γ.

We note that it is also possible to have more general objective functions in which the planner cares

not only about the aggregate strategy but also, for example, the variance of the strategy choices

(Fu and Wu [17]). In this paper, though, we focus only on maximizing aggregate strategy.

But why analyze large population Tullock contests? Such large population contests have been

introduced by Lahkar and Sultana [21] in the context of a model of affirmative action. As described

in that paper, and as we also discuss in more detail later in this paper, it is technically more

convenient to analyze a large population contest than with a finite but large number of players.

Solving the model becomes easier and arguably more elegant in the large population setting. This

applies both to characterizing the Nash equilibrium of the contest as well as deriving the optimal

bias parameters that maximize the aggregate strategy. In fact, if there are non–linearities in the

CSF or strategy cost functions, and the cost functions are heterogeneous (or asymmetric), a finite

player Tullock contest cannot be analytically solved (Franke [13]). Hence, characterizing such

equilibrium or optimal bias parameters in n heterogeneous player models become a fairly complex

mathematical exercise (Franke et al. [14], Fu and Wu [17]). On the other hand, our approach

allows us to characterize Nash equilibrium directly by computing best responses and then finding

the optimal bias parameters through a straightforward maximization exercise. Intuitively, the

large population approach depends upon the fact that with players being of measure zero, changes

3See Section 6, Corchón [7] for a wider survey of this approach in the literature.
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in individual behavior do not affect aggregate behavior in society. This simplifies our analysis

considerably which allows us to go beyond fully linear Tullock contests, as in Franke et al. [14], or

Tullock contests with non–linearities only in the CSF. Instead, we can allow for asymmetries and

non–linearities in both the CSF and the cost function without any additional complications.4

Of course, in reality, no agent is ever of measure zero. Therefore, as in an idealized model of a

perfectly competitive market, our results will be valid only when the number of agents is sufficiently

large so that agents behave as if their individual actions will not affect aggregate behavior. Even

with this caveat, a large population model can provide important insights, particularly in the

contexts where number of participants involved are naturally large. This is true, for example, in

contexts like affirmative action where Tullock contests have been applied (Franke [13], Lahkar and

Sultana [21]). Optimal contest design can be applied to such situations to understand whether

leveling the playing field in favor of weaker contestants can maximize total effort. This is the

conventional wisdom but Fu and Wu [17] show that this wisdom holds only if the CSF is sufficiently

responsive to effort.5 We also obtain similar results but under a broader set of conditions since we

allow not just linear cost functions but also strictly convex ones. In fact, we find that if the cost

function is linear, which is the case that Fu and Wu [17] examines, then maximizing total effort

involves the complete reversal of leveling the field as all but the strongest contestants are eliminated

from the contest. This remains true when, along with linearity in cost functions, we also have a

linearity in the CSF, as in Franke et al. [14]. Franke et al.’s [14] and Fu and Wu’s [17] results are

not as extreme as these but our large population approach suggests that even in their finite player

models, as the number of participants become very large, the CSFs of weaker players will approach

zero. This, for all practical purposes, removes them from effective participation in the contest. In

fact, in our approach, leveling the field maximizes total effort only when the cost function is strictly

convex. Even then, the CSF needs to be responsive enough to strategy in the sense that r > 1 (see

footnote 5).

Recall that the planner seeks to optimize bias parameters over the set of Nash equilibria rather

than over all possible strategy distributions in the large population of agents. The objective of

the planner, therefore, is in this sense restricted. But if we accept this as an admissible objective,

as is the case in the contest literature, then we can also provide a deeper theoretical reason why

the large population setting may be more appropriate to examine the question of optimal bias

parameters in Tullock contests. We show that irrespective of the bias parameters, the aggregate

welfare of the contestants in the associated Nash equilibrium remains unchanged. This result

arises only in the large population context and not in finite player Tullock contests.6 With this

result, we can then interpret the objective to maximize aggregate strategy across all possible Nash

4In fact, it is the fully linear case which presents the most complications in a large population model and needs
to be analyzed as a special case, which we do.

5See Proposition 5 of Fu and Wu [17]. The responsiveness of the CSF to effort is measured by their parameter
r ∈ (0, 1]. If r = 1, then there is linearity in the CSF.

6Given non–linearities and asymmetries, the Nash equilibrium aggregate payoff in finite player Tullock contests
cannot be analytically established. But numerical estimates can show that changes in bias parameters can change
the equilibrium aggregate payoff.
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equilibrium as choosing the Pareto optimal Nash equilibrium. From a theoretical viewpoint, this

parsimonious characterization of the planner’s objective provides another justification for adopting

a large population perspective towards the problem.

Apart from the large population context, the other important feature of our paper is that it

also considers an incomplete information environment. In particular, we examine the question

whether the planner can implement the optimal bias parameter when he does not have complete

information about the agents. It is certainly plausible that the planner will lack such information,

which makes the problem a relevant one. We adopt a standard mechanism design approach to

this problem, appropriately extended to a large population model, and establish conditions under

which the optimal bias parameters can be truthfully implemented in dominant strategies.7 The

crucial determinant of our results is the parameter r. If r = 1, then the optimal contest is an

unbiased one due to which, no one can obtain a strategic advantage by misreporting type. In this

case, we show that the optimal bias parameters are truthfully implementable. But if r 6= 1, then

truthful implementation is possible only under certain conditions. An interesting conclusion is the

equivalence of dominant strategy implementation and Nash implementation in our large population

context, a feature that is rare in finite player models of mechanism design (Laffont and Maskin

[18]). In our model, this feature arises due to the measure zero characteristic of each agent.

Polischuk and Tonis [30] also apply a mechanism design approach to the optimal contest design

problem. They apply Bayesian implementation to find the optimal CSF for a planner. They find

that under certain type distributions, the optimal CSF has a logit form that has some similarities

with the Tullock CSF whereas for other type distributions, the optimal CSF is entirely different.

In one sense, their problem is more general since they do no confine themselves to a specific form

of CSFs like in Tullock contests. In contrast, we fix the general form of the CSF and try to find the

optimal bias parameters. Perhaps one benefit of our approach is that our results are independent

of the type distribution which, in practice, may not be known to the planner.

Ours is not the first paper to study large population contests. Polischuk and Tonis [30] them-

selves extend the optimal form of their CSFs to a continuum of agents as a limiting result of their

finite player model. As with the rest of their paper, the details differ greatly from our model. Cornes

and Hartley [8] derive certain limiting upper bounds on rent dissipation in Tullock contests with

a large number of contestants. As we discuss in Section 3, our large population approach yields a

precise estimate of such rent dissipation. In addition, using techniques developed in Olszewski and

Siegel [28], Olszewski and Siegel [29] characterize the prize structure that maximizes performance in

large population contests where prizes are awarded according to the rank order of the performances.

The main differences with our model are that their contest is not a Tullock contest and their focus

is on the optimal prize structure whereas ours is on the optimal bias parameters. Bodoh–Creed

and Hickman [2] also use large contests, which again differ from Tullock contests, to study college

admissions. Lahkar and Sultana [21], who introduce large population Tullock contests, analyze

two specific form of bias parameters; one being the standard unbiased contest and another that

7See Lahkar and Mukherjee [22] for an application of such an approach to a large population public goods game.
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incorporates a specific form of affirmative action. Our paper, therefore, may be regarded as the first

one to generalize large population Tullock contests by allowing for other forms of bias parameters.

The rest of the paper is as follows. Section 2 introduces large population Tullock contests with

general bias parameters. In Section 3, we characterize the unique Nash equilibrium in such contests

given any vector of type specific bias parameters. Section 4 derives the optimal bias parameters

given a set of bias parameters. In Section 5, we consider implementing the optimal bias parameters

in an environment of incomplete information. Finally, Section 6 concludes.

2 Large Population Tullock Contests

To describe a large population Tullock contest, we consider a continuum of agents of mass 1,

which we call a society. We assume that the society is divided into a finite set of populations

P = {1, 2, · · · , n}. We interpret each such population as a type of agent. The mass of population or

type p ∈ P is mp ∈ (0, 1) with
∑n

p=1mp = 1. We refer to this distribution m = (m1,m2, · · · ,mn)

as the type distribution. We endow every agent in the society with the common strategy set

S = [0,∞) = R+.

Due to the fact that the strategy set in our model is continuous, we will require certain measure

theoretic notions to formalize population and social behavior. Much of this notation will, however,

remain in the background during our analysis. LetM+
ν (S) be the space of finite positive measures

that impose a total mass of ν > 0 on S. A population state µp ∈M+
mp(S) is then the distribution of

strategies in population p. Thus, we interpret µp(A) ∈ [0,mp] as the mass of agents in population p

who play strategies in A ⊆ S. Thus, µp(S) = mp. Monomorphic population states are population

states in which every agent in a population play the same strategy. If every agent in population p

play xp ∈ S, then we denote the resulting monomorphic population state as mpδxp .
8

We denote by ∆ =
∏n
p=1M+

mp(S) the set of states in the entire society and describe a particular

µ = (µ1, · · · , µn) ∈ ∆, where µp ∈M+
mp(S) as a social state. We then define a population game to

be a mapping

F : S × P ×∆→ R (1)

such that Fx,p(µ) is the payoff of an agent in population p who uses strategy x ∈ S at the social

state µ.9 The Nash equilibrium of such a game is as follows.

Definition 2.1 A Nash equilibrium of a multipopulation game F as defined in (1) is a social state

µ∗ = (µ∗1, · · · , µ∗n) ∈ ∆ such that for all x ∈ S, all p ∈ P, if x lies in the support of µ∗p, then

Fx,p(µ
∗) ≥ Fy,p(µ∗), for all y ∈ S.

To define large population Tullock contests, we assume that the society of agents are contesting

over a resource of fixed value V > 0, which we refer to as the prize in the contest. If an agent of

8Here, δxp is the Dirac distribution with probability 1 on xp.
9There is perhaps a slight abuse of notation here. Given the description in (1), it would be technically more correct

to write the payoff as F (x, p, µ). But in our view, Fx,p(µ) appears more elegant and we stick to this convention.
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type p plays strategy x in the contest, then that agent incurs a cost of kpx
γ , where kp > 0 is a

type specific parameter and γ ≥ 1 is common for all types. Thus, agents with a higher kp incur a

higher cost of playing a strategy. We can interpret such agents as weaker or disadvantaged agents.

Without loss of generality, we assume k1 < k2 < · · · < kn. The condition γ ≥ 1 implies that the

cost function is convex with respect to strategy.

Tullock contests are characterized by a contest success function (CSF) which describes the

probability of success of an agent in the contest (if V is indivisible) or the share of the agent in the

prize (if V if is divisible). To derive the CSF in our model, suppose an agent plays strategy x. We

then introduce the mapping x → θpx
r and refer to as the strategy impact function. As the name

suggests, this function measures how impactful the strategy of an agent is in the contest. We refer

to θp as the bias parameter for type p and assume that θp ≥ 0 for all p ∈ P, with the inequality being

strict for at least one type.10 Thus, all agents of a particular type have the same bias parameter

but that parameter can differ across types. In our subsequent analysis, we will assume that θp is

under the control of a planner who can manipulate it to achieve certain prior objectives. Different

bias parameters will mean that the same strategy can have different levels of impact depending

upon the type. The common exponent r measures the responsiveness or elasticity of the impact

function to strategy.

