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Abstract

We propose and axiomatize a decision model of social preferences under risk that

highlights moral hypocrisy, which we think of as the motivation to appear moral while

avoiding the cost of acting morally to the extent possible (Batson et al., 1997). Our

model considers a setup with a decision maker (DM) and one other individual. It

highlights how the presence of risk enables the DM to exploit the distinction between

the other individual’s ex post outcome and his ex ante opportunity in a self-serving

manner and perceive herself as more moral than what her choices warrant. In turn,

this allows her to behave more selfishly in the presence of risk than under certainty

and, further, be more risk loving over the other individual’s risks than her own. Our

axiomatization highlights that the DM acts like a motivated Bayesian when assessing

risk faced by the other individual, specifically, she underweights the probabilities of

unfavorable outcomes that the other individual may receive in her assessments. We

show that our model can explain a wide array of experimental evidence on generous

behavior under risk.

JEL Classification: D01, D81, D91

Keywords: social preferences under risk, moral hypocrisy, motivated Bayesian rea-

soning, ex post outcomes and ex ante opportunities

1 Motivation

In an influential set of experiments involving the two player dictator game, Dana, Weber,

and Kuang (2007) [DWK, henceforth] asked lab dictators whether they prefer alternative

A that gives the dictator (the decision maker) $6 and the other player (the recipient)

$1, denote this allocation as (6, 1), or alternative B that gives both $5 each, denote this

allocation as (5, 5). In keeping with the literature, they found that a significant portion

(74%) chose B. Then, in a separate treatment, they introduced risk into the environment.
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Figure 1: Choices in the DWK ex-
periment. � denotes a decision
node and © a chance node. Sup-
pose that the recipient’s payoffs
are determined by a fair coin-toss
in which H(eads) and T(ails) real-
ize with probability 0.5 each. If H
realizes, his payoffs are as in the
first treatment, i.e., he receives 1
from A and 5 from B. If T real-
izes, his payoffs are flipped, i.e., he
receives 5 from A and 1 from B.

Specifically, whereas the decision maker (DM) still received $6 from alternative A and

$5 from alternative B, the recipient’s payoffs from A and B could, with even chances,

be either $1 and $5, respectively (as in the earlier treatment), or flipped to be $5 and

$1, respectively. The key feature of this treatment was that the DM was provided with

the option of privately and costlessly revealing the information about the recipient’s true

payoffs before making the choice between A and B. That is, it was up to her whether she

wanted to make the choice with or without this information. The decision tree faced by a

DM in this treatment is illustrated in Figure 1.

Now, consider the following two strategies in the second treatment with the goal of delv-

ing into the question of what drives generous behavior for these experimental subjects.

The first, call it s1, involves choosing to reveal information about the recipient’s payoffs,

followed by the choice of B if the payoffs are as in the baseline treatment [event H], and

A if they happen to be flipped [event T ].1 It is straightforward to deduce from Figure 1

that this strategy results in the lottery [(5, 5), 0.5; (6, 5), 0.5].2 The second strategy, call

it s2, involves not revealing information and choosing A. This strategy results in the

lottery [(6, 1), 0.5; (6, 5), 0.5]. As DWK point out, if fairness concerns is what drives the

DMs that choose alternative B over A in the first treatment, then there should not be a

significant portion of them who choose the strategy s2 over s1 in the second treatment,

i.e., we should not see consistent preference reversals with DMs expressing a preference for

(5, 5) over (6, 1) under certainty but [(6, 1), 0.5; (6, 5), 0.5] over [(5, 5), 0.5; (6, 5), 0.5] under

1Note that if after choosing to reveal information, the DM finds that the payoffs happen to be flipped,
then the choice of A and B result in the allocations (6, 5) and (5, 1), respectively, and any reasonable DM
would, arguably, choose A.

2Following standard notation, [(5, 5), 0.5; (6, 5), 0.5] denotes a lottery in which the outcomes (5, 5) and
(6, 5) realize with probability 0.5 each.
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risk. In other words, given that information about the recipient’s payoffs can be costlessly

acquired, such a fairness motivation on the part of these DMs is inconsistent with them

avoiding this information and using the ignorance as an excuse to choose A in the second

treatment.

In this regard, the interesting finding that DWK’s experimental results throw up is that

whereas the proportion that chose A in the first treatment was 26%, in the second, the

proportion that chose not to reveal the payoff information and go with this option (strategy

s2) went up to around 40%. Correspondingly, the proportion that opted for strategy s1
was about 47% and significantly lower than the 74% who chose B in the first treatment.

What these experimental results, therefore, suggest is that there may exist a significant

proportion of DMs for whom evidence of generous behavior may not reflect a deep prefer-

ence for fairness or altruism. Rather, it may be driven by more self-serving and egoistical

ends. Specifically, this may be the behavior of DMs who wish to maintain a self image

of being moral while avoiding the cost of behaving morally to the extent possible—often

by exploiting situational excuses and wiggle room, like hiding behind uncertainty in the

DWK experiment. The psychology literature refers to such motivation, notwithstanding

the harsh connotation of the term, as moral hypocrisy [Batson et al. (1997), Batson et al.

(1999)].3

In this paper, we propose and axiomatize a decision model of social preferences under

risk that highlights such moral hypocrisy in behavior. Our decision model considers a

set-up with a DM and one other individual. The critical insight that it captures is how

the presence of risk makes it possible for the DM to exploit the distinction between the

other individual’s ex post outcome and his ex ante opportunity in a self-serving manner

and perceive herself as more moral than what is warranted by the consequences of her

choices for him. This, in turn, allows her to behave more selfishly in environments with

risk (than under certainty) without concomitantly hurting her self-image of being moral.

At the same time, this also makes her more risk loving when assessing risk faced by the

other individual as compared to identical risk faced by her.

To understand the critical insight underlying our decision model, let’s apply it to the

observed choices in the DWK experiment. First, consider the choice between the allocations

(5, 5) and (6, 1) in the first treatment. In it, if the DM chooses the latter allocation, under

3The finding of the DWK experiment reported above has been replicated in other studies as well,
specifically, in Larson and Capra (2009), Matthey and Regner (2011), Feiler (2014) and Grossman and
Van Der Weele (2017). The broader theme that moral behavior may have a more self-serving basis,
including drifting into the territory of moral hypocrisy, and that situational excuses are often employed to
justify immoral behavior has been reaffirmed in a large body of experimental findings beyond these papers.
Without trying to be exhaustive, some papers emphasizing this theme are Pillutla and Murnighan (1995),
Schweitzer and Hsee (2002), Mazar, Amir, and Ariely (2008), Wiltermuth (2011), Shalvi et al. (2011), Lewis
et al. (2012), Rodriguez-Lara and Moreno-Garrido (2012), Gino, Ayal, and Ariely (2013), Lin, Zlatev, and
Miller (2017), Exley (2018), Garcia, Massoni, and Villeval (2020), Falk, Neuber, and Szech (2020), Gneezy
et al. (2020), and Exley (2020).
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which the other individual receives only $1, then presumably her self-image of being moral

is undermined and this, in part, influences her to choose the allocation (5, 5). On the other

hand, in the second treatment, where there is risk in the environment, the distinction

between the ex ante opportunity available to the other individual and his ex post outcome

provides the DM with an additional mechanism to maintain her self-image as moral. To see

this, consider the lottery [(6, 1), 0.5; (6, 5), 0.5] that results from not revealing information

and choosing A in the second treatment. Whereas in the case of certainty, the choice of the

allocation (6, 1) may undermine her self-image as moral, under risk, even if this allocation

were to realize from the lottery, she may still be able to maintain it, at least partially. She

can do so by reasoning that although the other individual ended up receiving only $1, her

choice did provide him with a better ex ante opportunity than that—e.g., she may reason

that his expected earning of $3 was much higher than what he ended up with ex post. In

other words, when the other individual receives an unfavorable (ex post) outcome under a

lottery, the presence of (ex ante) risk allows the DM to think of herself as more moral than

what his outcome warrants by falling back on the excuse that his overall opportunity was

much more favorable than his actual outcome—as if saying to herself, “Well, I intended

better, but fate is to be blamed for his unfavorable outcome!” This, in short, is the moral

hypocrisy in behavior that we capture in our decision model.

To explain things a little more formally, in the way of notation, let X and Y , respectively,

denote the set of outcomes of the DM and the other individual, so that X×Y denotes the

set of allocations for this two-member society. Let p be a (simple) lottery on the allocation

space X × Y , with pX and pY denoting its marginals over X and Y , respectively. Under

our proposed moral hypocrisy (MH) representation of preferences, the DM’s assessment of

an allocation-lottery like p is given by:

W (p) =
∑
x∈X

pX(x)u(x) +
∑
y∈Y

pY (y) max

v(y),
∑
ỹ∈Y

pY (ỹ)v(ỹ)


Here, the functions u : X → R and v : Y → R reflect the DM’s assessment of her own

and the other individual’s outcomes, respectively. First, observe that the DM’s assessment

of a (sure) allocation like (x, y) ∈ X × Y is simply given by u(x) + v(y). Next, consider

her assessment of a non-degenerate allocation-lottery, p. To understand this assessment,

observe that
∑
ỹ∈Y pY (ỹ)v(ỹ) represents an expected utility like evaluation, based on the

function v, of the overall risk, pY , faced by the other individual under p—think of this

as the DM’s assessment of the other individual’s ex ante opportunity under this lottery.

Further, let Y p = {y ∈ Y : v(y) ≥
∑
ỹ∈Y pY (ỹ)v(ỹ)} denote the set of outcomes for the

other individual that the DM considers to be at least as good as his ex ante opportunity

under p. Similarly, let Y p = {y ∈ Y : v(y) <
∑
ỹ∈Y pY (ỹ)v(ỹ)} denote the set of outcomes

for him that she considers worse than his ex ante opportunity. We may, then, rewrite her
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assessment of p under an MH representation as:

W (p) =

consequentialist assessment︷ ︸︸ ︷∑
x∈X

pX(x)u(x) +
∑
y∈Y p

pY (y)v(y) +

counterfactual MH assessment︷ ︸︸ ︷∑
y∈Y p

pY (y)
∑
ỹ∈Y

pY (ỹ)v(ỹ)

When it comes to assessing her own risk, pX , under p, the DM goes by a standard con-

sequentialist expected utility evaluation,
∑
x∈X pX(x)u(x). The same holds true when it

comes to her assessment of the other individual’s outcomes that are at least as good as his

ex ante opportunity under the lottery, i.e., y ∈ Y p. However, when it comes to outcomes,

y ∈ Y p, that are worse than his ex ante opportunity, the DM abandons consequentialist

reasoning. Instead, she correctly anticipates that in the event of the other individual re-

ceiving such an outcome, ex post, she will have the wiggle room to engage in counterfactual

MH reasoning of the “I–intended–better–but–fate–is–to–be–blamed” type. Specifically, in

her evaluation, instead of attributing her assessment of the actual outcome he receives to

such events, she attributes her assessment of his ex ante opportunity under the lottery,∑
ỹ∈Y pY (ỹ)v(ỹ). In other words, with respect to these events, the DM’s assessment inflates

her moral self image beyond what is warranted by the actual consequences experienced by

the other individual under her choice.