For most of the paper, we also impose the condition that r ∈ (0, γ). This condition will ensure

that best responses are well defined and unique at every state. Notice that since γ ≥ 1, we allow

for the possibility that r > 1. Hence, the strategy impact function need not be concave. But if

γ = 1, then r < 1 in most of our analysis. This does leave out the one case that has been most

widely analyzed in the finite player contest literature, the one where both the impact function and

cost function are linear (see, for example, Franke et al. [14]). As an exception, therefore, we also

discuss the r = γ = 1 as a special case. But unless otherwise specified, we will have r ∈ (0, γ) and

γ ≥ 1. Using the strategy impact functions, we now define an aggregate measure

A(µ) =
∑
q∈P

∫
S
θqx

rµq(x)dx. (2)

Intuitively, A(µ) measures the aggregate impact of the strategies played by all agents in the soci-

ety.11 Hence, we call it the aggregate strategy impact. Since x ∈ [0,∞) and θq ≥ 0 for all q, we also

have A(µ) ∈ [0,∞).

We now define the contest success function (CSF) in our model. In finite player Tullock contests,

the CSF is a fraction between 0 and 1 that measures the probability of success or the share obtained

by an agent in the contest.12 Thus, suppose there had been N players and player i plays strategy

i and has bias parameter θi. Then, the CSF for player i would be
θix

r
i∑N

j=1 θjx
r
j

if
∑N

j=1 x
r
j 6= 0 and 1

N

if
∑N

j=1 θjx
r
j = 0. The latter fraction reflects the fact that

∑N
j=1 θjx

r
j = 0 only if θix

r
i = 0 for every

10If θp = 0 for all types, then the problem becomes trivial. All agents will find it optimal to play x = 0 in
equilibrium.

11If r = 1 and θq = 1 for all q ∈ P, then (2) would simply be aggregate strategy in the society.
12See, for example, Corchón [7].
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i, in which case every player shares the prize equally. The appropriate extension of such a CSF to

our large population Tullock contest is then
θpxr

A(µ) if A(µ) 6= 0,

1 if A(µ) = 0,
(3)

where A(µ) is as defined in (2).

To understand (3), let us first consider A(µ) 6= 0. In that case, the CSF measures how impactful

an agent’s strategy is relative to the aggregate strategy impact. But unlike the finite player CSF,

the CSF here is not a probability or share with value always between 0 and 1. Instead, it is to be

interpreted as a density function that measures the likelihood of success or likely share of an agent.

Hence, like any density function, it’s value can exceed 1. If we integrate the CSF over all agents of

a population p, i.e
∫
p∈P

θpxr

A(µ)µp(dx) ∈ [0, 1], we obtain the probability of a type p agent winning the

contest or the aggregate share of all agents in that population.13 If A(µ) = 0, then the density 1

implies the uniform distribution, which is the large population analogue of every agent getting an

equal share 1
N in the finite player contest. It is evident that the CSF is homogeneous of degree zero.

Therefore, bias parameters are uniquely defined only up to a multiplicative constant. If θp = 1 for

all p ∈ P (or, equivalently, all bias parameters are equal), then (3) would be an unbiased CSF where

equal effort would lead to equal share or probability of success. This is the case in the standard

Tullock contest which is usually analyzed.

The CSF (3) and the cost functions described above allow us to define a large population Tullock

contest as a population game in which the payoff of an agent of type p who plays strategy x is

Fx,p(µ) =


θpxr

A(µ)V − kpx
γ if A(µ) 6= 0,

V − kpxγ if A(µ) = 0.
(4)

Thus, in each case, we multiply the “share” of an agent as described by the CSF in (3) with V

to measure the benefit of the agent. Subtracting the cost kpx
γ gives us the payoff (4). Depending

upon context, x can be interpreted as effort or payment or some other variable. Here, we will

continue using the neutral term “strategy”.

The large population contest F defined in (4) is an example of an aggregative game (Corchón

[6, 7]). This is in the sense that payoffs in F depend upon the own strategy of an agent and

an aggregate measure based on individual strategies which, in this case, is A(µ). This notion of

aggregative games has been extended to large populations by Lahkar [19] and Cheung and Lahkar

[4] for games like Cournot competition and tragedy of the commons. For these games, the relevant

aggregate variable is aggregate strategy (see footnote 11). Lahkar and Sultana [21] also consider

large population Tullock contests but for two specific forms of θp. One is where θp = 1 for all types

13If every agent of every population q plays the same strategy αq, then the aggregate share of population p would

be
mpθpα

r
p∑

q∈P mqθqα
r
q

. The “share” of each player in population p would then be 1
mp

mpθpα
r
p∑

q∈P mqθqα
r
q

=
θpα

r
p∑

q∈P mqθqα
r
q

, which

is the CSF in this case.
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and which, therefore, represents a standard Tullock contest. The other is where θp = k
r
γ
p and is

used to model a contest with affirmative action. The present paper is a generalization since it does

not impose any restrictions on the values that the bias parameters can take except that they be

positive. Another difference is that we allow the strategy 0 whereas in Lahkar and Sultana [21],

the lowest strategy is x > 0. The presence of x = 0 is important in our model as certain types

of agents may choose not to participate in the contest at the equilibrium under the optimal bias

parameters.

The contest F is also a direct extension of finite player Tullock contests with biased CSFs (see,

for example, Cornes and Hartley [8], Franke et al. [14], Fu and Wu [17]). By allowing for bias

parameters that differ according to player or type, such contests incorporate asymmetries in the

CSF. Indeed, (4) has asymmetries not only in the CSF but also in the cost functions. In addition,

(4) also allows for non–linearities in the strategy impact and cost functions. In fact, the large

population framework is particularly useful in dealing with such asymmetries and non–linearities.

As noted in, for example, Franke [13], finite player Tullock contests with asymmetries cannot be

solved in closed form unless the strategy impact and cost functions are linear. But as we will see,

such asymmetries and non–linearities can be conveniently handled in the large population case.

We also note that Tullock contests can be analyzed equivalently by allowing cost functions to be

homogeneous and incorporating heterogeneity in players’ valuation of the prize (Fu and Wu [17]).

Thus, in (4), such a strategically equivalent formulation will mean all agents have the same cost

function xγ but type specific valuations V
kp

.

3 Nash Equilibrium

We now characterize Nash equilibria of our model. Recall the definition of a Nash equilibrium in

large population games from Definition 2.1. First, we show that the state where every agent plays

the strategy 0 is a Nash equilibrium. For reasons quite evident, we will argue that this is not an

interesting equilibrium. Hence, in the rest of this section, we will focus on an alternative Nash

equilibrium. We denote the state where all players play 0 as µ0 = (m1δ0,m2δ0, · · · ,mnδ0). The

proof of the result, stated below, is in the Appendix. It relies on the fact that a deviation by a

single agent will not change the social state and, hence, the aggregate measure A(µ).

Proposition 3.1 The state µ0 defined above is a Nash equilibrium of the contest F defined by (4).

In finite player Tullock contests, the outcome where all agents play 0 is not a Nash equilibrium.

At this outcome, all agents would have to divide the prize equally. But a deviation by a single

agent to ε > 0 would give that agent the entire prize at a marginally higher cost. In the large

population case, µ0 is a Nash equilibrium only due to the technical reason that a deviation by a

single agent does not change the social state and, hence, payoffs. But as we will see below, µ0 is not

stable with respect to a deviation by any positive measure, howsoever small, of agents. This rules

out this equilibrium as a very compelling solution to our model. Moreover, with all agents playing
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zero, µ0 is also not very relevant to us from the point of view of maximizing aggregate strategy.

Hence, we now seek an alternative equilibrium in our model.

Our first step is to argue that any other Nash equilibrium of F , it must be that A(µ) > 0,

where A(µ) is as defined in (2). Obviously, if µ = µ0, then A(µ) = 0. Is it possible to have a

Nash equilibrium µ 6= µ0 such that A(µ) = 0? No. At any Nash equilibrium, if θq = 0, then every

agent in such a population q must be playing x = 0. In fact, by (4), x = 0 is the strictly dominant

strategy for any such agent with θq = 0 irrespective of the value of A(µ). Therefore, to have a Nash

equilibrium with A(µ) = 0, it must be that every agent of every type p such that θp > 0 must be

playing x = 0. But this brings us back to µ0. Therefore, the only Nash equilibrium with A(µ) = 0

is µ = µ0. Any other Nash equilibrium must have A(µ) > 0.

To characterize such a Nash equilibrium, we denote A(µ) as α ∈ (0,∞) and write the payoff

function (4) as
θpxrV
α − kpxγ . Recall our general assumptions that γ ≥ 1 and r ∈ (0, γ). These

assumptions imply that this payoff function is strictly quasiconcave with respect to x and, therefore,

has a unique maximizer in S.14 This maximizer is the unique best response of a type p agent when

the aggregate measure A(µ) = α. We denote this best response as bp(α) ∈ (0,∞). Maximizing (4)

with respect to x when α = A(µ) > 0, we obtain its form

bp(α) =

(
θpV r

kpαγ

) 1
γ−r

. (5)

An important feature of (5) is the ease with which we are able to derive it. This is because agents

are of measure zero. Therefore, the aggregate variable α is not affected by the actions of a single

agent and, hence, effectively becomes a constant. Differentiating the payoff function and obtaining

(5) then becomes simple.

Under our general assumption that γ > r, bp(α) is strictly declining in α. Further, while

bp(α) = 0 if θp = 0, bp(α) > 0 if θp > 0. Thus, for all types with a positive bias parameter, the

best response is always strictly positive at any α > 0. We note that even when α > 0, bp(α) is

well–defined only if γ 6= r. Thus, in the special case of r = γ = 1, we cannot describe best responses

as in (5). Intuitively, this is because in that case, an agent’s payoff becomes
(
θpV
α − kp

)
x. With

this linear payoff, there cannot be a unique best response in (0,∞).15 As we explain later in Section

3.1, this has implications for the structure of Nash equilibria in the model.

We can also use (5) to explain why the Nash equilibrium µ0 characterized in Proposition 3.1 is

unstable. Recall that at that equilibrium, every agent plays 0 and, hence, α = A(µ) = 0. Suppose

now that there is a slight displacement of α from 0 to some positive value arbitrarily close to zero

caused by a very small but positive measure of agents playing strategies different from 0. The best

response of all players of types p with θp > 0 then becomes arbitrarily high, as can be seen from (5).

Thus, the Nash equilibrium µ0 gets dislodged by any positive measure ε of agents playing x > 0.

14If r ∈ (0, 1], then the payoff function is strictly concave with respect to x.
15If

θpV

α
< kp, the best response is 0. If

θpV

α
> kp, the best response is not well defined. If

θpV

α
= kp, then any

strategy in [0,∞) is a best response.

9



This renders µ0 unstable. Moreover, µ0 is also not robust against small changes in the strategy set.

Suppose the strategy set is [x,∞), where x is positive but arbitrarily close to zero. Then, the state

where all agents play x will not be a Nash equilibrium. To see this, note from (5) that bp(x) > x

for all agents of types p with θp > 0 when x is positive but arbitrarily small.

Continuing with α > 0, we note from (5) that different social states µ which generate the same

aggregate measure α = A(µ) will also generate the same best responses. Further, bp(α) is identical

for all agents of a particular type p but differs from agents of other types. Hence, if all agents in all

populations play their respective best responses, then it will generate a social state in which every

population state is monomorphic. We denote such a social state as B(µ) and describe it formally

as

B(µ) =
(
m1δb1(α),m2δb2(α), · · · ,mnδbn(α)

)
, (6)

where α = A(µ). Thus, every agent in population p in (6) is playing the unique best response bp(α)

for that population at the social state µ.

We now apply (2) to (6) and use (5) to calculate the aggregate strategy impact at the social

state B(µ). This is

A(B(µ)) =
∑
p∈P

∫
S
θpx

rmpδbp(α)(dx)

=
∑
p∈P

mpθpb
r
p(α)

=

(
V r

αγ

) r
γ−r ∑

p∈P
mpk

−r
γ−r
p θ

γ
γ−r
p . (7)

Notice that A(B(µ)) is strictly declining in α which, in turn, follows from the fact that bp(α)

is itself strictly declining in α. Using (7), we can now characterize such Nash equilibria of the

Tullock contest F where α > 0. First, we establish the following lemma. The proof, which is in the

Appendix, follows from a straightforward calculation and the fact that A(B(µ)) is strictly declining

in α.

Lemma 3.2 Let γ ≥ 1 and r ∈ (0, γ). Consider the equation

A(B(µ)) = α, (8)

where A(B(µ)) is as defined in (7). This equation has a unique solution

α∗ =

(
V r

γ

) r
γ

∑
q∈P

mqk
−r
γ−r
q θ

γ
γ−r
q


γ−r
γ

. (9)

Our assumption that θp > 0 for at least one type p ∈ P implies that α∗ > 0. The following

proposition now identifies the set of Nash equilibria of the contest F with A(µ) > 0. In fact, we

10



show that F has only one Nash equilibrium that satisfies this condition, the characterization of

which follows from Lemma 3.2. The proof of the result is in the Appendix.

Proposition 3.3 Consider µ ∈ ∆ such that α = A(µ) > 0 so that bp(α) as characterized in (5)

is well defined. In this set of social states, the Tullock contest F defined by (4) with γ ≥ 1 and

r ∈ (0, γ) has a unique Nash equilibrium

µ∗ =
(
m1δb1(α∗),m2δb2(α∗), · · · ,mnδbn(α∗)

)
, (10)

where α∗ is as characterized in (9) and

bp(α
∗) =

(
V r

γ

) 1
γ

 1∑
q∈P mqk

−r
γ−r
q θ

γ
γ−r
q

 1
γ (

θp
kp

) 1
γ−r

. (11)

Therefore, at this his Nash equilibrium, every agent in population p plays the strategy α∗p = bp(α
∗)

and A(µ∗) = α∗, where A(µ) is as defined in (2).

The proof of this result relies on the fact that (8) has a unique solution in F . Intuitively, at

that solution α∗, (8) implies that agents best responding to the existing social state leaves the

aggregate value α∗ unchanged. This conclusion is reminiscent of a fixed point result but, as the

proof of Lemma 3.2 shows, follows from much simpler arguments due to the aggregative nature

of the game. Thus, when the aggregate value is α∗, (5) implies every agent in population p plays

bp(α
∗) whereupon, as direct calculations show, the aggregate value remains at α∗. But if every

type p agent plays bp(α
∗), µ∗p = mpδbp(α∗) or µ∗ = B(µ∗) so that µ∗ is a Nash equilibrium. Since

(8) has a unique solution, we obtain the unique Nash equilibrium µ∗ with the characteristic that

A(µ∗) > 0.

Propositions 3.1 and 3.3 complete the characterization of Nash equilibria of the Tullock contest

F defined in (4). We obtain two Nash equilibria. Of these, it is µ∗ characterized in Proposition 3.3

that is of interest to us. At this equilibrium, as can be seen from (11), the planner can ensure that

agents play positive strategies by making the bias parameters positive. Hence, it is this equilibrium

that is relevant from the point of view of maximizing aggregate strategy. Moreover, µ∗ is also stable

in the sense that deviations by a positive measure of agents will not dislodge it. Suppose α > α∗.

The fact that bp(α) is strictly declining in α implies that all agents will play a lower strategy than

at α∗, thereby reducing the aggregate value (2) towards α∗. The reverse happens if α < α∗.

The characterization of µ∗ in Proposition 3.3 has relied entirely on the fact that F is an aggrega-

tive game and is a generalization of the technique used in Lahkar [20], where A(µ) is simply the

aggregate strategy (see footnote 11), to broader notions of aggregation. We should note that this

particular method is not the only one to characterize Nash equilibria of large population Tullock

contests. For example, Lahkar and Sultana [21] apply the technique of large population potential

games (Sandholm [32]) for this purpose. But the present method is more general as it can also

11



handle the zero strategy.16

We can also relate Proposition 3.3 to results in Franke [13] and Franke et al. [14]. Those

papers consider finite–player Tullock contest models with biased CSFs and characterize the Nash

equilibrium of such contests. Due to the finite player context, these papers require strategy impact

and cost functions to be linear in order to derive closed form solutions. Even then, the presence of

asymmetries in these functions render equilibrium characterization a challenging task. Our large

population framework, on the other hand, can accommodate asymmetries and non–linearities very

parsimoniously and without encountering any additional complications. The reason is that agents

are of measure zero which, as mentioned earlier, greatly simplifies the task of calculating best

responses and deriving the Nash equilibrium. Of course, in any real world interaction, the number

of agents are always finite. Therefore, as with any result involving a continuum of agents, the

caveat remains that these conclusions are valid only in a limiting sense when the number of agents

involved are sufficiently large.

3.1 Nash Equilibria: r = γ = 1

Proposition 3.3 excluded our special case r = γ = 1. The reason, as we now discuss, is that the

structure of Nash equilibria in this case is completely different. Recall that if r = γ = 1 and

α = A(µ) > 0, then the payoff becomes
(
θpV
α − kp

)
x. Further, the best response (5) is not well–

defined in this case. Hence, we cannot apply the methodology of Proposition 3.3 to this case. Notice

though that in any Nash equilibrium under this case, payoff can only be zero.17 Therefore, in any

equilibrium, it must be that either x = 0 for an agent or if x > 0, then V
α =

kp
θp

. Hence, any state

µ is a Nash equilibrium if V
α =

kp
θp

for all p with θp > 0 and α = A(µ) =
∑

p:θp>0

∫
S θpxµp(dx) > 0.

If θp = 0, then the equilibrium strategy will be zero for all agents in that population.

We then no longer have a unique equilibrium with A(µ) > 0. Instead, given the linearity of

A(µ), we will have a convex set of such equilibria. For example, one possibility is that θp = kp for all

p ∈ P. In that case, any µ such that A(µ) =
∑

p∈P
∫
S kpxµp(dx) = V will be a Nash equilibrium.

Alternatively, we can have θ1 = 1 and θp ≤ 1 for all p > 1, with all agents from p > 1 playing 0.

In that case, any µ with µ1 such that
∫
S xµ1(dx) = V

k1
and µp = mpδ0 for all p > 1 will be a Nash

equilibrium. To see this, note that at such a state, α = A(µ) =
∫
S θ1xµ1(dx) = V

k1
. Then, the

payoff of type 1 players is zero from any strategy. For players of types p > 1, V
α = k1 < kp ≤ kp

θp
if

θp ∈ (0, 1], which makes 0 their best response.

An important feature of the Nash equilibrium of finite player Tullock contests is the possibility

that agents with high cost parameters do not participate in the contest (Franke [13], Franke et

al. [14]). Such players exert zero effort in equilibrium. In our model, if r < γ, then this can

happen only if θp = 0 as can be seen from (11) in Proposition 3.3. But if r = γ = 1, then such

16As we discuss in Lahkar and Sultana [21], the potential function cannot be defined if A(µ) = 0. To prevent that,
the lowest strategy in that paper is x > 0. In such a model, we will have a unique equilibrium corresponding to the
one in Proposition 3.3 here. As noted earlier, all agents playing x will not be a Nash equilibrium.

17Note that θp, V , α and kp are constants. Hence, if equilibrium payoff is positive, the concerned agent can deviate
to a higher x and increase payoff.
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non–participation is possible even with θp > 0. Thus, as we saw in the last paragraph, if θ1 = 1

and θp ≤ 1 for all p > 1, then we have a convex set of Nash equilibria where all agents of type

p > 1 play 0. Thus, if an agent does not have the lowest cost parameter k1, then that agent does

not participate in the contest. It is even possible that not all agents of type 1 participate as all we

require is
∫
S xµ1(dx) = V

k1
for µ to be a Nash equilibrium.

4 Optimal Bias Parameters

The Nash equilibrium strategies characterized in Proposition 3.3 depends upon the vector of bias

parameters θ = (θ1, θ2, · · · , θn). Where do these bias parameters come from? Following the ap-

proach of the mechanism design literature, we now assume that there exists a planner who chooses

these parameters in order to achieve certain prior objective. Before discussing that objective in

detail, we introduce some notational changes to indicate the dependence of the Nash equilibrium

on θ. Thus, we denote the scalar α∗ in (9) as α∗(θ), the Nash equilibrium µ∗ in (10) as µ∗(θ)

and the equilibrium strategy α∗p in (11) as α∗p(θ). Using these notations, we can now discuss the

planner’s objective that will determine the choice of the bias parameters. The following corollary

calculates the key variable that we require for this purpose. Before stating the corollary, we note

that we are once again focusing on the case r < γ and γ ≥ 1, which generates the Nash equilibrium

in Proposition 3.3. We will consider the special case r = γ = 1 separately in Section 4.1.

Corollary 4.1 Consider the Nash equilibrium µ∗(θ) characterized in Proposition 3.3. The aggre-

gate strategy at this Nash equilibrium is

AS(µ∗(θ)) =

(
V r

γ

) 1
γ

 1∑
q∈P mqk

−r
γ−r
q θ

γ
γ−r
q

 1
γ ∑
l∈P

ml

(
θl
kl

) 1
γ−r

. (12)

Proof. The aggregate strategy at a social state µ is simply (2) with r = 1. Hence, (10) implies

that

AS(µ∗(θ)) =
∑
l∈P

∫
S
xµ∗l (θ)(dx) =

∑
l∈P

mlα
∗
l (θ).

The result then follows from the form of α∗l (θ) in (11). �

Recall our postulate that the bias parameters are chosen by a planner to meet some prior

objective. We now assume that the objective of the planner is to maximize the aggregate equi-

librium strategy AS(µ∗(θ)) characterized in (12). He, therefore, chooses the bias parameters

θ = (θ1, · · · , θn) accordingly.

In finite player contests, such an objective has been justified as the planner seeking to maximize

total payment or effort in contexts like lobbying, labor market tournaments or a sports tournament

(Nti [27]). Or, having benevolent concerns, the planner may wish to level the field in favor of
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weaker contestants and determine conditions when such leveling will maximize total effort (Fu and

Wu [17]). Such motives remain valid in our large population contest particularly if the number of

contestants are significantly large. But in addition, the large population context also allows us to

justify the planner’s objective on the basis of the more abstract notion of maximizing total welfare.

To present this argument, we introduce the notion of the aggregate payoff. In a population game

F as defined in (1), the aggregate payoff at a social state µ is F̄ (µ) =
∑

p∈P
∫
S Fx,p(µ)µp(dx). We

now establish the following result on the Nash equilibrium level of aggregate payoff in our model.

The proof, which follows from direct calculation, is in the Appendix.