Going back to DWK’s experiment, as per the MH representation, to rationalize the choice

of the allocation (5, 5) over (6, 1) requires that u(5) + v(5) > u(6) + v(1); or, equivalently,

u(6) − u(5) < v(5) − v(1). On the other hand, to rationalize the choice of the lottery

p = [(6, 1), 0.5; (6, 5), 0.5] over the lottery q = [(5, 5), 0.5; (6, 5), 0.5] requires that:

W (p) = u(6) + 0.5v(5) + 0.5[0.5v(5) + 0.5v(1)] > 0.5u(5) + 0.5u(6) + v(5) = W (q)

i.e., u(6)− u(5) > 0.5[v(5)− v(1)]. In other words, an MH type DM will make these two

choices in the two treatments if 0.5[v(5)− v(1)] < u(6)− u(5) < v(5)− v(1).

In this paper, we provide a justification for the MH representation by demonstrating that

it can be derived from plausible axioms on behavior. The key idea that our axiomati-

zation builds on is that the DM behaves like a motivated Bayesian (Gino, Norton, and

Weber, 2016) when it comes to evaluating risk faced by the other individual. By motivated

Bayesian, we refer here to a tendency to subjectively process objective probabilities in a

systematically biased manner with the goal of maintaining an elevated moral self image.

Specifically, we show that the DM’s choice behavior can be understood in terms of a cog-

nitive manipulation wherein she underweights the probabilities of unfavorable outcomes

that the other individual may receive and, accordingly, overweights the probabilities of fa-

vorable ones. Our key axiom, morally motivated Bayesianism, uses a well known method

to decompose lotteries introduced in Gul (1991) to precisely identify the exact nature of

this underweighting/overweighting. Here, it is worth noting that there is experimental ev-

idence supporting the viewpoint that DMs may subjectively bias objective probabilities to
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embellish their self image of being moral. For instance, Exley (2016) reports the findings

of an experiment in which subjects had to assess risky prospects that impacted their own

payoffs and that of a charity (American Red Cross). The experimental results demon-

strate that when comparing prospects that involved tradeoffs between their own payoffs

and that of the charity, subjects behaved as if they were systematically distorting objec-

tive probabilities so as to provide themselves with an excuse for not giving to the charity.4

Other studies, e.g., Eil and Rao (2011) and Mobius et al. (2011), document that, like in

our model, underweighting negative and overweighting positive outcomes is a prominent

channel through which individuals maintain an exaggerated self image.

Besides providing a behavioral foundation for the model, we also emphasize its empirical

content by showing that it is consistent with a wide array of existing experimental evi-

dence on generous behavior in risky social environments. Specifically, the model helps us

connect evidence from different domains. For instance, we show how the phenomenon of

information avoidance in the context of moral decisions, like in the DWK experiment, is

connected behaviorally to why DMs may be more risk loving over others’ prospects than

their own and why they may be much more tolerant to ex post inequalities when they can

fall back on the excuse that everyone had a chance or opportunity of doing well.

Our central theme that generous behavior may not be driven by a deep concern for fairness

or altruism but rather by self-serving, egoistical emotions, has been developed in other

decision theoretic papers as well. Dillenberger and Sadowski (2012) build on the framework

of Gul and Pesendorfer (2001) and develop a model that formalizes the idea that the

underlying motivation behind generous behavior may be the desire to avoid shame. They

consider an environment with a DM and one other individual in which the DM’s choice of

an allocation from a set of allocations is observable to the other individual but the choice

of the set itself, made in an earlier stage, is not. Choosing a selfish option when a more

prosocial one is available in the choice set may inflict shame on the DM and generate

generous behavior. At the same time, when provided with the opportunity to choose the

choice set itself at the earlier stage, such a DM, who is assumed to be forward-looking,

may choose it in a way that optimally solves the trade-off between her desire to behave

selfishly but in a way that avoids shame. Their model formalizes this line of reasoning and

behaviorally characterizes it. Evren and Minardi (2017) work with a set-up that is identical

to the one in Dillenberger and Sadowski (2012) and behaviorally characterize a decision

model in which the DM experiences a warm glow from taking a prosocial action, but only

when it is publicly observed. That is, the DM’s warm glow comes from the social acclaim

she receives from behaving prosocially when her choice is observed by the other individual.

The key to experiencing this warm glow rests in the ability to choose a privately costly

prosocial alternative when a more selfish alternative is available in the menu. Because

of this, an important behavioral distinction emerges between the two models—whereas

in Dillenberger and Sadowski (2012), anticipating the experience of shame, the DM has

4These results were replicated when the role of the charity was taken by another individual.
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a preference for smaller menus in the first stage, in Evren and Minardi (2017), the need

to have selfish alternatives in the menu to enjoy social acclaim results in a preference for

larger menus. Working within the same framework, Saito (2015) behaviorally characterizes

the phenomena of impure altruism, defined as the tendency to make prosocial choices in

order to feel pride in acting altruistically and to avoid the shame of acting selfishly; and

impure selfishness, defined as the temptation to act selfishly faced by a DM who otherwise

wants to act altruistically. Saito’s representation allows us to better understand how these

forces of pride, shame and temptation to act selfishly may interact in conflicting ways and

how a DM’s choices in social settings is shaped by this interaction.

Our work also relates to the literature that has looked into the foundations of social pref-

erences under risk. The first generation of social preference models [e.g., Fehr and Schmidt

(1999), Bolton and Ockenfels (2000) and Charness and Rabin (2002)] were proposed for

risk-free environments. The literature soon discovered, though, that these models cannot

always be readily extended to environments of risk using standard approaches like expected

utility or the available non-expected utility theories. The reason for this is that these stan-

dard models of decision making under risk are all outcome-based. As such, they fail to

capture concerns for opportunities that DMs with social preferences very often exhibit

in environments featuring risk.5 Hence, the quest in the literature has been to develop

appropriate models of opportunity-sensitive social preferences under risk. In this regard,

the dominant approach in the literature has been that of procedural fairness. Specifically,

in environments featuring risk, the case has been made that concerns for fairness translate

not just to a concern for equality of ex post outcomes but also for equality of ex ante op-

portunities, i.e., procedural fairness. A particularly compelling way of implementing this

viewpoint has been proposed by Fudenberg and Levine (2012) and Saito (2013). Their pro-

posal, formalized in the expected inequality aversion (EIA) model of Saito (2013), involves

using the expected outcome that different individuals receive under an allocation-lottery

as a proxy for the ex ante opportunities available to them under it and using the Fehr-

Schmidt functional form to assess not just the distribution of outcomes but also that of

opportunities. The assessment of an allocation-lottery under this model is determined by

taking a weighted average of these two separate Fehr-Schmidt assessments of outcomes

and opportunities. As should be evident, a key difference between our paper and this work

is the very different perspective we take on the role that opportunity concerns play in the

context of social preferences. Specifically, the difference in emphasis between the MH and

EIA models regarding what drives generous behavior—a deep concern for equality or a

more self serving pursuit to appear moral—translates into two very different theories of

why opportunity concerns may matter to DMs in risky social environments. We will show

that this difference can indeed be empirically validated.

5Formally speaking, concern for opportunities often results in the preferences of such decision makers
violating the property of stochastic dominance, which is shared by all the standard models of decision
making under risk. For instance, in the DWK experiment, the preference for (5, 5) over (6, 1) along with
that for the lottery [(6, 1), 0.5; (6, 5), 0.5] over the lottery [(5, 5), 0.5; (6, 5), 0.5] violates stochastic dominance.
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The rest of the paper is organized as follows. Section 2 lays out the framework and

formally defines an MH representation. Section 3 provides a behavioral foundation for

the representation and contains our representation result. Section 4 further highlights the

empirical content of the MH model by relating it to a wide array of experimental evidence

on generous behavior in risky environments. The proof of the representation result appears

in the Appendix.

2 A Decision Model of Moral Hypocrisy

2.1 Preliminaries

We consider a set-up with a decision maker (DM) and one other individual. Associated

with each individual is a well-defined set of outcomes. We denote the set of outcomes of

the DM by X and that of the other individual by Y . We take these sets to be connected,

separable metric spaces.6 Accordingly, X×Y denotes the set of allocations for this two-

member society. We denote generic elements of X by x, x′ etc., that of Y by y, y′ etc.,

and that of X×Y by (x, y), (x′, y′) etc. We denote the set of simple probability measures

(lotteries, for short) on the sets X×Y , X and Y by ∆, ∆(X) and ∆(Y ), respectively. These

sets are endowed with the topology of weak convergence. We refer to elements of ∆ as

allocation-lotteries and denote generic elements of this set by p, q etc. For any allocation-

lottery p ∈ ∆, we denote the marginal probability measure of p on X and Y by pX ∈
∆(X) and pY ∈ ∆(Y ), respectively. Since any lottery in ∆(X) is the marginal probability

measure on X of some allocation-lottery in ∆, to economize on notation, we also denote

generic elements of ∆(X) by pX , qX etc. Analogously, we denote generic elements of

∆(Y ) by pY , qY etc. For any p ∈ ∆, p(x, y) denotes the probability that p assigns to the

outcome (x, y) ∈ X×Y . Similarly, pX(x) and pY (y) denote the probabilities that pX and

pY assign to the outcomes x and y, respectively. For any pX ∈ ∆(X) and pY ∈ ∆(Y ),
denote by pX ◦ pY the product measure in ∆ given by (pX ◦ pY )(x, y) = pX(x) × pY (y).
We abuse notation and do not distinguish between an outcome and the degenerate lottery

that gives that outcome with unit probability. Thus, (x, y) ∈ X × Y is also understood as

(x, y) ∈ ∆, x ∈ X as x ∈ ∆(X), etc. We assume reduction of compound lotteries all along

and any convex combination of lotteries,
∑K
k=1 α

kpk, pk ∈ ∆, αk ∈ [0, 1], k = 1, . . . ,K,

and
∑K
k=1 α

k = 1, denotes an element in ∆ that gives the outcome (x, y) with probability∑K
k=1 α

kpk(x, y).
6The set-up of course allows for the case where X and Y are the same set. For example, X and Y may

be some interval of R in the case where outcomes are monetary ones.
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2.2 Preferences and Representation

The DM has preferences over the set ∆ of allocation-lotteries that is specified by a binary

relation < ⊆ ∆ × ∆. The symmetric and asymmetric components of < are defined in

the usual way and denoted by ∼ and �, respectively. We now formally define a moral

hypocrisy (MH) representation of <.