Proposition 4.2 Consider the Tullock contest F defined by (4) for γ ≥ 1 and r ∈ (0, γ). Suppose

θp ≥ 0 for all p ∈ P and θp > 0 for at least one p ∈ P. Then, the aggregate payoff in F at the Nash

equilibrium µ∗(θ) characterized in Proposition 3.3 is

F̄ (µ∗(θ)) = V

(
1− r

γ

)
. (13)

Before elaborating the planner’s objective, we briefly describe the implications of Proposition

4.2, which is an important result. It shows that aggregate payoff of the contestants at the Nash

equilibrium µ∗(θ) is independent of the vector θ of the bias parameters or, for that matter, even

the cost parameters kp and the type distribution m. The equilibrium level of aggregate payoff

depends only upon V and the ratio r
γ < 1. Of course, the individual payoff of agents of different

types will depend upon the choice of the bias parameters.18 But that is a distributional issue. The

aggregate welfare of agents, as measured by the aggregate payoff (13), itself is unchanged by the

bias parameters, cost parameters or the type distribution.

To understand Proposition 4.2, note that aggregate payoff F̄ (µ) =
∑

p∈P
∫
S Fx,p(µ)µp(dx) in

our contest (4) takes the form V −
∑

p

∫
S kpx

γµp(dx), which is simply the fixed value minus the

aggregate strategy cost. At the Nash equilibrium µ∗(θ), µp = mpδα∗p(θ) where α∗p(θ) is as defined in

(11). Hence, the aggregate cost is
∑

pmpkp(α
∗
p(θ))

γ = V r
γ . Thus, the aggregate cost at equilibrium

is the same irrespective of cost or bias parameters and the type distribution. Hence, at any such

Nash equilibrium µ∗(θ), the aggregate payoff is V − V r
γ = V

(
1− r

γ

)
. In some ways, this result

is reminiscent of the revenue equivalence theorem from auction theory. All agents have the same

valuation V . Therefore, every contest, irrespective of the bias parameters, is equally efficient. A

revenue equivalence type argument suggests that the expenditure of the contestants, which is the

aggregate cost in equilibrium, will also be the same. Hence, the aggregate payoff is also the same.

In rent–seeking models of Tullock contest, there is the well–known concept of rent dissipation

(Nitzan [26]). This is that part of the original value V that gets wasted in equilibrium due to

unproductive effort exertion measured as a proportion of V . In our context, we can use (13) to

calculate rent dissipation as
V−V

(
1− r

γ

)
V = r

γ . Once again, we notice the importance of the ratio r
γ

in our large population Tullock contests. This calculation generalizes the findings in Lahkar and

18See (30) in the Appendix for the value of individual equilibrium payoffs.
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Sultana to an arbitrary choice of bias parameters. In finite player Tullock contests, rent dissipation

(or aggregate equilibrium payoff) cannot be explicitly calculated unless the contest is homogeneous.

Cornes and Hartley [8] does derive an upper bound on rent dissipation in heterogeneous contests.

They consider N−player unbiased Tullock contests in which the payoff of player i is yi∑N
j=1 yj

V −kiyγi ,

where yj ∈ [0,∞) is the strategy of player j and γ > 1. Note that r = 1 in this payoff function.

Theorem 5 in Cornes and Hartley [8] then derive the upper bound 1
γ
N−1
N → 1

γ as N → ∞. This

limiting value is, of course, the rent dissipation in our model had r = 1. But ours is an exact value

and not just an upper bound. Moreover, it holds for biased contests as well and not just unbiased

ones. The reason our large population approach works is because it is tractable enough to provide

closed form expressions of Nash equilibrium and equilibrium payoffs.19

We now return to planner’s objective. The planner’s welfare is the aggregate strategy AS(µ∗(θ))

expended by the agents (in the form of, for example, total effort or total payment). The combined

welfare of the planner and the contestants at the Nash equilibrium µ∗(θ) is, therefore, AS(µ∗(θ)) +

V
(

1− r
γ

)
. By seeking to maximize AS(µ∗(θ)), the planner also maximizes this combined welfare.

Therefore, the objective of planner can be equivalently interpreted as implementing the Pareto

optimal Nash equilibrium by choosing the appropriate vector of bias parameters.

Of course, the planner could have had other objectives as well. For example, he could have

tried to achieve a social state that maximizes welfare across all social states rather than all possible

Nash equilibria. One reason why it may be justifiable to focus on implementing the optimal Nash

equilibrium is that the planner does not wish to or does not have the capability to interfere too

much with the natural outcome in a society, which is, of course, a Nash equilibrium. Another

possibility is that instead of leaving agents with an assured aggregate welfare of V
(

1− r
γ

)
, the

planner could have sought to drive that to zero and extract the entire surplus for himself. The

reason why the planner doesn’t is that he may be benevolent enough to allow agents to retain the

aggregate welfare that would have resulted through their natural interaction, which is the Nash

equilibrium level of welfare. Without disturbing that welfare, the planner wishes to maximize his

own benefit. By itself, this is an interesting problem to study and the reason why it is even feasible

to consider it is our particular context of large population contests which ensures a constant Nash

equilibrium level of aggregate welfare.

We now characterize the bias parameters that does achieve the planner’s objective. Since bias

parameters are unique only upto a multiplicative constant, we normalize θ1 = 1 in all our subsequent

results. Thus, given our assumption that k1 < k2 < · · · < kn, agents with the lowest cost parameter

have the bias parameter 1. The following proposition states the relevant result. The proof is in the

Appendix. Notice that this result is valid only for γ > 1. We consider γ = 1 in a later corollary.

Proposition 4.3 Consider the aggregate equilibrium strategy AS(µ∗(θ)) calculated in (12). Nor-

malize θ1 = 1 and suppose that γ > 1, r ∈ (0, γ) . The vector of bias parameters that maximize

19This calculation of rent dissipation is only valid for the Nash equilibrium µ∗(θ). For the other Nash equilibrium
µ0 characterized in Proposition 3.1, aggregate payoff is V as all agents receive V . Hence, rent dissipation is 0. For
reasons already explained, we are discounting that equilibrium. Since rent dissipation is zero, µ0 is also the efficient
state of the model in the sense of maximizing aggregate payoff.
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AS(µ∗(θ)) is θ∗ = (θ∗1, θ
∗
2, · · · , θ∗n), where

θ∗1 = 1; θ∗p =

(
k1
kp

) 1−r
γ−1

, for p ∈ {2, · · · , n}. (14)

The aggregate strategy (12) at the resulting Nash equilibrium is then

AS(µ∗(θ∗)) =

(
V r

γ

) 1
γ

∑
p∈P mpk

−1
γ−1
p(∑

p∈P mpk
−1
γ−1
p

) 1
γ

. (15)

We refer to the Tullock contest (4) generated by applying the optimal bias parameters (14) as

the optimal Tullock contest. Notice that θ∗p is not well–defined for p > 1 if γ = 1. This is the reason

we excluded this case here. Before taking up that case, we briefly discuss the implications of this

result.

We can distinguish three cases in Proposition 4.3. First, if r = 1, then irrespective of γ, θ∗p = 1

for all p ∈ P. In that case, the optimal Tullock contest is the standard Tullock contest where there

is no bias and all agents’ strategies are weighed equally. Second, if r < 1, then the optimal bias

parameters are strictly decreasing in kp. Hence, θ∗1 > θ∗2 > · · · > θ∗n. In this case, the contest

gets biased in favor of the stronger types, i.e. the types with the lower cost parameters. Finally, if

r ∈ (1, γ), then θ∗1 < θ∗2 < · · · < θ∗n. The optimal bias parameters increase as kp increases. Thus,

the contest gets biased in favor of weaker contestants. A broad conclusion that, therefore, arises is

that if r 6= 1, then the optimal Tullock contest is not the standard one. The optimal contest would

incorporate bias in favor of some types of agents. We also note that in all three cases, the optimal

biases are positive for all agents and, therefore, by (11), all agents participate in the contest by

playing positive strategies.

The intuition behind why the order of the optimal bias parameters depends upon r is as follows.

Recall that r measures the responsiveness of the impact of a strategy to the strategy. When r < 1,

this responsiveness is low. In that case, inducing high cost agents to play a high strategy would

require biasing the contest too much in their favor, which would then cause low cost agents to

reduce their strategy inordinately. Instead, it is optimal to create a bias in favor of low cost agents

and encourage them to increase their strategy even though it ends up reducing the equilibrium

strategy of high cost agents as compared to an unbiased contest. The opposite happens when r > 1

so that the impact of a strategy is high. Low cost agents then anyway have a natural inclination

to play a high strategy. Therefore, it becomes optimal to create incentives for high cost agents by

biasing the contest in their favor. In the borderline case of r = 1, no such incentives are required

for any agent leading to an unbiased contest.

Proposition 4.3 has implications for when leveling the field can increase aggregate effort. Level-

ing the field means biasing the contest in favor of weaker contestants which, in our context, means

agents with higher cost parameters kp. It is natural that any such leveling will increase effort by
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high cost agents but lower that of low cost agents. Whether the net effect is positive or negative is

a concern in models of affirmative action in Tullock contests (Franke [13], Lahkar and Sultana [21]).

Our result shows that total effort will increase if if two conditions are satisfied; the cost function is

strictly convex (γ > 1) and effort is sufficiently impactful (r ∈ (1, γ)). Only then will the increase

in effort by high cost agents be sufficient to compensate for the decline in effort by low cost agents.

We now extend Proposition 4.3 to γ = 1 in the following corollary. The proof is in the Appendix.

Corollary 4.4 Suppose γ = 1 and r < 1. Normalize θ1 = 1. Then, the aggregate equilibrium

strategy AS(µ∗(θ)) calculated in (12) is maximized at

θ∗1 = 1; θ∗p = 0, for p ∈ {2, · · · , n}. (16)

Intuitively, Corollary 4.4 follows from taking the limit of θ∗p in (14) as γ → 1. More formal

arguments rely on the fact that the objective function (12) is continuous in γ ≥ 1 when r < 1.

Hence, by Berge’s maximum theorem, the bias parameters that maximize (12) are continuous in γ.

In Proposition 4.3, all bias parameters are strictly positive and, therefore, all agents play strictly

positive strategies at the corresponding Nash equilibrium. In contrast, in Corollary 4.4, the bias

parameters for all types except the lowest cost ones zero. At such bias parameters, their equilibrium

strategy is zero and they will not participate in the contest. Only type 1 agents will play a positive

strategy and, hence, participate. We try to provide some intuition of this finding in Section 4.1

where we discuss optimal contests when r = γ = 1. There too, we will find that aggregate strategy

maximization requires participation to be restricted to type 1 agents.

We can compare Corollary 4.4 to results in Fu and Wu [17] who characterize the aggregate

strategy (total effort) maximizing bias parameters in a finite player Tullock contest with r ≤ 1 and

γ = 1. Proposition 4 of Fu and Wu [17] identifies the optimal bias parameters and shows that even

in the finite player context, players with a low valuation or, equivalently, with a high cost remain

inactive once the optimal bias parameters are applied. The bias parameters of such inactive agents

are fixed at zero. Our result that θ∗p = 0 for all p > 1 is similar. Proposition 5 of that paper shows

that if r is close to 1, then the optimal bias parameters favour the disadvantaged players among the

ones who are active. But if r is sufficiently below 1, then the optimal parameters are biased in favor

of the stronger active players. In contrast, in the large population case, all active agents belong to

the lowest cost type and are, hence, identical. So they all have the same bias parameter for any

r < 1. Intuitively, this is because in the large population case, no matter how small the mass m1 of

type 1 is, the number of players of that type are still sufficiently large that even after eliminating

all other players, the contest designer can generate sufficient competition within type 1 contestants

so as to maximize aggregate strategy. This also suggests that even in finite player models like in

Fu and Wu [17], as the number of contestants increase, the optimal bias parameters of all but the

strongest players will either be zero or close to zero effectively rendering them non–participants in

the contest.
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4.1 Optimal Bias: r = γ = 1

Recall our discussion of Nash equilibria of our model in Section 3.1 when r = γ = 1. We concluded

that there exists a convex set of equilibria such that A(µ) > 0. We now argue that in any such

equilibria, aggregate strategy is maximized when only type 1 agents exert positive effort.

Let µ be a Nash equilibrium with A(µ) > 0 such that only agents in population 1 play a

positive strategy at that equilibrium.20 Recall from Section 3.1 that θ1 = 1 and θp ≤ 1 for p > 1

will induce such an equilibrium. Also recall that at such an equilibrium, payoffs are zero for all

agents. Hence, from the payoff function
(
θpV
α − kp

)
x = 0, we conclude that if x > 0 and θ1 = 1,

V
α = k1. Moreover, with x = 0 for all p > 1 and θ1 = 1, α = A(µ) =

∫
S xµ1(dx) is the aggregate

strategy. Therefore, the aggregate strategy in a Nash equilibrium where only type 1 agents play a

positive strategy is V
k1

.

Now consider another equilibrium µ̂ with α = A(µ̂) > 0 where agents from multiple populations,

possibly including but not limited to population 1, are playing a positive strategy. The zero

equilibrium payoff condition then implies that for all types p where a positive measure of agents

play x > 0 in equilibrium, V
α =

kp
θp

. Normalizing θ1 = 1, we then obtain θp =
kp
k1

for all such p > 1.

This also implies V
α = k1 or

V

k1
= α

⇒ V

k1
=
∑
p∈P

∫
S
θpxµ̂p(dx)

⇒ V =
∑
p∈P

∫
S
kpxµ̂p(dx). (17)

The last equality in (17) follows from θp =
kp
k1

. But because k1 < k2 < · · · < kn, k1
∑

p∈P
∫
S xµ̂p(dx) <∑

p∈P
∫
S kpxµ̂p(dx). Hence, (17) implies

V > k1
∑
p∈P

∫
S
xµ̂p(dx)

⇒ V

k1
>
∑
p∈P

∫
S
xµ̂p(dx). (18)

But as we argued in previous paragraph, the LHS of (18) is the aggregate strategy in an equilibrium

where only type 1 agents play a positive strategy. The RHS of (18) is the aggregate strategy at µ̂

where agents from other populations also play a positive strategy. Hence, to maximize aggregate

strategy, only type 1 agents should play a positive strategy. The bias parameters that ensure this

outcome are θ1 = 1 and θp ≤ 1 for p > 1. Notice that once we normalize θ1 = 1, the other

optimal parameters cannot be uniquely determined. We summarize this discussion in the following

20It suffices that any positive measure of agents, and not necessarily all agents, in population 1 play a positive
strategy.
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proposition.

Proposition 4.5 Consider the Tullock contest F defined by (4) and suppose r = γ = 1. For any

assignment of bias parameters, this contest has a convex set of Nash equilibria such that A(µ) > 0.

The optimal bias parameters that maximize aggregate strategy at any such Nash equilibrium is

θ1 = 1 and θp ≤ 1 for p > 1. Only agents of type 1 play a positive strategy at a Nash equilibrium

under these bias parameters. The resulting aggregate strategy level is V
k1

.

We can also compare our main conclusion here with Corollary 4.1 where r < 1 and γ = 1.

Thus, when the cost functions are linear, aggregate strategy maximization requires that only type

1 agents should participate for all r ≤ 1. For contestants of type p > 1 to participate in the optimal

contest, we require γ > 1 (Proposition 4.3). When the cost function is strictly convex, the planner

cannot maximize total strategy by restricting participation to the lowest cost agents. Intuitively,

the cost of strategy rises so fast that type 1 agents do not find it optimal to play a sufficiently

high strategy so as to maximize aggregate strategy. Instead, the planner should also rely on low

cost agents to also play positive, albeit of lower magnitude, levels of strategy so as to enable low

cost agents to reduce their effort and still maximize aggregate strategy. When the cost function

is linear, the rate of increase in the strategy cost is sufficiently low that type 1 agents alone can

maximize the aggregate strategy.

Franke et al. [14] characterize the aggregate strategy maximizing bias parameters in finite

player Tullock contests with linear impact and cost functions, i.e. r = γ = 1. How does our

findings compare with theirs? They also find that agents with high cost do not participate at the

Nash equilibrium under the optimal bias parameters. Moreover, the optimal bias parameters of

such non–participating agents are indeterminate. These conclusions are similar to ours. Further,

within the active contestants, Franke et al. [14] find that the optimal bias parameters are increasing

in the cost parameter thereby favoring weaker agents. Recall from our discussion of Fu and Wu’s

[17] that they also obtain the same conclusion for r sufficiently close to 1.21 As we mentioned in

the context of that discussion, the optimal bias parameter for all our active agents are identical as

they all belong to the same type.

We conclude this section with a few remarks on the difference between the methodology of the

current paper and the two papers with which we have compared our results in this section, namely

Franke et al. [14] and Fu and Wu [17]. Due to the linear nature of their contest (r = γ = 1),

Franke et al. [14] are able to explicitly characterize the Nash equilibrium for any given vector

of bias parameters, insert the equilibrium strategy levels to the aggregate strategy function and

maximize for the optimal bias parameters. In principle, this approach is similar to ours. But

the characterization of Nash equilibrium in their finite player model is a computationally complex

task. Moreover, finding the optimal bias parameters requires Franke et al. [14] to implement a

complex bi–level mathematical program. On the other hand, our large population approach greatly

21In both Franke et al. [14] and Fu and Wu [17], γ = 1. The main difference is while in Franke et al. [14], r also
equals 1, Fu and Wu [17] allows r ≤ 1.
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simplifies both the computation of Nash equilibria as well as the characterization of the optimal

parameters. This is true in Proposition 4.3 (and the accompanying Corollary 4.4) as well as in our

discussion of the r = γ = 1 case. Fu and Wu [17] allow r ≤ 1 and due to this non–linearity, their

finite player model does not allow an explicit computation of Nash equilibrium. Hence, even they

have to resort to a programming exercise to get around the lack of a closed form expression of the

Nash equilibrium and characterize the optimal bias parameters. In contrast, our large population

approach allows us to derive Nash equilibria and write down the aggregate strategy in closed form.

Optimizing for the bias parameters then becomes fairly straightforward. The fully linear case

does present certain complications due to the convex structure of equilibria but even there, the

arguments needed to arrive at the optimal bias parameters are not too daunting.

5 Implementing the Optimal Bias Parameters

We now address the question of implementing the optimal bias parameters θ∗ as characterized in

Section 4. We first consider the case where the optimal bias parameters θ∗ as given by (14). Thus,

we assume that γ > 1 and r ∈ (0, γ). We will consider the two other cases, r < 1, γ = 1 and r =

γ = 1, separately. The planner’s concern is, of course, not directly with θ∗ but with the associated

equilibrium level of aggregate strategy AS(µ∗(θ∗)) as defined in (15). Hence, implementing θ∗ is

equivalent to implementing the Nash equilibrium µ∗(θ∗) characterized in Proposition 3.3. In the

language of mechanism design theory, m 7→ µ∗(θ∗) is the social choice function the planner wishes

to implement. This would then generate the aggregate strategy AS(µ∗(θ∗)).

If the planner has complete information about the types of the agents, the problem is rather

trivial–the planner can simply assign the optimal bias parameters (14) to each agent according to

the type and let the contest unfold. The resulting outcome would be the Nash equilibrium µ∗(θ∗).22

Applying (14) to (11), we then obtain the strategy that a type p agent plays in that equilibrium,

which is

α∗p(θ
∗) =

(
V r

γ

) 1
γ

 1∑
q∈P mqk

−r
γ−r
q θ

∗ γ
γ−r

q

 1
γ (

θ∗p
kp

) 1
γ−r

=

(
V r

γ

) 1
γ k

−1
γ−1
p(∑

q∈P mqk
−1
γ−1
q

) 1
γ

. (19)

The resulting aggregate strategy is (15).

22We ignore the possibility of the Nash equilibrium being µ0 as characterized in Proposition 3.1 (where every agent
plays the zero strategy) on grounds of its instability.
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5.1 Incomplete Information: Dominant Strategy Implementation

We now consider a scenario where the planner knows V , r, γ and the cost parameters kp for all

p ∈ P, but not the types of the individual agents. Clearly the planner cannot assign the opti-

mal bias parameters to the respective agents. In fact, we assume that the planner doesn’t even

know the type distribution. The planner’s problem now becomes a “mechanism design problem”.

Our objective is to characterize conditions under which the planner can implement µ∗(θ∗) in this

situation. The appropriate solution concept from mechanism design theory depends on the “infor-

mation structure” amongst the agents. Information structure refers to the assumption we make

about mutual knowledge of the types of the players, i.e. whether the agents themselves know each

others’ types. In the “complete information” case, it is assumed that the every agent’s type is a

common knowledge. The natural solution concept in this case is Nash implementation: the agents

choose to play equilibrium strategies at any type distribution m. However, in our model we do not

make any assumption about the information structure. Hence, in this paper, we focus on dominant

strategy implementation. Later though, we will make certain comments about the equivalence of

Nash implementation and dominant strategy implementation in our model, an equivalence which

implies double implementation of our social choice rule.

In dominant strategy implementation, the planner designs a mechanism where every player has

a weakly dominant strategy at every possible type. Clearly, this solution concept is very robust

and least demanding in terms of the assumption about an agent’s knowledge about others’ types.

In particular, it requires no knowledge among agents of each other’s types. Thus, we seek to

design a mechanism that implements µ∗(θ∗) without any assumption on the agents’ (or planner’s)

information about types. A more demanding solution concept in the incomplete information case is

Bayes-Nash implementation which assumes the existence of a commonly-known prior belief about

the types of the agents. Further in Bayes-Nash implementation it is also required that the planner

knows the prior belief. In our model we have already assumed that the planner does not know the

type distribution, i.e. the prior belief is unknown to her. Recall that at present, we only consider

the case where γ > 1 and r ∈ (0, γ).

By the revelation principle, it suffices to consider only direct mechanisms. Thus, the planner

asks each agent to report his type (which can take the form of either an announcement of the type

p or the type specific cost parameter kp). Let m̃ = (m̃1, · · · , m̃n) be the distribution generated by

the reported types, which we will call the reported type distribution. Thus, m̃p is the proportion

of agents who report their type to be p. Since agents are free to misreport type, it is possible that

m̃p 6= mp, the true proportion of type p agents. The mechanism the planner constructs now assigns

to an agent who reports type to be q (i) the optimal bias parameter θ∗q =
(
k1
kq

) 1−r
γ−1

as defined in

(14), and (ii) the strategy level α̃q(θ
∗) obtained from the Nash equilibrium strategy (11) by using

the reported type distribution m̃ and the optimal bias parameter θl = θ∗l for every type l ∈ P. As
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in (19), this strategy level simplifies to

α̃q(θ
∗) =

(
V r

γ

) 1
γ

 1∑
l∈P m̃lk

−r
γ−r
l θ

∗ γ
γ−r

l

 1
γ (

θ∗q
kq

) 1
γ−r

(20)

=

(
V r

γ

) 1
γ k

−1
γ−1
q(∑

l∈P m̃lk
−1
γ−1

l

) 1
γ

. (21)

In terms of notation, the planner constructs a direct mechanism φ : (kq, m̃) 7→ (θ∗q , α̃q(θ
∗)) that

takes the reported cost parameter kq (or, equivalently, reported type q) of an agent and the reported

type distribution m̃ and assigns the optimal bias parameter θ∗q and strategy α̃q(θ
∗) to that agent.