Definition 1. An MH representation of < consists of a pair of continuous functions

u : X → R and v : Y → R such that the function W : ∆→ R, given by

W (p) =
∑
x∈X

pX(x)u(x) +
∑
y∈Y

pY (y) max

v(y),
∑
ỹ∈Y

pY (ỹ)v(ỹ)

 ,
represents <. That is, p < q iff W (p) ≥W (q).

As suggested in the Introduction, when it comes to assessing the risk, pX , that she faces

under an allocation-lottery p, the DM goes by a standard expected utility criterion. That

is, her assessment of the own-lottery pX under p is given by
∑
x∈X pX(x)u(x), where

u : X → R represents her assessment of her own outcomes. On the other hand, when

it comes to assessing the risk, pY , faced by the other individual under p, what is “non-

standard” about her assessment is that it incorporates counterfactual moral hypocrisy

reasoning. Such reasoning comes to the fore in relation to those events in which the DM

considers the outcome, y, that the other individual receives to be worse than her assessment

of his ex ante opportunity under the lottery, i.e., when v(y) <
∑
ỹ∈Y pY (ỹ)v(ỹ), where

v : Y → R represents her assessment of the other individual’s outcomes. With respect

to such events, the DM’s assessment internalizes the fact that, ex post, she will end up

protecting her self-image of being moral on the pretext that the other individual had a

better ex ante opportunity under this lottery than the outcome he actually received. The

exact way she incorporates this reasoning in her evaluation is by attributing her assessment

of his ex ante opportunity under this lottery,
∑
ỹ∈Y pY (ỹ)v(ỹ), to such events.

Example: Avoiding Information

As a further illustration of how the MH representation works, we now consider an ex-

tension of the DWK experiment conducted by Feiler (2014). Recall that in the hidden

information treatment of DWK, the probability that the two alternatives, A and B, result

in aligned payoffs for the DM and the other individual, i.e., (6, 5) and (5, 1), respectively,

is the same as the probability that they result in non-aligned payoffs, i.e., (6, 1) and (5, 5),
respectively. Feiler (2014) considers the case where these probabilities need not be the

same. Specifically, five different probability values of the aligned payoffs realizing were

9



considered, α = 0, 0.2, 0.5, 0.8, 1, with the non-aligned payoffs realizing with complemen-

tary probability. Their experimental results show that participants were less likely to

reveal information higher was the probability of the aligned payoffs realizing. In their

probit estimates, the probability that a participant would reveal information decreased by

0.11 when the probability of the aligned payoffs increased from 0.5 to 0.8 and by 0.13 when

this probability increased from 0.2 to 0.8. Further, as one would expect, participants who

in the choice problem between the allocations (6, 1) and (5, 5) [the case of α = 0] chose the

latter were much more likely to reveal information than the ones who chose the former.

We will now provide a rationalization for this evidence in the context of the MH model.

To that end, let the aligned and non-aligned payoffs realize with probabilities α and 1−α,

respectively, where α > 0. Then the choice of A without revealing information results in

the lottery p = [(6, 5), α; (6, 1), 1−α]. On the other hand, the choice to reveal information

followed by the choice of A if the payoffs are aligned and that of B if they are not results in

the lottery q = [(6, 5), α; (5, 5), 1−α]. According to the MH representation, the assessment

of these lotteries is given by:

W (p) = u(6) + αv(5) + (1− α)[αv(5) + (1− α)v(1)]
= u(6) + v(5)− (1− α)2[v(5)− v(1)]

W (q) = αu(6) + (1− α)u(5) + v(5)
⇒W (p)−W (q) = (1− α)[u(6)− u(5)]− (1− α)2[v(5)− v(1)]

⇒W (p) ≥W (q) ⇔ α ≥ 1− u(6)− u(5)
v(5)− v(1)

Recall that in the choice between the allocations (6, 1) and (5, 5) an MH type DM will

choose the former if u(6)−u(5) > v(5)−v(1), or, u(6)−u(5)
v(5)−v(1) > 1. Hence, what our model says

is that any DM who, in the treatment without uncertainty, chooses A over B will choose not

to reveal information for any value of α. Therefore, if the proportion of DMs who choose to

reveal information decreases as α increases, then this change in behavior must come from

the ones who choose B over A under certainty. For such a DM, u(6)− u(5) ≤ v(5)− v(1)
and she will choose to not reveal information and choose A if the probability α of the

payoffs being aligned is at least as large as the cutoff 1 − u(6)−u(5)
v(5)−v(1) ∈ (0, 1). Further,

amongst these DMs, the ratio u(6)−u(5)
v(5)−v(1) will, presumably, be smaller for a relatively more

prosocial DM compared to a less prosocial one. As such, this cutoff probability will be

higher for the former compared to the latter. This means that as α increases relatively

more prosocial ones from this group will start switching to not revealing information.
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Example: Risk loving attitude over others’ risks

Consider the choice between the lottery [$200, 0.5; $0, 0.5] vs. $100 for sure; or that between

[$100, 0.7; $0, 0.3] vs. $70 for sure. Since in each of these comparisons the sure amount

is the expected value of the lottery, the logic of risk aversion suggests that most DMs in

these comparisons would choose the sure amount if they were choosing for themselves. Is

the same true if DMs were making these choices for another individual? Evidence suggests

that this may not always be the case. E.g., Mengarelli et al. (2014) gave choices like the

ones above to experimental subjects with the outcomes of these choices being received by

a matched participant in the experiment. They found that in many of these choices a very

significant number of subjects, sometimes more than a majority, chose the lottery instead

of its expected value for sure when choosing for others, suggesting risk loving attitudes

over others’ risks. Such risk loving behavior over others’ prospects is something that MH-

type DMs may engage in. To see this, consider such a DM whose choices are represented

by the pair (u, v), both of which, say, are from the CRRA family, i.e., u(x) = x1−λ

1−λ and

v(y) = y1−λ̂

1−λ̂ , λ, λ̂ ∈ (0, 1). This DM, for instance, will choose the lottery [200, 0.5; 0, 0.5]
over the sure amount of 100 when choosing for the other individual if:7

0.5× 2001−λ̂

1− λ̂
+ 0.5

[
0.5× 2001−λ̂

1− λ̂
+ 0.5× 0

]
≥ 1001−λ̂

1− λ̂
⇔ λ̂ ≤ 1− ln(4/3)

ln(2) = 0.585

To further illustrate this theme that MH-type DMs may be risk loving when it comes to risk

faced by others, consider the following piece of experimental evidence from Cettolin, Riedl,

and Tran (2017). Specifically, consider two of the tasks that were given to subjects in this

experiment. The first of these was a standard dictator game. In it, out of an endowment

of M experimental currency units, the DM had to decide what amount y ∈ [0,M ] to give

to the other individual, so that the resulting allocation was (M − y, y). In the second,

the DM still had to decide on the amount y to give from M , but whereas her payoff

continued to be M − y, the other individual’s was decided by the lottery [1.25y, 0.8; 0, 0.2].
The experimental goal was to compare the value of y that subjects chose in these tasks.

Observe that for any value of y, the other individual’s prospects in the second task is a

mean preserving spread of that under the first. In that sense, the second task involves more

risk for the other individual. Another way to see this is to take a standard utility function

from, say, the CRRA or CARA family and note that for a given y, the expected utility of

the lottery faced by the other individual in the second task is smaller than the utility from

the sure amount under the first. Therefore, if the DM were to assess the risk faced by the

other individual according to an expected utility criterion, her choice of y would be higher

in the first task than in the second. However, this is not what the experimental results

showed. On average, experimental subjects chose to give about 15% more in the second

7Assume that DM’s own earnings across these two options are the same.
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task compared to the first. This evidence is however consistent with the MH model for a

wide class of specifications of the utility functions. For instance, take u and v from the

CRRA family like above. Assuming an interior solution, the amount ŷ given in the first

task solves:

u′(M − ŷ) = (M − ŷ)−λ = ŷ−λ̂ = v′(ŷ)

On the other hand, the MH assessment of the lottery in the second task is given by:

u(M − y) + 0.8v(1.25y) + 0.2[0.8v(1.25y) + 0.2v(0)] = u(M − y) + 0.96v(1.25y)

and the amount ỹ given in this task solves:

(M − ỹ)−λ = 0.96× 1.25(1.25ỹ)−λ̂ = 1.2× 1.25−λ̂ỹ−λ̂

Observe that for λ̂ < ln 1.2
ln 1.25 = 0.817, we have 1.2× 1.25−λ̂ > 1. Accordingly, (M − ỹ)−λ >

ỹ−λ̂ and, it follows that ỹ > ŷ. That is, for λ̂ < 0.817, this DM gives more in the second

task compared to the first in line with the experimental evidence.

These examples illustrate the fact that MH type DMs can demonstrate more risk loving

attitudes over others’ risks than their own. We will talk more about this feature of the

model in Section 4 when we further discuss its empirical content.

3 Axiomatic Foundations of the MH Model

We now introduce a set of axioms on the DM’s preferences that characterizes an MH

representation. The first two axioms are standard.

Axiom (Weak Order). < is complete and transitive.

Axiom (Continuity). For any p ∈ ∆, the sets {q ∈ ∆ : q < p} and {q ∈ ∆ : p < q} are

closed (in the topology of weak convergence).

Our next axiom weakens the standard Independence condition of vNM expected utility

theory.

Axiom (MH Independence). For any p, p′, q, q′ ∈ ∆ with pY = p′Y , qY = q′Y and p′ ∼ q′,

p < q ⇐⇒ αp+ (1− α)p′ < αq + (1− α)q′

The reason the standard independence axiom may fail to hold in our set-up is because

when we take the probability mixture of two allocation-lotteries to form a compound

lottery, the risk faced by the other individual under the compound lottery and those under
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the component sub-lotteries may not be the same. Accordingly, the scope for the DM to

engage in counterfactual MH reasoning may differ across these allocation-lotteries and, in

turn, may result in preference reversals and violations of independence. For instance, in

the DWK experiment, consider an MH type DM who prefers the allocation (5, 5) to (6, 1).
Given that this is a comparison between sure allocations and no risk is involved, there is no

scope for MH reasoning. But in the comparison between the 50:50 mixtures, 1
2(5, 5)+ 1

2(6, 5)
and 1

2(6, 1) + 1
2(6, 5), this is not the case. Whereas in the mixture 1

2(5, 5) + 1
2(6, 5), the

other individual faces no risk and there is still no scope for MH reasoning, in the mixture
1
2(6, 1) + 1

2(6, 5), as we have seen, the DM can indeed profitably engage in such reasoning.

This is what may produce a preference reversal and violation of independence: (5, 5) �
(6, 1) but 1

2(6, 1) + 1
2(6, 5) � 1

2(5, 5) + 1
2(6, 5). However, like in the statement of the axiom,

when we consider allocation-lotteries like p and p′ (respectively, q and q′) under which

the other individual faces the same risk, then the risk faced by him under the compound

lottery αp+ (1−α)p′ (respectively, αq+ (1−α)q′) is also the same. As such, the DM has

the same scope for counterfactual MH reasoning under the respective mixtures as under

their component sub-lotteries. Hence, in comparisons between such mixtures, the DM,

presumably, should not have a reason to violate the logic of independence. Note that if

the DM’s preferences respect MH Independence, then her assessment of risks over her own

outcomes follows the logic of Bayesian expected utility maximization.

We now introduce the key axiom of the paper that delineates the scope of MH reasoning.

The axiom identifies the departure from Bayesian rationality involved in the DM’s assess-

ment of the risk faced by the other individual, benchmarking this departure by the fact

that when it comes to assessing the risk she faces, she very much behaves like a Bayesian.

This departure can be thought of as a form of motivated Bayesian reasoning with the DM

subjectively processing objective probabilities in a way that underweights probabilities of

unfavorable outcomes that the other individual may receive. The axiom identifies the exact

nature and extent of this distortion. To state it, we need to introduce two definitions.

The first of these definitions provides a way to think about risk faced by the other individual

in terms of a similar risk faced by the DM.8

Definition 2. pX ◦ y = [(x1, y), α1; . . . ; (xn, y), αn] ∈ ∆ is a risk translation of x ◦ pY =
[(x, y1), α1; . . . ; (x, yn), αn] ∈ ∆ if for each i = 1, . . . , n, (xi, y) ∼ (x, yi).

Observe that under the allocation lottery x ◦ pY = [(x, y1), α1; . . . ; (x, yn), αn], the DM

doesn’t face any risk and all the risk is borne by the other individual. If one were to

think of this risk faced by the other individual in terms of an equivalent risk faced by the

DM, what would that risk be? The notion of a risk translation provides a natural way of

answering this question.

8Recall that for any pX ∈ ∆(X) and pY ∈ ∆(Y ), we denote by pX ◦ pY the product measure in ∆ given
by (pX ◦ pY )(x, y) = pX(x)× pY (y).
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Our next definition refers to a way of decomposing lotteries that was proposed in Gul

(1991). Although this decomposition can be applied to any lottery, for our purpose, we

restrict attention to allocation-lotteries in which all the risk is borne by the DM and the

other individual doesn’t face any risk.

Definition 3. (α, qX ◦ y, rX ◦ y) ∈ [0, 1]×∆×∆ is a Gul decomposition of pX ◦ y ∈ ∆ if:

1. pX ◦ y = α(qX ◦ y) + (1− α)(rX ◦ y)

2. (x, y) in the support of qX ◦ y implies pX ◦ y < (x, y)

3. (x, y) in the support of rX ◦ y implies (x, y) < pX ◦ y

A Gul decomposition of the lottery pX ◦ y is arrived at in the following way. First, the

support of the lottery is decomposed into two parts, one comprising those outcomes which

are less preferred to pX ◦ y (“unfavorable outcomes”), and the other comprising those

outcomes which are preferred to pX ◦ y (“favorable outcomes”). Then, the probabilities of

all unfavorable outcomes are normalized by dividing them by α, the sum of all unfavorable

outcome probabilities, to arrive at the lottery qX ◦ y. Similarly, the probabilities of all

favorable outcomes are normalized by dividing them by 1−α, the the sum of all favorable

outcome probabilities, to arrive at the lottery rX ◦ y. Hence, pX ◦ y = α(qX ◦ y) + (1 −
α)(rX ◦ y). Observe that as long as any certainty equivalent of pX ◦ y is not in its support,

this decomposition is unique. Otherwise, there will be an infinity of such decompositions.9

We can now state our key axiom that clarifies the exact nature of motivated Bayesian

reasoning involved in the DM’s assessments of risk faced by the other individual.

Axiom (Morally Motivated Bayesianism). If pX ◦ y ∈ ∆ is a risk translation of

x ◦ pY ∈ ∆ and (α, qX ◦ y, rX ◦ y) is a Gul decomposition of pX ◦ y, then

x ◦ pY ∼ α2(qX ◦ y) + (1− α2)(rX ◦ y)

To understand the axiom, first, note that if the DM behaved like a Bayesian expected utility

maximizer, she would be indifferent between x◦pY and pX ◦y = α(qX ◦y)+(1−α)(rX ◦y).
On the other hand, according to the axiom, the DM that we are modeling is indifferent

9In Gul (1991), such a decomposition is referred to as an elation/disappointment decomposition (EDD),
with the elation and disappointment outcomes corresponding to what we are referring here as favorable
and unfavorable outcomes, respectively. We avoid the EDD terminology as, in our context, the emotions
at work when using this concept do not correspond to elation and disappointment. Further, when it comes
to notation, note that in a triple specifying an EDD in Gul (1991), the first entry refers to the total
probability of elation (favorable) outcomes, the second to the elation (favorable) lottery and the third to
the disappointment (unfavorable) lottery. In terms of that notation, the decomposition in Definition 3
would be written as (1 − α, rX ◦ y, qX ◦ y). We prefer the slightly different notation here as it is more
efficacious when it comes to stating our axiom.
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between x◦pY and α2(qX ◦y)+(1−α2)(rX ◦y). Note that qX ◦y and rX ◦y are essentially

the decomposed risk translations of the unfavorable and favorable outcomes, respectively,

that the other individual receives under the lottery x ◦ pY . Therefore, given that α2 < α

for α ∈ (0, 1), this means that the DM’s assessment of x◦pY is akin to underweighting (re-

spectively, overweighting) the likelihood of unfavorable (respectively, favorable) outcomes

that the other individual receives under it, compared to how a Bayesian would weight these

outcomes. The axiom provides a precise specification of the extent of this underweight-

ing/overweighting. In other words, the axiom captures the exact sense in which the DM

can be thought of as subjectively distorting objective probabilities in a self-serving manner

when taking account of the consequences of her choices for the other individual.

In an MH representation, the DM’s assessment of the risk she faces and that faced by the

other individual are separable and, in particular, correlations between the outcomes of the

two do not matter. Our next axiom provides the foundation for this. To understand what

it says, consider allocation lotteries like p, p′, q, q′ ∈ ∆ for which pY = p′Y and qY = q′Y ,

i.e., the other individual faces the same risk under p and p′, as well as under q and q′.

Further, suppose p ∼ q and p′ ∼ q′. This means that the DM considers the preference or

“utility”difference between p and p′ to be the same as that between q and q′. If correlations

do not matter, then the difference between q and q′ is the same as that between qX ◦ qY
and q′X ◦ q′Y = q′X ◦ qY . Additionally, if assessments of the risk faced by the two are

separable, then this difference should not change if the common lottery, qY , faced by the

other individual under both is replaced by any other lottery, say, the lottery pY . Putting

everything together, this means that for a DM whose assessment of the risks that she and

the other individual face are separable, the difference between p and p′ should be the same

as that between qX ◦ pY and q′X ◦ pY . The axiom below formalizes this basic idea.

Axiom (Separability). For all p, p′, q, q′ ∈ ∆ with pY = p′Y and qY = q′Y ,

[p ∼ q, p′ ∼ q′] =⇒ 1
2p+ 1

2(q′X ◦ pY ) ∼ 1
2p
′ + 1

2(qX ◦ pY )

The indifference condition, 1
2p+ 1

2(q′X ◦ pY ) ∼ 1
2p
′ + 1

2(qX ◦ pY ), is nothing but a tradeoff

condition establishing that the DM considers the difference between p and p′ the same as

that between qX ◦ pY and q′X ◦ pY . To see why, first note that the other individual faces

the same risk under the four allocation lotteries, p, p′, qX ◦ pY and q′X ◦ pY . Accordingly,

following MH Independence, the DM’s comparison of the two lotteries, 1
2p+ 1

2(q′X ◦pY ) and
1
2p
′ + 1

2(qX ◦ pY ), can be viewed separably across the two 50:50 events. The indifference

between these two lotteries, therefore, reveals that an increase, say, in the DM’s utility

from replacing p′ with p must be exactly compensated by a decrease in her utility from

replacing qX ◦ pY with q′X ◦ pY ; hence, the conclusion stated above.

Finally, for our representation result, we need a richness condition on the domain of pref-

erences. Essentially, it requires the domain to be rich enough to ensure that the DM’s own
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outcomes have a relatively stronger bearing on her preference assessments than those of

the other individual, in the sense that any change in her “utility” achieved by varying the

other individual’s outcomes can always be achieved by varying her own. From a behav-

ioral perspective, a condition of this kind seems a natural one for the type of DM we are

modeling for whom moral concerns are largely driven by self-serving impulses.

Condition (Richness). For all x ∈ X, y, y′ ∈ Y , if (x, y) � (x, y′), then there exists

x′ ∈ X such that either (i) (x′, y′) � (x, y) or (ii) (x, y′) � (x′, y).

The preference (x, y) � (x, y′) reveals that holding her own outcome fixed at x and changing

that of the other individual from y′ to y makes the DM strictly better off. Now, if x′ exists

such that (x′, y′) � (x, y) � (x, y′), then the extent of this improvement is smaller than

when her own outcome changes from x to x′ with the other individual’s held fixed at y′.