Applying these bias parameters (14) and the strategy levels (21) to the original payoff function

(4), we then compute the payoff of a type p agent who reports his cost parameter to be kq in the

mechanism φ as

φp(kq, m̃) =
θ∗q α̃

r
q(θ
∗)∑

l∈P m̃lθ
∗
l α̃

r
l (θ
∗)
V − kpα̃γq (θ∗) (22)

=
θ
∗ γ
γ−r

q k
−r
γ−r
q∑

l∈P m̃lθ
∗ γ
γ−r

l k
−r
γ−r
l

V

(
1− kp

kq

r

γ

)
(23)

=
k
−1
γ−1
q∑

l∈P m̃lk
−1
γ−1

l

V

(
1− kp

kq

r

γ

)
. (24)

We now wish to establish conditions such that every agent finds it optimal to report his true

type in the mechanism φ. Since we wish to check for dominant strategy implementation, truthful

revelation should hold for any reported type distribution m̃. Applying (24), we can formally write

this incentive for truthful revelation as

φp(kp, m̃) ≥ φp(kq, m̃)

⇒ k
−1
γ−1
p∑

l∈P m̃lk
−1
γ−1

l

V

(
1− r

γ

)
≥ k

−1
γ−1
q∑

l∈P m̃lk
−1
γ−1

l

V

(
1− kp

kq

r

γ

)

⇒k
−1
γ−1
p

(
1− r

γ

)
≥ k

−1
γ−1
q

(
1− kp

kq

r

γ

)
, (25)

for all p ∈ P and all q 6= p. Condition (25) is the incentive compatibility (IC) constraint that ensures

that if θl = θ∗l for all l ∈ P, then no agent of type p ∈ P, will pretend to be of type q 6= p. An

important characteristic of this condition is that it depends entirely on the cost parameters kp, kq

and the two other parameters r and γ. In particular, the reported type distribution m̃ plays no role.

This distribution enters the inequality preceding (25) through the aggregate value
∑

l∈P m̃lk
−1
γ−1

l .
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But this value is the same on both sides of this inequality and, therefore, gets cancelled. This, in

turn, happens because each agent is of measure zero and an announcement by any single agent

cannot affect this aggregate value. We will discuss the implication of this observation further when

we consider the double implementation of our social choice function. We now state the following

lemma that establishes conditions under which (25) is satisfied. The proof is in the Appendix.

Lemma 5.1 Consider the incentive compatibility condition (25). Suppose γ > 1.

1. If r = 1, then (25) is satisfied for every p ∈ P and every q 6= p. Therefore, no agent of any

type p has the incentive to misreport their type to be q 6= p.

2. If r ∈ (0, 1), then (25) is satisfied with strict inequality for all p ∈ {1, 2, · · · , n − 1} and all

q > p. Therefore, no agent of any type p ∈ {1, 2, · · · , n − 1} has the incentive to misreport

type to be any q > p.

3. If r ∈ (1, γ), then (25) is satisfied with strict inequality is satisfied for all p ∈ {2, 3, · · · , n}
and all q < p. Therefore, no agent of any type p ∈ {2, 3, · · · , n} has the incentive to misreport

type to be any q < p.

Lemma 5.1, therefore, shows that the extent to which (25) is satisfied depends upon the value

of r. If r = 1, then (25) is always satisfied. No agent of any type p has the incentive to report

type q 6= p. The intuition is that if r = 1, the optimal bias parameters (14) are all equal. Hence,

misreporting cannot affect the bias parameter that is assigned, as can be seen from (22). In that

case, it must be optimal for a type p agent to be assigned his true Nash equilibrium strategy level

α∗p(θ
∗) which can only happen through truthful revelation. If r ∈ (0, 1), then (25) is satisfied if

q > p. Again, the intuition arises from the optimal bias parameters (14) which, in this case, are

strictly declining in p. Agents, therefore, do not find it beneficial to report such types that would

cause them to be assigned a lower bias parameter than the one they would obtain through truthful

revelation. This also implies that type 1 agents will never misreport type in this case. The converse

is true if r ∈ (1, γ). Optimal bias parameters are strictly increasing so that agents do not have the

incentive to report q < p. Therefore, in this case, type n agents will never misreport. Figure 1

explains the reasoning behind this result diagrammatically.

But Lemma 5.1 still leaves open the possibility that if r 6= 1, then agents may misreport type to

obtain a higher bias parameter than the one from truthful revelation. Thus, if r < 1, then agents

of type p ∈ {2, 3, · · · , n} may report q < p while if r > 1, agents of type p ∈ {1, 2, · · · , n− 1} may

report q > p. The following lemma establishes conditions that precludes such misreporting. The

proof is in the Appendix.

Lemma 5.2 Consider the incentive compatibility condition (25). Let γ > 1.

1. Suppose r ∈ (0, 1). For every p ∈ {2, 3, · · · , n}, an agent of type p has no incentive to report
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Payoffs

r  1

kq
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r < 1

kq

Payoffs

r > 1

kp kp
kp

Figure 1: We fix kp r and γ. Then, in each of these figures, the horizontal (blue) line is the LHS
of (25) and the (red) curve depicts the RHS of (25) as a function of kq. Notice that when kq = kp,
the two curves intersect. (a) In the left panel, r = 1. As shown in Lemma 5.1(1), the LHS of (25)
is strictly greater than the RHS at all kq 6= kp. (b) In the middle panel, r < 1. If kq > kp, then the
LHS of (25) is strictly greater than the RHS. This is as shown in Lemma 5.1(2). But if kq < kp,
then the RHS can be higher than the LHS unless kq is much smaller than kp. This is as implied
in Lemma 5.2(1). (c) In the right panel, r > 1. Then, as shown in Lemma 5.1(3), the LHS of (25)
is strictly greater than the RHS if kq < kp. If kq > kp, then the RHS can be larger than the LHS
unless, as implied by Lemma 5.2(2), kq is much larger than kp.

type q < p if given kp−1, kp is sufficiently large such that

k
−1
γ−1
p

(
1− r

γ

)
≥ k

−1
γ−1

p−1

(
1− kp

kp−1

r

γ

)
. (26)

2. Suppose r ∈ (1, γ). For every p ∈ {1, 2, · · · , n − 1}, an agent of type p has no incentive to

report type q > p if given kp+1, kp is sufficiently small such that

k
−1
γ−1
p

(
1− r

γ

)
≥ k

−1
γ−1

p+1

(
1− kp

kp+1

r

γ

)
. (27)

The two key conditions (26) and (27) in this lemma are simply the original no deviation condition

(25) but only for two successive types. If r < 1, then part 1 of Lemma 5.2 requires that kp should be

sufficiently larger than kp−1 so that no agent in p ∈ {2, 3, · · · , n} reports p− 1. This automatically

ensures that there is no incentive to report p−2, p−3 etc.23 The argument for part 2, where r > 1, is

analogous. It requires that kp be sufficiently smaller than kp+1 so that agents in p ∈ {1, 2, · · · , n−1}
do not report p+ 1. Figure 1 once again explains this result diagrammatically.

Intuitively, in each case in Lemma 5.2, we need to rule out the possibility that agents acquire

a higher bias parameter through false reporting than truthful reporting. If r < 1, then a type p

agent can obtain a higher parameter by reporting q < p, whereas if r > 1, then the same is possible

by reporting q > p. In each case though, a higher bias parameter inflates the strategies assigned to

them from the one that is optimal for them given their true cost parameter.24 If this distortion in

strategy is sufficiently high, then agents would not have the incentive for false reporting. This would

23If kp is sufficiently larger than kp−1, it must also be sufficiently larger than kp−2 < kp−1.
24Notice from (21) that because r < γ, higher is θ∗q , higher is the assigned strategy α̃q(θ

∗).
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be the case if the cost parameters are sufficiently far apart from each other, which is what (26) and

(27) require. We can now combine Lemmas 5.1 and 5.2 to arrive at the following proposition on

the implementability of the optimal bias parameters (14) as a Nash equilibrium.

Proposition 5.3 Consider the cost parameters {k1, k2, · · · , kn} in the direct mechanism φ defined

by (24) and recall k1 < k2 < · · · < kn. Let γ > 1. Also recall the optimal bias parameters θ∗ from

(14) and the associated Nash equilibrium µ∗(θ∗) characterized by effort levels α∗p(θ
∗) as defined in

(19) for type p ∈ P agents.

1. Suppose r = 1. Then, for all cost parameters {k1, k2, · · · , kn}, the planner is able to implement

µ∗(θ∗) in dominant strategies in φ.

2. Suppose r ∈ (0, 1). Then, the planner is able to implement µ∗(θ∗) in dominant strategies in

φ if and only if for all p ∈ {2, 3, · · · , n}, kp satisfies (26).

3. Suppose r ∈ (1, γ). Then, the planner is able to implement µ∗(θ∗) in dominant strategies in

φ if and only if for all p ∈ {1, 2, · · · , n− 1}, kp satisfies (27).

Proof. Part 1 follows immediately from Lemma 5.1(1). For part 2, Lemma 5.1(2) establishes

that no agent of any type p reports q > p. Condition (26) in Lemma 5.2(1) provides the condition

such that such agents will not report q < p. For part 3, Lemma 5.1(3) establishes that no agent of

any type p reports q < p. Condition (27) in Lemma 5.2(2) provides the condition such that those

agents will not report q > p. �

Proposition 5.3 is the main result of this section. It establishes the conditions under which

the planner is able to implement the Nash equilibrium µ∗(θ∗) or, equivalently, the optimal bias

parameters θ∗ defined by (14). Such implementation is always possible if r = 1. But if r 6= 1, then

truthful implementation in dominant strategies happens only if conditions (26) or (27), whichever

is relevant, holds. Otherwise, at least some agents will have the incentive to misrepresent type.

Whenever truthful revelation is incentive compatible, the planner is able to extract the aggregate

strategy (15). We also note that if dominant strategy implementation holds, then, generically, it

will be in strictly dominant strategies. Weak dominance will hold only if (26) or (27) is satisfied

with equality for some types of agents.

We end this section with a discussion on the link between dominant strategy implementation

and Nash implementation in our setting. Notice that in our mechanism, the incentive compatibility

condition (25) is independent of the type distribution, whether reported or true. As noted earlier,

this arises from the very nature of the large population framework. It follows that the condition

for dominant strategy implementation remains the same as the condition for Nash implementation

in our mechanism. For Nash implementation, we need to check that truthful revelation is a mutual

best response. Each agent is of measure zero. Therefore, when every other agent reports type

truthfully, the reported distribution would be m itself. The condition would be the same as (25)

except that the distribution in the second of those inequalities would be the real one m. But the
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effect of that distribution would have cancelled out in exactly the same way as in (25) leading to

the same exact conditions as in Lemmas 5.1 and 5.2 for Nash implementation. Thus, the fact that

each agent is of measure zero ultimately ensures that our mechanism double implements our social

choice function. In particular, this shows the equivalence of the two notions of implementation in

our mechanism: should dominant strategy implementation not work, as may happen in parts 2 and

3 of Proposition 5.3, then the weaker notion of Nash implementation will also not work.