On the other hand, if x′ exists such that (x, y) � (x, y′) � (x′, y), then too, the extent

of the improvement is smaller than when her own outcome changes from x′ to x with the

other individual’s held fixed at y.

The axioms listed above together constitute a choice-theoretic foundation for the MH

representation as the following theorem establishes.

Theorem. Suppose the Richness condition holds. Then < has an MH representation if

and only if it satisfies Weak Order, Continuity, MH Independence, Morally Motivated

Bayesianism and Separability. Further, if (u, v) and (u′, v′) are both MH representations

of <, then there exists constants α > 0, β, β′ such that u′ = αu+ β and v′ = αv + β′.

Proof. Please refer to Sections A.1 and A.2 in the Appendix.

The Theorem also establishes that the two utility functions representing the DM’s assess-

ment of her own outcomes and those of the other individual are unique up to a common

positive affine transformation.

4 Empirical Content of the MH Model: Further Comments

In this Section, we further highlight the empirical content of the MH model and its connec-

tion to observed patterns of behavior seen in experiments. As a first step in this exercise

and to provide it with greater context, it is instructive to formally distinguish the moral

hypocrisy motivation underlying generous behavior as outlined in our model from a fairness

motivation, understood as an aversion to inequality. We specifically consider inequality

aversion as it is not only the predominant paradigm within which social preferences have
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been studied in the literature but also because the behavioral motivation underlying it

is in sharp contrast to that underlying decision making in our model. In particular, we

want to highlight how our theory and the inequality aversion paradigm produce two very

different rationales for why opportunity concerns may matter in social preferences; and we

show below that this difference can be substantiated based on observed behavior.

As is well known, the leading model in economics that captures the idea of fairness as

inequality aversion is due to Fehr and Schmidt (1999). The decision-theoretics underlying

the original formulation of the model was primarily geared towards an environment of

certainty and in it a DM’s assessment of social allocations is allowed to be sensitive to

inequality in outcomes. Subsequent research has highlighted that when there is risk in the

environment, DMs may care not just about inequality of ex post outcomes but also about

inequality of ex ante opportunities, i.e., care about procedural fairness. To accommodate

this concern about inequality of both outcomes and opportunities, Fudenberg and Levine

(2012) and Saito (2013) have proposed an extension of the Fehr-Schmidt model that,

following the latter, we refer to as the expected inequality aversion (EIA) model.

The EIA Model

We now formally define the EIA model in the context of our primitive set up. To do so,

in this section, we will assume that X and Y are intervals of the real line. Further, in

the way of notation, for any probability measures p ∈ ∆, pX ∈ ∆(X) and pY ∈ ∆(Y ), we

shall denote by Ep[.],EpX [.] and EpY [.], respectively, the expectations operator w.r.t. these

measures.

Definition 4. An EIA representation of < on ∆ is a triple (β, δ, γ) ∈ R2
+ × [0, 1] such

that the function WEIA : ∆→ R, given by

WEIA(p) = γEp[wFS(x, y)] + (1− γ)wFS(EpX [x],EpY [y])

represents <, where wFS : X × Y → R is the Fehr-Schmidt functional form given by

wFS(x, y) = x− βmax{x− y, 0} − δmax{y − x, 0}, with δ > β.

Under an EIA assessment of the allocation-lottery p, the term Ep[wFS(x, y)] incorpo-

rates the DM’s aversion to inequality of ex post outcomes. To see this, observe that this

term is nothing but the expected utility of the lottery, p, evaluated with respect to the

Fehr-Schmidt utility function wFS . Under the function wFS , in assessing any allocation

(x, y), the term βmax{x−y, 0} captures the DM’s disutility from advantageous inequality,

whereas the term δmax{y − x, 0} captures her disutility from disadvantageous inequality.

The condition δ > β implies that the DM is more sensitive to disadvantageous than ad-
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vantageous inequality. On the other hand, the term wFS(EpX [x],EpY [y]) incorporates the

DM’s aversion to inequality of ex ante opportunities. Observe that EpX [x] and EpY [y] spec-

ify, respectively, the DM’s and the other individual’s expected outcomes under the lottery,

p. Hence, thinking of these expected outcomes as indicative of the ex ante opportunities

available to the two individuals under p and using them as arguments of wFS captures

aversion to inequality of opportunities. Finally, γ and 1− γ serve as weights that the DM

puts on the ex post and ex ante concerns, respectively. In the subsequent discussion, we

will think of the logic of inequality aversion as it applies to risky social environments in

the context of the EIA model.

Moral hypocrisy and inequality aversion are observationally distinct

We have already shown that the MH model can accommodate the evidence of the DWK

experiment. That is, a DM whose preferences have an MH representation, (u, v), simulta-

neously chooses the allocation (5, 5) over (6, 1) as well as the lottery [(6, 1), 0.5; (6, 5), 0.5]
over [(5, 5), 0.5; (6, 5), 0.5] if 0.5[v(5) − v(1)] < u(6) − u(5) < v(5) − v(1). As a first step

towards establishing that the MH model is observationally distinct from the EIA model,

we show that these choices are not consistent with the latter model. To see this, note

that for an EIA representation, (β, γ, δ), to accommodate the preference (5, 5) � (6, 1)
requires that 5 > 6 − 5β. That is, it requires that β > 0.2. On the other hand, for it to

accommodate the preference [(6, 1), 0.5; (6, 5), 0.5] � [(5, 5), 0.5; (6, 5), 0.5] requires that:

γ[0.5(6− 5β) + 0.5(6− β)] + (1− γ)[6− 3β]
> γ[0.5(5) + 0.5(6− β)] + (1− γ)[5.5− 0.5β]

⇔ γ[6− 3β] + (1− γ)[6− 3β] > γ[5.5− 0.5β] + (1− γ)[5.5− 0.5β]

That is, it requires that 6−3β > 5.5−0.5β, or, β < 0.2. Hence, the pattern of choices seen

in the DWK experiment cannot be accommodated by the EIA model, thus confirming, in

the context of this formal model, that for many DMs generous behavior may not be driven

by a deep preference for fairness but rather by more self-serving emotions.

Procedural fairness?

We next show that choice behavior that is often interpreted as resulting from a concern

for procedural fairness or aversion to inequality of ex ante opportunities may also be

rationalizable within the MH paradigm, thus suggesting an alternative interpretation of

this data. To see this, consider the two player probabilistic dictator (PD) game. In such a

game, the dictator (the DM) is endowed with a fixed amount of money. However, unlike

the standard dictator game, she is not allowed to divide the money between herself and
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the other individual. Rather, she is given the option, if she so chooses, to share chances of

getting the money with him. In particular, she can assign him any probability of getting

the entire amount while retaining the amount herself with complementary probability. For

example, if the fixed amount is $20 and the DM assigns to the other person a probability

α ∈ [0, 1], then the allocation (0, 20) in which the other person gets the 20 dollars (and

the DM gets 0) results with probability α and the allocation (20, 0) in which the DM gets

the 20 dollars (and the other person gets 0) results with probability 1− α. Experimental

evidence (Krawczyk and Le Lec, 2010; Brock, Lange, and Ozbay, 2013) indicates that a

significant portion of lab subjects do give the other individual a positive probability of

getting the money. The reason they share ex ante opportunities or chances with the other

individual, it is often argued, is to compensate for the inequality of ex post outcomes that

is inevitable in this setting. As such, positive giving in the PD game is often suggested as a

leading example of a concern for procedural fairness amongst decision makers.10 This may

well be true for many DMs and such choices on their part may indeed reflect a deep concern

for procedural fairness. But, a degree of caution is warranted as it need not necessarily be

true that choices of this nature always reflect concerns for procedural fairness. To highlight

this point, we next show that the MH paradigm can also accommodate this evidence.

To that end, consider a DM’s problem of deciding what probability α ∈ [0, 1] she wants

to assign to the other individual of getting the 20 dollars. Any choice of α generates an

allocation-lottery, p(α) = [(0, 20), α; (20, 0), 1−α]. If this DM’s preferences have an MH

representation, (u, v), then her assessment of any such lottery, p(α), is given by:

W (p(α)) = αu(0) + (1− α)u(20) + αv(20) + (1− α)[αv(20) + (1− α)v(0)]

Note that ∂W/∂α = 2(1 − α)(v(20) − v(0)) − (u(20) − u(0)). So, for α close to zero,

∂W/∂α > 0 as long as v(20)−v(0) > 0.5(u(20)−u(0)). Therefore, if this condition is

satisfied, the DM chooses a positive α, i.e., chooses to give the other individual a positive

probability of getting the money. This illustrates that the moral hypocrisy paradigm may

also be able to account for choice behavior that a priori appears to be motivated by a

concern for procedural fairness. Therefore, we need to be careful when we attempt to map

back such evidence of generous behavior to underlying motivations.

Generous behavior under certainty and risk: a comparison

Next, we turn to a set of dictator game experiments reported in Brock, Lange, and Ozbay

(2013) that further highlights how the distinction between certainty and risk may have an

important bearing on the contours of generous behavior. Once again, to understand the

10Given that the EIA model is premised on accommodating a concern for procedural fairness, it can
rationalize the evidence of sharing chances in the PD game.
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scope of our model in elucidating this distinction, it will be instructive to contrast it with

the EIA model in the context of these experimental findings. Drawing this contrast should

also help further clarify the very differing roles that opportunity concerns play in these two

paradigms. In the experiment, lab dictators (DMs) were given several tasks that involved

allocating 100 tokens between themselves and their matched recipients. Tokens translated

to monetary payments with the exact nature of this translation varying from one task to

the other. Here we focus on two of the tasks in this experiment. The first replicated the

standard dictator game under certainty. In it, if the DM gave θ ≥ 0 tokens to the other

individual, then the resulting allocation was (100−θ, θ). In the second, the tokens that the

DM gave translated to a lottery for the other individual. More precisely, if the DM gave θ

tokens to the other individual, then her own payoff in the task was 100− θ like in the first.

On the other hand, the recipient’s payoff was determined by the lottery [50, θ50 ; 0, 1− θ
50 ],

where the number of tokens θ that could be given in this task was capped at 50. In both

these tasks a significant proportion of decision makers gave a positive number of tokens to

the recipient. The question that interests us here is in which task were more tokens given

by non-selfish dictators.11 Brock, Lange, and Ozbay (2013) report that when attention

is restricted to these non-selfish dictators, on average, more tokens were given in the first

task than in the second, with this difference being statistically significant at the 1% level.

We first show that this evidence can be rationalized by the MH model. To see this, first,

note that for any choice of θ in the first task, the DM’s assessment in the MH model of

the resulting allocation (100 − θ, θ) is given by: u(100 − θ) + v(θ). Assume that both u

and v are differentiable, increasing and strictly concave. Accordingly, assuming an interior

solution and that tokens are divisible, the number of tokens that she optimally gives to

the other individual in this task solves:

u′(100− θ̃) = v′(θ̃),

On the other hand, in the second task, the DM’s assessment of the lottery q = [(100 −
θ, 50), θ50 ; (100 − θ, 0), 1 − θ

50 ] generated by the choice to allocate θ tokens to the other

individual is given by:

W (q) = u(100− θ) + θ

50v(50) +
(

1− θ

50

)[
θ

50v(50) +
(

1− θ

50

)
v(0)

]
In this case, the optimal choice of tokens solves:

u′(100− θ̂) = v(50)− v(0)
50 × 50− θ̂

25

We can find standard specifications for the utility functions u and v for which, from the

11Brock et al. consider a dictator to be non-selfish if she gave her matched recipient a positive number
of tokens in at least one of their tasks.
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two equations above, we get θ̃ > θ̂.12

In contrast, as Brock, Lange, and Ozbay (2013) point out, the EIA model predicts that

the number of tokens given in both these tasks are the same. It is instructive to go

through the calculations as to why the EIA model predicts this as it helps to further

clarify the difference in the motivations underlying behavior in the two models, particularly,

the role that opportunity concerns play in their, respective, decision making processes.

Observe that for a DM whose preferences have an EIA representation, her assessment of

the allocation (100− θ, θ) is given by:

wFS(100− θ, θ) = 100− θ − βmax{100− 2θ, 0} − δmax{2θ − 100, 0}

It is straightforward to verify that the optimal θ chosen can never be greater than 50, so

that wFS(100 − θ, θ) = 100− θ − β(100− 2θ) and the optimal allocation rule is specified

by:

θ∗ =


0, β < 0.5

∈ [0, 50], β = 0.5
50, β > 0.5

Now consider this DM’s assessment of the lottery q = [(100− θ, 50), θ50 ; (100− θ, 0), 1− θ
50 ]

generated by the choice to allocate θ ∈ [0, 50] tokens to the other individual in the second

task:

WEIA(q) = γ

[
θ

50w
FS(100− θ, 50) +

(
1− θ

50

)
wFS(100− θ, 0)

]
+(1− γ)wFS(100− θ, θ)

= γ

[
100− θ − θ

50β(100− θ − 50)−
(

1− θ

50

)
β(100− θ)

]
+(1− γ)wFS(100− θ, θ)

= γ[100− θ − β(100− 2θ)] + (1− γ)wFS(100− θ, θ)
= γwFS(100− θ, θ) + (1− γ)wFS(100− θ, θ) = wFS(100− θ, θ)

Accordingly, this DM allocates the same number of tokens to the other individual in both

these tasks. As the above calculations clarify, what drives this conclusion is the fact that in

the EIA model, ex post concerns for outcomes and ex ante concerns for opportunities serve

as perfect substitutes. This is consistent with the interpretation under this model that the

DM has a deep preference for fairness and reducing inequality; and whether this objective

12For instance, suppose u and v are from the CARA family, i.e., u(x) = k− 1
λ
e−λx and v(y) = − 1

λ̂
e−λ̂y,

k > 0, λ, λ̂ > 0. Here, k is a scaling parameter to ensure that u(z) > v(z) for all z. Further, given that
for a typical DM, marginal utility from an extra dollar to herself is, presumably, greater than that to the
other individual, it is reasonable to assume that λ̂ > λ. For values of λ = 0.005 and λ̂ = 0.01, which are
reasonable values for prospects of the size at play in the experiment (Babcock, Choi, and Feinerman, 1993),
we can calculate that θ̃ = 33 and θ̂ = 27. These values are along the lines of the average number of token
given in the two tasks in the experiment.
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is achieved in terms of reducing inequality in ex post outcomes or ex ante opportunities

plays a symmetric role. On the other hand, in the MH model, the DM uses the ex post

and ex ante considerations in an opportunistic and self serving way. Specifically, when it

comes to assessing the other individual’s prospects, she goes by the ex post consideration

whenever he does better by it, and by the ex ante consideration otherwise. That is why

the second task affords her the leeway to offer a fewer number of tokens than the first, for

even if the other individual ends up receiving zero, the DM can protect her self-image of

being moral by reasoning that the ex ante opportunity that her choice afforded him was

much better than what he received ex post—after all, he had a chance of getting 50.

Risk Attitudes

A key question in the literature on social preferences is whether DMs are more or less risk

averse when it comes to making choices for others as compared to making these choices

for themselves. The literature provides evidence for both. Whereas some studies show a

risky shift in choices made for others, others show a more cautious shift or no shift at all.

In a meta-analysis done with 71 papers (totaling 14,443 observations), Polman and Wu

(2019) find that, on average, there is a significant, though small, effect in favor of a risky

shift when DMs choose for others. Based on such evidence in the literature, it will be fair

to say that both types of DMs exist—ones who are less risk averse and may be even risk

loving when it comes to choosing for others and ones who are more risk averse. Therefore,

it becomes important to identify these two types of decision makers in terms of deeper

motivations underlying their social behavior. In this context, our model, as we have seen

above, can contribute by identifying one set of motivating behavioral factors that drive a

class of DMs to exhibit a risky shift when choosing for others.

Although it may be obvious, it is worth reiterating that in an MH representation, the DM’s

assessment of any allocation-lottery, p, can be decomposed in terms of the individual risks,

pX and pY , faced by her and the other individual, respectively. As such, correlations

between their outcomes don’t matter and we can derive risk attitudes for each that are

independent of the risk faced by the other. The key to understanding why an MH-type DM

may be less risk averse when it comes to others’ prospects compared to her own lies in the

morally motivated Bayesianism axiom. Recall how that axiom postulates that the DM, in

assessing risk faced by the other individual, overweights the probabilities of the favorable

outcomes and underweights those of the unfavorable ones. It is precisely this departure

from the Bayesian calculus that makes her less risk averse over his risks. To understand

this better, consider the following investment problem from Gneezy and Potters (1997),

which has been used in experiments to study whether DMs are more or less risk averse

when it comes to choosing for others [e.g., Pollmann, Potters, and Trautmann (2014)].

In this problem, a DM has to decide how to invest an endowment of M monetary units
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between a risky and a safe asset. The amount invested in the risky asset, call it m, has

a return of 250% with probability 1/3, and a return of -100% with probability 2/3. The

amount invested in the safe asset, M −m, has a return of 0%. Consider two variants of

this investement problem: one in which the outcome of the investment accrues to the DM

and another in which it accrues to another individual. Suppose these problems are faced

by an MH type DM characterized by functions (u, v). Assume that the two functions are

differentiable, increasing and strictly concave. Further, to keep matters simple, assume that

the individual whose outcome is not determined by the realization of this risky investment

receives a fixed amount k. Then, in the first case, when the DM invests for herself, the

amount invested in the risky asset solves,

max
m

{1
3u(M + 2.5m) + 2

3u(M −m) + v(k)
}
,

with any interior solution characterized by the first order condition:

u′(M + 2.5m∗)
u′(M −m∗) = 4

5

On the other hand, when the DM takes the investment decision for another individual, the

amount invested in the risky asset solves,

max
m

{
u(k) + 1

3v(M + 2.5m) + 2
3

[1
3v(M + 2.5m) + 2

3v(M −m)
]}

= max
m

{
u(k) + 5

9v(M + 2.5m) + 4
9v(M −m)

}
with the solution characterized by the first order condition:

v′(M + 2.5m∗∗)
v′(M −m∗∗) = 8

25

(
<

4
5 = u′(M + 2.5m∗)

u′(M −m∗)

)
It is reasonable to hypothesize that for a typical DM, marginal utility from an extra dollar

to herself is greater than that to the other individual at any level of wealth. Even though

this may mean that v is more concave than u, it is possible for such a DM under the

MH model to choose m∗∗ > m∗, i.e., she invests more in the risky asset when making this

choice for the other individual than when making it for herself.13 The reason why this is the

13To see this concretely, suppose u and v are from the CRRA family, i.e., u(x) = s+ x1−λ

1−λ and v(y) = y1−λ̂

1−λ̂ ,

with k > 0 and 0 < λ < λ̂ < 1. Here, s is a scaling parameter to ensure that u(z) > v(z) for all z > 0.
Further, λ < λ̂ ensures that DM’s marginal utility for her own money is greater than that for the other

individual’s (for monetary levels greater than one). Accordingly, u′(M+2.5m∗)
u′(M−m∗) =

(
M−m∗
M+2.5m∗

)λ = 4
5 . Since,

M−m∗
M+2.5m∗ < 1, there exists λ̄ > λ s.t.

(
M−m∗
M+2.5m∗

)λ̄ = 8
25 . Finally, note that for any λ̂ ∈ (λ,min{λ̄, 1}), the

function f : [0,M ] → R given by f(m) =
(

M−m
M+2.5m

)λ̂
is continuous and strictly decreasing with f(m∗) >

8
25 and f(M) = 0. Accordingly, there exists m∗∗ > m∗, such that f(m∗∗) = 8

25 , i.e., v′(M+2.5m∗∗)
v′(M−m∗∗) =(

M−m∗∗
M+2.5m∗∗

)λ̂ = 8
25 . In other words, for λ < λ̂ < min{λ̄, 1}, we have m∗∗ > m∗.
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case under the MH model can be seen from the second maximization problem capturing

the DM’s investment decision for the other individual. Observe that while evaluating

the lottery over the other individual’s outcomes corresponding to a choice of m, the MH

reasoning that the DM engages in makes her overweight the favorable outcome of M+2.5m
(subjective weight of 5

9 instead of 1
3) and, correspondingly, underweight the unfavorable

outcome of M −m (subjective weight of 4
9 instead of 2

3). This is nothing but the logic of

the morally motivated Bayesianism axiom at work and a natural corollary of it is that the

DM behaves in a less risk averse way when it comes to assessing others’ risks compared to

her own.

How much does ex post inequality matter in the presence of risk?

Another question that has generated interest in the social preferences literature is whether

ex post inequalities matter in the presence of risk. That is, if people can justify to them-

selves that ex ante opportunities for everyone involved are more or less fair, do they still

care about ex post inequalities? The question has relevance for public policy issues like

support for the welfare state or redistributive politics. Specifically, individuals may be less

likely to support such policies if they can fall back on the excuse that everyone got a fair

shake. There is a body of experimental evidence that indeed suggests that many DMs

whose choices may otherwise be responsive to the goal of reducing ex post inequalities,

may care far less about it if they can rationalize that everyone had a chance or opportunity

of doing well.