5.2 Two Special Cases

Proposition 5.3 only considered the case where γ > 1 and r ∈ (0, 1). We now extend our discussion

of implementing the optimal bias parameters to the two special cases we have been discussing in

this paper; (i) r < 1, γ = 1 and (ii) r = γ = 1. As will be clear below, we will need to make a

distinction on the basis of whether in the reported type distribution, m̃1 > 0 or m̃1 = 0. First, we

consider m̃1 > 0.

We now examine the case r < 1, γ = 1. Recall from Corollary 4.4 that in this case, the optimal

bias parameters are θ∗1 = 1 and θ∗p = 0, for all p > 1. Hence, by (20), the strategy assigned by the

planner to any agent who claims to be of type q > 1 is 0. By (23), the payoff obtained by such an

agent will also be zero. Clearly, no agent of type p > 1 has any strong incentive to claim to be of

any other type q > 1. For agents of type 1, the above argument implies that false reporting yields

a payoff of zero. On the other hand, if such an agent reports truthfully, then, by (20), the strategy

assigned to him is V r
m̃1k1

and by (22), his payoff is V
m̃1

(1− r) > 0. Therefore, a type 1 agent doesn’t

have any incentive to report type to be q > 1. The only other case we need to check is whether a

type p > 1 agent has any incentive to claim to be type 1. Once again, by applying (22), we obtain

the payoff of any such type p agent who claims to be of type 1 to be V
m̃1

(
1− kp

k1
r
)

.

Hence, the condition for truthful revelation to be weakly dominant by a type p > 1 agent is

0 ≥ V
m̃1

(
1− kp

k1
r
)
⇒
(

1− kp
k1
r
)
≤ 0, for all p > 1. Due to the fact that k1 < k2 < · · · < kn, it is

sufficient that for this condition to be satisfied, we have(
1− k2

k1
r

)
≤ 0. (28)

Notice that we could have also obtained (28) by applying part 2 of Proposition 4.3 and taking the

limit as η → 1. Since r ∈ (0, 1), the relevant incentive compatibility condition is (26). We can

rewrite that condition for p = 2 as
(
k1
k2

) 1
γ−1
(

1− r
γ

)
≥
(

1− k2
k1

r
γ

)
. As k1 < k2, limγ→1

(
k1
k2

) 1
γ−1

=

0. Hence, taking the limit on both sides of the inequality gives us (28).

Again assuming m̃1 > 0, we now consider the second of our special cases; r = γ = 1. Since

r = 1, part 1 of Proposition 4.3 suggests that the planner will be able to implement the optimal

bias parameters so as to maximize aggregate effort irrespective of the cost parameters. Recall that

the reason why this holds in Proposition 4.3 (1) is that when r = 1 and γ > 1, θ∗p = 1 for all

p. With all bias parameters same, agents do not obtain any strategic advantage by misreporting

their type. In Section 4.1, we had concluded that the optimal bias parameters in the r = γ = 1
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case would be such that only type 1 agents have the incentive to play a positive strategy in the

resulting Nash equilibrium (Proposition 4.5). Further once we fix θ1 = 1, then any θp ≤ 1 for p > 1

would generate such a Nash equilibrium. Any resulting Nash equilibrium µ with A(µ) > 0 will

have aggregate strategy V
k1

, which is the highest possible equilibrium level of aggregate strategy in

this case.

In particular, the bias vector (θ1, θ2, · · · , θn) = (1, 1, · · · , 1) also induces the highest possible

equilibrium level of aggregate strategy. The direct mechanism that the planner can use, therefore,

should assign θq = 1 to all agents irrespective of reported type q. This eliminates the possibility

of any strategy advantage that such agents may obtain from the bias parameter by misreporting

type. Since the planner wishes aggregate strategy to be V
k1

, he assigns strategy V
m̃1k1

to any agent

who reports type 1, where m̃1 is the mass of agents who make such a report. For agents reporting

any other type q > 1, the assigned strategy is 0. As the bias vector is θq = 1 for all q for all

announced types q, the generalized measure (2) resulting from this strategy assignment is the

aggregate strategy itself, which is α̃ = m̃1
V

m̃1k1
= V

k1
.

Applying these bias parameters and this strategy assignment to the original payoff function (4),

we obtain the payoff of type p agent who reports type to be 1 to be
(
V
α̃ − kp

)
V

m̃1k1
< 0 if p > 1 due

to kp > k1. On the other hand, had a type p > 1 agent reported his type truthfully, the assigned

strategy and, therefore, payoff would have been 0. Hence, no agent of type p > 1 has the incentive

to report type to be 1. They also do not have any strong incentive to report any q 6= p, q > 1.

The strategy assigned and, therefore, the payoff will be both 0. We only need to check that agents

of type 1 also do not have the incentive to report q > 1. Again, there is no strong incentive as

both truthful and false reporting will result in 0 payoff. Therefore, truthful revelation is weakly

dominant.

The above discussion for both cases required m̃1 > 0 to make the assigned strategy for type 1

meaningful. But what happens if m̃1 = 0? The planner can announce that whether (i) r < 1, γ = 1

or (ii) r = γ = 1, if m̃1 = 0, all agents will be assigned the strategy 0. The assigned vector of type

specific bias parameter (θ1, θ2, · · · , θn) can be arbitrary. If all agents play strategy 0, the relevant

aggregate measure (2) is also 0 irrespective of the bias parameters. By (4), every agent then receives

the payoff V . But in that case, it is weakly dominant for every agent to announce type truthfully

as no single announcement can affect the reported type distribution. Notice that with the true

m1 > 0, truthful revelation will never actually result in m̃1 = 0. Hence, it will not happen that the

planner will actually have to assign the 0 strategy to all agents. Nevertheless, specifying such an

assignment is required to make our mechanism complete. With truthful revelation, strategy and

bias parameter assignment will be as discussed earlier: type 1 agents are assigned strategy V r
m1k1

while all other agents are assigned strategy 0; type 1 agents are assigned θ1 = 1 while other agents

are assigned θp = 0 if r < 1 and θp = 1 if r = 1. We summarize our entire discussion in this

subsection in the following corollary.

Corollary 5.4 Suppose γ = 1. Consider the direct mechanism φ : (kq, m̃) 7→ (θ∗q , α̃q(θ
∗)), where

α̃q(θ
∗) is the strategy assigned to an agent who announces type to be q.

27



1. Let r ∈ (0, 1). Define φ as follows.

(a) If m̃1 > 0, then φ assigns bias parameter θ∗1 = 1 and strategy V r
m̃1k1

to an agent who

reports his cost parameter to be k1. To all other agents, it assigns bias parameter 0 and

strategy 0.

(b) If m̃1 = 0, then φ assigns strategy 0 to all agents and any arbitrary vector of type specific

bias parameters (θ1, θ2, · · · , θn).

Then φ implements the optimal bias parameters in weakly dominant strategies and, therefore,

maximizes the Nash equilibrium level of aggregate strategy if (28) is satisfied.

2. Let r = 1. Define φ as follows.

(a) If m̃1 > 0, then φ assigns bias parameter θ∗q = 1 to all agents irrespective of reported type

q. The strategy assigned is V
m̃1k1

if reported type is 1 and 0 if reported type is anything

else.

(b) If m̃1 = 0, then φ assigns strategy 0 to all agents and any arbitrary vector of type specific

bias parameters (θ1, θ2, · · · , θn).

Then, φ implements the optimal parameters θ∗p = 1 in weakly dominant strategies and, there-

fore, maximizes the Nash equilibrium level of aggregate strategy.

5.3 Failure of Truthful Implementation: Two Types

Proposition 5.3 is our main result on truthful implementation. But if r 6= 1, it holds only if (26)

or (27), whichever is relevant, is satisfied. The question that then arises is what can the planner

implement if these conditions are violated. For the general case, this question is difficult and we

don’t have an answer. We are, however, able to characterize the solution completely if there are

only two types of agents.

We present our analysis only for the case r < 1. Suppose there are two types, 1 and 2 and

(26) is violated from type 2. Then, Lemma 5.1(2) and Lemma 5.2(2) imply that while truthful

revelation remains dominant for type 1, type 2 will have the incentive to claim to be of type 1. In

that case, the optimal bias parameters θ∗1 and θ∗2 as defined in (14) cannot be implemented.

In this situation, denote the Nash equilibrium level of aggregate strategy maximizing bias

parameters that can be truthfully implemented as θ∗∗1 and θ∗∗2 and normalize θ∗∗1 = 1. We need to

characterize θ∗∗2 . Standard results from mechanism design theory implies that in this case, the IC

constraint has to bind tightly from type 2. In terms of the notation introduced in (24) and using

the normalized value θ∗∗1 =1, this would mean

φ2(k1,m) = φ2(k2,m)

⇒ k
−r
γ−r
1∑

l∈P ml(θ
∗∗
l )

γ
γ−r k

−r
γ−r
l

V

(
1− k2

k1

r

γ

)
=

(θ∗∗2 )
γ
γ−r k

−r
γ−r
2∑

l∈P ml(θ
∗∗
l )

γ
γ−r k

−r
γ−r
l

V

(
1− r

γ

)
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⇒θ∗∗2 =

(
k2
k1

) r
γ

(
1− k2

k1
r
γ

1− r
γ

)1− r
γ

. (29)

Thus, in the event of the first best solution θ∗2 failing incentive compatibility for type 2, (29) is

the optimal bias parameter that the planner needs to announce for type 2 agents to ensure truthful

revelation. Using (14), we can verify that θ∗∗2 > θ∗2. The planner, therefore, needs to increase the

probability of success for type 2 agents, and correspondingly reduce for type 1 agents, to ensure

incentive compatibility.

We can also verify without too much difficulty that given these values of θ∗∗1 and θ∗∗2 , the

IC constraint for type 1 agents is satisfied. Using the notation from (24), we need to show that

φ1(k1,m) ≥ φ1(k2,m) under these bias parameters. Applying θ∗∗1 = 1 and θ∗∗2 as calculated in

(29) to (24), we simplify this condition to
(

1− r
γ

)2
≥
(

1− k2
k1

r
γ

)(
1− k1

k2
r
γ

)
, which always holds.

Indeed, with k2 6= k1, this inequality holds strictly.

6 Conclusion

This paper has considered the design of optimal large population Tullock contests. The planner has

the capacity to appropriately bias the likelihood of success of different types of agents in such a large

population contest. We have characterized the unique Nash equilibrium for any such vector of bias

parameters that generates a positive level of aggregate strategy. The objective of the planner is to

select that vector of bias parameters that maximizes this equilibrium level of aggregate strategy. We

show that the aggregate payoff of agents is unchanged by the choice of bias parameters. Therefore,

choosing to maximize aggregate strategy implies the choice of the Pareto optimal Nash equilibrium

if we measure the welfare of the planner as the aggregate strategy (in the form of aggregate effort

or aggregate payment) being played by the agents.

We then characterize the optimal bias parameters and identify conditions under which those

parameters are increasing or decreasing according to the cost parameter of the different types

of agents. If we identify agents with high cost parameters as disadvantaged agents, our results

provide insight into when it might be beneficial to level the playing field in favor of such agents

in order to maximize aggregate strategy. Significantly, due to the convenience accorded by the

large population framework, the computational techniques we need to use to characterize Nash

equilibrium and optimal bias parameters are much more straightforward than in the corresponding

results in finite player contests. We then identify conditions under which the planner can truthfully

implement the optimal parameters in conditions of incomplete information. If the optimal bias

parameters are identical for all types so that no strategic advantage can be gained by misreporting,

then those parameters are always implementable. Otherwise, implementation is possible only if the

cost parameters that distinguish different types of agents are sufficiently distinct.

We can think of two further interesting research questions. One is to generalize the planner’s

objective function. In this paper, the planner has only sought to maximize aggregate strategy.
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But it is possible that the planner may have a broader objective function which, for example, also

incorporates the variance of the equilibrium strategy levels. This would be relevant, for example,

if the planner also cares about how close the competition is between the contestants. It will be

interesting to derive optimal bias parameters under such more general objective functions. Second

is the property of double implementation that we found in our discussion of implementation of the

optimal bias parameters. The equivalence between Nash and dominant strategy implementation is

an interesting topic in mechanism design theory. In finite player models, it has been established

that only in a sufficiently rich environment are social choice functions that are implementable in

Nash strategies also implementable in dominant strategies (Laffont and Maskin [18]). For instance,

the class of quasi-linear preferences is not rich and hence the equivalence fails. In this particular

model of ours, the two solution concepts turn out to be equivalent and this is due to the measure

zero characteristic of every agent. It will be interesting to explore whether such equivalence holds

more generally in a large population setting beyond Tullock contests.

A Appendix

Proof of Proposition 3.1: At µ = µ0, A(µ) = 0. Hence, by (4), the payoff of every agent at that

state is F0,p(µ
0) = V . Suppose a single agent of type p deviates to strategy x > 0. Since every

agent is of measure zero, the social state doesn’t change. Hence, we still have A(µ) = 0. But then,

by (4), the payoff of the agent deviating to x > 0 is V − kpxγ < F0,p(µ
0). Hence, µ0 is a Nash

equilibrium. �

Proof of Lemma 3.2: The fact that α∗ is a solution to A(B(µ)) = α follows immediately from

(7). To establish that this is a unique solution, note that the assumptions on r and γ imply γ > r.

Therefore, it follows from (7) that (5) is continuous and strictly declining in α. Moreover, as α→ 0,

A(B(µ))→∞ and as α→∞, A(B(µ))→ 0. Therefore, A(B(µ)) and α has only one intersection,

which is α∗. �

Proof of Proposition 3.3: First, we show that µ∗ is a Nash equilibrium. For this, we show

that given (10) and (11), A(µ∗) = α∗, where α∗ is as characterized in (9). This follows because

µ∗p = mpδbp(α∗), with bp(α
∗) being described by (11). Therefore, by (2), A(µ∗) =

∑
p∈P mpθpb

r
p(α
∗).

The conclusion then follows from direct calculation using (11). Comparing (6) and (10), we then

obtain µ∗ = BR(µ∗). Every agent at µ∗ plays the unique best response to µ∗. Hence, µ∗ is a Nash

equilibrium with A(µ∗) = α∗ > 0.

We now show that there is no other Nash equilibrium µ with A(µ) > 0. Consider µ 6= µ∗

such that α = A(µ) > 0. Lemma 3.2, therefore, implies A(B(µ)) 6= α. In our model, every

agent of every type has a unique best response to every state if α > 0. Hence, for µ to be a

candidate Nash equilibrium, it must be of the form µp = mpδbp(α). But then that would imply

A(B(µ)) =
∑

p∈P mpθpb
r
p(α) = A(µ) = α by the definition of A(µ) in (2), which contradicts our

earlier assumption that A(B(µ)) 6= α. Hence, µ is not a Nash equilibrium. �
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Proof of Proposition 4.2: We can use (4) and (11) to write the Nash equilibrium payoff a type

p agent as

Fα∗p(θ),p(µ
∗(θ)) =

θp(α
∗
p(θ))

r∑
q∈P mqθq(α∗q(θ))

r
V − kp(α∗p(θ))γ

=
θ

γ
γ−r
p k

−r
γ−r
p∑

q∈P mqθ
γ
γ−r
q k

−r
γ−r
q

V

(
1− r

γ

)
. (30)

Recall that the aggregate payoff at a social state µ is F̄ (µ) =
∑

p∈P
∫
S Fx,p(µ)µp(dx). From (30),

we can, therefore, also calculate the aggregate payoff at the Nash equilibrium. Since the equilibrium

(10) is in monomorphic population states, this turns out to be

F̄ (µ∗(θ)) =
∑
p∈P

∫
S
Fx,p(µ

∗(θ))µ∗p(θ)(dx)

=
∑
p∈P

mpFα∗p(θ),p(µ
∗(θ))

= V

(
1− r

γ

)
. �

Proof of Proposition 4.3: Denote
(
θp
kp

) 1
γ−r

= sp. We can then write (12) equivalently as

(suppressing the dependence on θ)

AS(µ∗) =

(
V r

γ

) 1
γ

(
1∑

q∈P mqkqs
γ
q

) 1
γ ∑
l∈P

mlsl (31)

We now maximize (31) with respect to (s1, · · · , sn). Denote the maximizer as (ŝ1, · · · , ŝn). Differ-

entiating (31) with respect to sp, setting ∂TE(µ∗)
∂sp

= 0 and simplifying, we obtain

kpŝ
γ−1
p =

∑
q∈P mqkq ŝ

γ
q∑

l∈P mlŝl
, for all p ∈ P. (32)

Hence, k1ŝ
γ−1
1 = k2ŝ

γ−1
2 = · · · = knŝ

γ−1
n . We can, therefore, express the optimum values of all

sp in terms of ŝ1. Thus, ŝp =
(
k1
kp

) 1
γ−1

ŝ1, for all p 6= 1. Normalize ŝ1 = 1 so that ŝp =
(
k1
kp

) 1
γ−1

,

for all p 6= 1.

Using the definition of sp, we denote ŝp =
(
θ̂p
kp

) 1
γ−r

, where (θ̂1, · · · , θ̂n) is the vector of effort

maximizing weights that we seek to characterize. Using the normalized values of ŝp, we then obtain

ŝp =
(
k1
kp

) 1
γ−1

=
(
θ̂p
kp

) 1
γ−r

. This implies θ̂1 = k1 and θ̂p =

(
kγ−r1

k1−rp

) 1
γ−1

, for all p 6= 1. Normalizing

further (since the CSF is homogeneous of degree zero), we can write the optimal weights equivalently

as θ∗1 = 1 and θ∗p =
(
k1
kp

) 1−r
γ−1

. Using θ = θ∗ in (12), we then obtain the aggregate strategy (15). �
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Proof of Corollary 4.4: Due to our assumption that k1 < k2 < · · · < kn, k1
kp

< 1 in (14).

Therefore, with r < 1, limγ→1 θ
∗
p = 0 for every p > 1 in (14). We now apply Berge’s maximum

theorem to argue that this limit is also the optimal bias parameter at γ = 1.

The objective function AS(µ∗(θ)) defined by (12) is continuous in γ ≥ 1 if r < 1. We can write

the problem of finding the optimal bias parameter as maxAS(µ∗(θ)) subject to the constraint set

{θ = (θ1, θ2, · · · , θn) : θi ≥ 0,

n∑
i=1

θi = 1}, (33)

which is compact in Rn
+. Therefore, by Berge’s maximum theorem, the solution to this constrained

optimization problem is continuous in γ. Applying (14), we can write the solution to this problem

if γ > 1 as

θ̂p =

(
k1
kp

) 1−r
γ−1

∑n
q=1

(
k1
kq

) 1−r
γ−1

. (34)

As CSFs are homogeneous of degree zero, the solution in (14) is equivalent to the one in (34). Due

to the continuity of the maximizer, the solution when γ = 1 must be limγ→1 θ̂p, which is 1 if p = 1

and 0 if p > 1. �

Proof of Lemma 5.1: Consider an agent of type p who is seeking to report cost parameter kq

and observe that (25) holds with equality if kq = kp. Interpret kq as a variable k. We differentiate

the RHS of (25) with respect to k and obtain

d

dk
k
−1
γ−1

(
1− kp

k

r

γ

)
=
kpr − k
γ − 1

k
1

γ−1
−2
. (35)

1. If r = 1, then using (35), we conclude that the RHS of (25) is maximized at k = kp. Therefore,

in this case, (25) holds with strict inequality at all kq 6= kp. The agent, therefore, has no

incentive to report kq 6= kp.

2. If r < 1, then (35) implies that the RHS of (25) is maximized at k < kp. In fact for kq ≥ kp,
the derivative in (35) is strictly negative. Therefore, the payoff from misreporting kq > kp is

strictly lower than the payoff from truthful revelation. Hence, the agent has no incentive to

claim kq > kp or q > p.

3. If r > 1, then (35) implies that the RHS of (25) is maximized at k > kp. In fact for kq ≤ kp,
the derivative in (35) is strictly positive. Therefore, the payoff from misreporting kq < kp is

strictly lower than the payoff from truthful revelation. Hence, the agent has no incentive to

claim kq < kp or q < p. �

Proof of Lemma 5.2:
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1. Fix kp−1. First, we argue that the two sides of (26) hold with equality at two points. One is

obviously kp = kp−1. Given our assumptions about the cost parameters, we know kp 6= kp−1.

Second, there exists another value of kp, which we denote khp , such that the two sides of

(26) holds with equality. To see this, note that both sides of (26) are strictly declining in

kp. It is easy to verify that given r < 1, the left hand side of the inequality declines faster

than the right hand side at kp = kp−1. Moreover, as kp → ∞, the left hand side converges

to zero but remains strictly positive while the right hand side declines to −∞. Together,

these properties must imply that there exists khp > kp−1 such that if kp ∈ (kp−1, k
h
p ), then

k
−1
γ−1
p

(
1− r

γ

)
< k

−1
γ−1

p−1

(
1− kp

kp−1

r
γ

)
, but for all kp > khp , k

−1
γ−1
p

(
1− r

γ

)
> k

−1
γ−1

p−1

(
1− kp

kp−1

r
γ

)
.

Therefore, if kp ≥ khp , then (26) holds.

If (26) is satisfied for all p ∈ {2, 3, · · · , n}, then that suffices to ensure that for all such p, an

agent of type p will not claim to be of type p − 2, p − 3 and so on, should such types exist.

To see this, write (26) for types p and p− 2.25 This will be satisfied if kp ≥ khp−1, where khp−1
is as defined earlier but for type p − 1 (i.e., khp−1 is obtained by writing (26) for types p − 1

and p− 2). But by assumption, kp > kp−1 and kp−1 ≥ khp−1 if (26) is satisfied for type p− 1.

Thus, an agent of type p wouldn’t claim to be of p − 2. By induction, the argument can be

extended to types p− 3, p− 4 etc.

2. The argument is analogous. Fix kp+1 and treat the two sides of (27). The two sides are

equal at kp = kp+1 and kp = klp < kp+1. Our interest is in klp since we know that kp <

kp+1. With r > 1, the properties of the two functions imply that if kp ∈ (klp, kp+1), then

k
−1
γ−1
p

(
1− r

γ

)
< k

−1
γ−1

p+1

(
1− kp

kp+1

r
γ

)
, but for all kp < klp, k

−1
γ−1
p

(
1− r

γ

)
> k

−1
γ−1

p+1

(
1− kp

kp+1

r
γ

)
.

Therefore, if kp ≤ klp, then (27) holds. An agent of type p will not report p+ 1. By induction,

the argument can be extended to not reporting p+ 2, p+ 3 etc., should such types exist. �
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