For instance, building on earlier findings from Bohnet et al. (2008), Bolton and Ockenfels

(2010) provide experimental evidence suggesting that for decisions with social comparisons,

risk taking may not depend on whether the risky option yields unequal payoffs. In their ex-

periment, they considered a set of allocations, A = {(7, 7), (7, 16), (7, 0), (9, 9), (9, 16), (9, 0)}.
For each allocation, (x, y) ∈ A, they gave DMs in their experiment the following two

choices: (i) (x, y) vs. [(16, 16), 0.5; (0, 0), 0.5] and (ii) (x, y) vs. [(16, 0), 0.5; (0, 16), 0.5]. If

ex post inequality does not matter in the presence of risk, especially when ex ante op-

portunities are deemed to be equal, then it should be the case that DMs’ choices do not

vary across (i) and (ii) in terms of whether the safe or risky alternative is chosen. This is

indeed what the aggregate choice behavior in their subject pool seem to suggest. In turn,

this is indicative of the fact that for many DMs, the assessment of the two allocation-

lotteries [(16, 16), 0.5; (0, 0), 0.5] and [(16, 0), 0.5; (0, 16), 0.5] is roughly identical. Observe

that this is true in the MH model, where a DM whose preferences can be represented thus

is indifferent between these two lotteries.

A similar insight as the above experiment emerges more comprehensively in the important

paper by Cappelen et al. (2013). They too are interested in the question about whether

in situations marked by equality of ex ante opportunities, DMs still care about ex post
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inequalities. They find that a large proportion of DMs in their experiment do not. But, at

the same time, there was also a significant proportion who did. This shows the diversity

amongst DMs when it comes to this facet of behavior in social situations of risk. In this

regard, the particular psychology behind choices that our model develops may be one

reason underlying the behavior of DMs who do not care much about ex post inequalities

when they can reason that everyone had a fair ex ante chance.

A Appendix

A.1 Preliminaries

We first present a few Lemmas that follow from our axioms and the Richness condition.

We use these Lemmas to prove the representation Theorem.

Lemma 1. For any p ∈ ∆, p ∼ pX ◦ pY .

Proof. By Completeness, p ∼ p and pX ◦ pY ∼ pX ◦ pY . Applying Separability, it follows

that 1
2p + 1

2(pX ◦ pY ) ∼ 1
2(pX ◦ pY ) + 1

2(pX ◦ pY ) Accordingly, MH Independence implies

that p ∼ pX ◦ pY .

Lemma 2. For any pX ◦ pY ∈ ∆, there exists x̃ ∈ X, such that pX ◦ pY ∼ x̃ ◦ pY .

Proof. By MH Independence, it follows that there exists x and x such that x ◦ pY <
pX ◦pY < x◦pY . Let X1 = {x ∈ X : x◦pY < pX ◦pY } and X2 = {x ∈ X : pX ◦pY < x◦pY }.
Note that: (i) X1 6= ∅ since x ∈ X1, X2 6= ∅ since x ∈ X2; (ii) X1 and X2 are closed

in X by virtue of the Continuity axiom; and (iii) X1 ∪ X2 = X. Therefore, since X is

connected, it follows that X1∩X2 6= ∅. That is, there exists x̃ ∈ X1∩X2 and, accordingly,

pX ◦ pY ∼ x̃ ◦ pY .

Lemma 3. Any x ◦ pY ∈ ∆ has a risk translation pX ◦ y.

Proof. Let x ◦ pY = [(x, y1), α1; . . . ; (x, yn), αn] and assume wlog that (x, y1) < (x, y2) <
. . . < (x, yn). If (x, y1) ∼ (x, y2) ∼ · · · ∼ (x, yn), then the conclusion is immediate as any

x ◦ yi, i = 1, . . . , n, is a risk translation of x ◦ pY . So, assume (x, y1) � (x, yn). By the

Richness condition, it follows that there exists x′ ∈ X such that either (x′, yn) � (x, y1),
or (x, yn) � (x′, y1), i.e., either (x′, yn) � (x, y1) < (x, y2) < . . . < (x, yn), or (x, y1) <
(x, y2) < . . . < (x, yn) � (x′, y1). In the first case, by virtue of the Continuity axiom and

the fact that X is a connected space, it follows that there exists x1, . . . , xn such that

(x, yi) ∼ (xi, yn) for all i = 1, . . . , n. Accordingly, pX ◦ yn = [(x1, yn), α1; . . . ; (xn, yn), αn]
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is a risk translation of x ◦ pY . A similar argument establishes the conclusion in the second

case as well.

Lemma 4. For any x ◦ pY ∈ ∆, there exists y, y ∈ Y such that (x, y) < x ◦ pY < (x, y).

Proof. Let x ◦ pY = [(x, y1), α1; . . . ; (x, yn), αn] and assume wlog that (x, y1) < (x, y2) <
. . . < (x, yn). Further, let pX ◦ y = [(x1, y), α1; . . . ; (xn, y), αn] be a risk translation of

x◦pY and (α, qX ◦y, rX ◦y) a Gul decomposition of pX ◦y. MH Independence and Morally

Motivated Bayesianism together imply that:

(x1, y) < rX ◦ y < α2(qX ◦ y) + (1− α2)(rX ◦ y) ∼ x ◦ pY < qX ◦ y < (xn, y)

The conclusion, therefore, follows since (x, y1) ∼ (x1, y) and (x, yn) ∼ (xn, y).

Lemma 5. For any x, x′ ∈ X, y, y′ ∈ Y , (x, y) < (x′, y) iff (x, y′) < (x′, y′).

Proof. Towards a contradiction, suppose (x, y) < (x′, y) but (x′, y′) � (x, y′), for some

x, x′ ∈ X, y, y′ ∈ Y . There are four cases that exhaust all possibilities and we show that a

contradiction appears in all four.

Case I : (x, y) < (x′, y′) � (x, y′) < (x′, y)
In this case, it follows from the Continuity and MH Independence axioms that there exists

pX , p
′
X ∈ ∆(X) such that pX ◦y ∼ (x, y′) and p′X ◦y ∼ (x′, y′). Accordingly, p′X ◦y � pX ◦y.

The Separability axiom then implies that:

1
2(pX ◦ y) + 1

2(x′, y) ∼ 1
2(p′X ◦ y) + 1

2(x, y).

Finally, note that since p′X ◦ y � pX ◦ y, it follows from MH Independence that (x′, y) �
(x, y), which brings us to our desired contradiction.

Case II : (x′, y′) < (x, y) < (x′, y) < (x, y′)
Arguing along similar lines as in Case I, we can show that a contradiction arises in this

case. We avoid repeating the argument here.

Case III : (x, y) � (x′, y′) and (x′, y) � (x, y′)
In this case, since (x, y) � (x, y′), it follows from the Richness condition that there exists

x′′ ∈ X such that either (i) (x′′, y′) � (x, y) or (ii) (x, y′) � (x′′, y).
In case of (i), since (x′′, y′) � (x, y) < (x′, y) � (x, y′), it follows from the Continuity and

MH Independence axioms that there exists pX , p
′
X ∈ ∆(X) such that pX ◦ y′ ∼ (x, y) and

p′X ◦ y′ ∼ (x′, y). The Separability axiom then implies that:
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1
2(pX ◦ y′) + 1

2(x′, y′) ∼ 1
2(p′X ◦ y′) + 1

2(x, y′).

Now, since (x′, y′) � (x, y′), it follows as a consequence of MH Independence that p′X ◦y′ �
pX ◦y′, in turn, implying that (x′, y) � (x, y), which brings us to our desired contradiction.

On the other hand, in case of (ii), since (x, y) � (x′, y′) � (x, y′) � (x′′, y), once again by

virtue of Continuity and MH Independence axioms, it follows that there exists pX , p
′
X ∈

∆(X) such that pX◦y ∼ (x, y′) and p′X◦y ∼ (x′, y′). We once again arrive at a contradiction

following a similar argument as in Case I.

Case IV : (x′, y′) � (x, y) and (x, y′) � (x′, y)
Arguing along similar lines as in Case III, we can show that a contradiction arises in this

case as well. We do not repeat the details here.

Lemma 6. For any pX ∈ ∆(X), there exists x(pX) ∈ X, such that for any pY ∈ ∆(Y ),
pX ◦ pY ∼ x(pX) ◦ pY .14

Proof. We first establish the result for the case that the lottery pY is a degenerate one.

That is, we show that for any pX ∈ ∆(X), there exists x(pX) ∈ X, such that for any

y ∈ Y , pX ◦ y ∼ x(pX) ◦ y ≡ (x(pX), y). To that end, suppose otherwise. Say, for

some pX ∈ ∆(X), pX ◦ y ∼ (x, y) and pX ◦ y′ ∼ (x′, y′).15 But, ¬[(x′, y′) ∼ (x, y′)]. If

(x, y′) � (x′, y′), then by Lemma 5, (x, y) � (x′, y); and we have pX ◦ y ∼ (x, y) � (x′, y)
and (x, y′) � (x′, y′) ∼ pX ◦ y′. On the other hand if (x′, y′) � (x, y′) then (x′, y) � (x, y);
and we have pX ◦ y′ ∼ (x′, y′) � (x, y′) and (x′, y) � (x, y) ∼ pX ◦ y. The two cases are

symmetric; hence, assume wlog that (x, y′) � (x′, y′). There are two possibilities: either

pX ◦ y � pX ◦ y′ or pX ◦ y′ < pX ◦ y.

Case I : pX ◦ y � pX ◦ y′

For this case, we consider each of the possibilities, (i) (x′, y) � (x′, y′) and (ii) (x′, y′) <
(x′, y), and show that a contradiction emerges under each.

• In case of (i), we have that (x, y) ∼ pX ◦ y � (x′, y) � (x′, y′) ∼ pX ◦ y′. Now, since

(x′, y) � (x′, y′), the Richness condition implies that there exists x′′ ∈ X such that

either (x′′, y′) � (x′, y) or (x′, y′) � (x′′, y). In the first case, it follows that there

exists α ∈ (0, 1] such that (x′′, y′) � α(pX ◦y)+(1−α)(x′, y) ≡ (αpX+(1−α)x′)◦y.16

It therefore follows from the Continuity and MH Independence axioms that there

exists rX , r
′
X ∈ ∆(X) such that rX ◦ y′ ∼ (αpX + (1−α)x′) ◦ y and r′X ◦ y′ ∼ (x′, y).

Note that since (αpX + (1 − α)x′) ◦ y � (x′, y), we have rX ◦ y′ � r′X ◦ y′. The

Separability axiom then implies that:

14Observe that this result strengthens the conclusion of Lemma 2.
15We know that such (x, y) and (x′, y′) exist from Lemma 2
16Note that if (x′′, y′) < pX ◦ y, then any α ∈ (0, 1] works. On the other hand, if pX ◦ y � (x′′, y′), then

α will have to be appropriately small.
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1
2(rX ◦ y′) + 1

2(x′, y′) ∼ 1
2(r′X ◦ y′) + 1

2(αpX + (1− α)x′) ◦ y′

Now, since rX ◦ y′ � r′X ◦ y′, it follows as a consequence of MH Independence that

(αpX + (1− α)x′) ◦ y′ ≡ α(pX ◦ y′) + (1− α)(x′, y′) � (x′, y′). But, this implies that

pX ◦y′ � (x′, y′), which contradicts the maintained assumption that pX ◦y′ ∼ (x′, y′).
A similar contradiction also arises in case (x′, y′) � (x′′, y).

• In case of (ii), we have (x, y) ∼ pX ◦y � pX ◦y′ ∼ (x′, y′) < (x′, y). By the Continuity

and MH Independence axioms, it follows that there exists rX , r
′
X ∈ ∆(X) such that

rX ◦ y ∼ pX ◦ y′ and r′X ◦ y ∼ (x′, y′). Accordingly, rX ◦ y ∼ r′X ◦ y. Applying

Separability implies that:

1
2(rX ◦ y) + 1

2(x′, y) ∼ 1
2(r′X ◦ y) + 1

2(pX ◦ y)

Finally, since rX ◦ y ∼ r′X ◦ y, MH Independence implies that pX ◦ y ∼ (x′, y), which

brings us to our desired contradiction since pX ◦ y ∼ (x, y) and (x, y) � (x′, y).

Case II : pX ◦ y′ < pX ◦ y
In this case, we have (x′, y′) ∼ pX ◦y′ < pX ◦y ∼ (x, y) � (x′, y). Since, (x′, y′) � (x′, y), by

the Richness condition, we know that there exist x′′ ∈ X such that either (x′′, y) � (x′, y′)
or (x′, y) � (x′′, y′). For both these cases, we can make similar arguments as the ones

above to arrive at our desired contradiction. We do not repeat the details.

Therefore, we have established that for any pX ∈ ∆(X), there exists x(pX) ∈ X, such that

for any y ∈ Y , pX ◦ y ∼ x(pX) ◦ y ≡ (x(pX), y). We now use this fact to prove the general

result. Specifically, we show below that pX ◦pY ∼ x(pX)◦pY , for any pY ∈ ∆(Y ). To that

end, suppose otherwise. We consider here the case pX ◦ pY � x(pX) ◦ pY (the analysis for

the other case x(pX) ◦ pY � pX ◦ pY can be carried out along similar lines). Now, we know

from Lemma 4 that there exists y, y ∈ Y such that (x(pX), y) < x(pX) ◦ pY < (x(pX), y).
There are two possibilities.

• pX ◦ pY � (x(pX), y): In this case, pX ◦pY � (x(pX), y) ∼ pX ◦y < x(pX)◦pY , where

the indifference, (x(pX), y) ∼ pX ◦ y, follows from the first part of the proof above.

Continuity and MH Independence then implies that there exists rX , r
′
X ∈ ∆(X)

such that rX ◦ pY ∼ (x(pX), y) and r′X ◦ pY ∼ pX ◦ y. Transitivity implies that

rX ◦pY ∼ r′X ◦pY . Further, by Separability it follows that 1
2(rX ◦pY ) + 1

2(pX ◦pY ) ∼
1
2(r′X ◦ pY ) + 1

2(x(pX) ◦ pY ). Finally, since rX ◦ pY ∼ r′X ◦ pY , MH Independence

implies that pX ◦ pY ∼ x(pX) ◦ pY , which contradicts our maintained assumption of

pX ◦ pY � x(pX) ◦ pY

• (x(pX), y) < pX ◦ pY : In this case, (x(pX), y) < pX ◦ pY � x(pX) ◦ pY < (x(pX), y).
Similar to arguments made above, by using the Richness condition along with Con-

tinuity and MH Independence, we can conclude that there exists y′ = y or y
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and rX , r
′
X ∈ ∆(X) such that rX ◦ y′ ∼ pX ◦ pY and r′X ◦ y′ ∼ x(pX) ◦ pY .

By transitivity, it follows that rX ◦ y′ � r′X ◦ y′. Separability then implies that
1
2(rX ◦ y′) + 1

2(x(pX), y′) ∼ 1
2(r′X ◦ y′) + 1

2(pX ◦ y′). Since, rX ◦ y′ � r′X ◦ y′, by MH-

Independence it follows that, pX ◦ y′ � (x(pX), y′), which contradicts the conclusion

established in the first part of the proof that pX ◦ y′ ∼ (x(pX), y′).

Hence, for any pX ∈ ∆(X), there exists x(pX) ∈ X, such that for any pY ∈ ∆(Y ),
pX ◦ pY ∼ x(pX) ◦ pY .

Lemma 7. For any pX , qX ∈ ∆(X), y, y′ ∈ Y , pX ◦ y < qX ◦ y iff pX ◦ y′ < qX ◦ y′.17

Proof. The conclusion follows immediately from Lemmas 5 and 6 since:

pX ◦ y < qX ◦ y ⇔ (x(pX), y) < (x(qX), y)
⇔ (x(pX), y′) < (x(qX), y′)
⇔ pX ◦ y′ < qX ◦ y′

Lemma 8. If �6= ∅ then:

(1) � restricted to X × Y is non-empty

(2) for any y ∈ Y , � restricted to the set ∆y = {pX ◦ y : pX ∈ ∆(X)} is non-empty.

Proof. To prove (1), suppose towards a contradiction that �6= ∅ but (x, y) ∼ (x′, y′), for

all (x, y), (x′, y′) ∈ X × Y . Specifically, this means that for any y ∈ Y , (x, y) ∼ (x′, y), for

all x, x′ ∈ X. Further, MH Independence implies that that pX ◦ y ∼ p′X ◦ y ∼ (x, y), for

all pX , p
′
X ∈ ∆(X) and x ∈ X. Putting all of this together, we have that pX ◦ y ∼ p′X ◦ y′,

for all pX , p
′
X ∈ ∆(X) and y, y′ ∈ Y . Now consider any x ◦ pY and x′ ◦ p′Y ∈ ∆. Let pX ◦ y

and p′X ◦ y′ be, respectively, their risk translations.18 Further, let (α, qX ◦ y, rX ◦ y) and

(α′, q′X ◦ y′, r′X ◦ y′) be, respectively, Gul decompositions of pX ◦ y and p′X ◦ y′. Then, by

Morally Motivated Bayesianism, it follows that

x ◦ pY ∼ α2(qX ◦ y) + (1− α2)(rX ◦ y)
∼ α′

2(q′X ◦ y′) + (1− α′2)(r′X ◦ y′) ∼ x′ ◦ p′Y
17It is worth pointing out that the following stronger result which extends the conclusion of this Lemma

is implied by our axioms and can be proven along similar lines as the proof of Lemma 5: For any pX , qX ∈
∆(X), pY , p′Y ∈ ∆(Y ), pX ◦pY < qX ◦pY iff pX ◦p′Y < qX ◦p′Y . Since we do not require this stronger result
to prove our representation result, we do not present its proof here.

18By Lemma 3, we know that these risk translations exist.
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Finally, consider any p, q ∈ ∆. By Lemma 1, p ∼ pX ◦ pY and q ∼ qX ◦ qY . Further, by

Lemma 2, pX ◦ pY ∼ x ◦ pY and qX ◦ qY ∼ x′ ◦ qY , for some x, x′ ∈ X. Moreover, as shown

above, x◦pY ∼ x′ ◦qY . Therefore, by transitivity of <, it follows that p ∼ q, which implies

that �= ∅!

To prove (2), we know from (1) that there exists (x, y), (x′, y′) ∈ X × Y such that

(x, y) � (x′, y′). If y′ = y, then � restricted to ∆y′ is non-empty and it follows from

Lemma 5 that for, any y ∈ Y , � restricted to ∆y is non-empty. So, consider the case that

y 6= y′ and note that either (x, y′) ∼ (x, y) or ¬[(x, y′) ∼ (x, y)]. If it is the former, then

(x, y′) ∼ (x, y) � (x′, y′) and, hence, � restricted to ∆y′ is non-empty establishing the

claim. On the other hand, if it is the latter, say, (x, y) � (x, y′), then, by Richness, there

exists x′′ ∈ X such that either (x′′, y′) � (x, y), implying � restricted to ∆y′ is non-empty;

or (x, y′) � (x′′, y) implying � restricted to ∆y is non-empty. Thus, our desired conclusion

follows.

Lemma 9. If �6= ∅, then for any y, y′ ∈ Y , there exists p̃X , p̃
′
X , q̃X , q̃

′
X ∈ ∆(X) such that

p̃X ◦ y ∼ q̃X ◦ y′ � p̃′X ◦ y ∼ q̃′X ◦ y′.

Proof. Pick any pX ∈ ∆(X) such that pX ◦y and pX ◦y′ are not indifferent—if no such pX
exists, then our desired conclusion follows immediately given that � restricted to the sets

∆y and ∆y′ is non-empty. Assume wlog that pX ◦ y � pX ◦ y′; or, (x(pX), y) � (x(pX), y′).
By the Richness condition, it follows that there exists x′ ∈ X such that either (x′, y′) �
(x(pX), y) or (x(pX), y′) � (x′, y). Under both these cases, it follows by virtue of the two

axioms of Continuity and MH Independence that p̃X , p̃
′
X , q̃X , q̃

′
X exist as desired.

A.2 Proof of Theorem

Establishing the representation for the case when�= ∅ is immediate: simply let u : X → R
and v : Y → R be some constant functions. We consider here the proof of sufficiency of

the axioms for the representation for the case when � 6= ∅. We break the proof up into

several steps. In the way of notation, note that we define the following sets:

• for any x ∈ X, ∆x = {x ◦ pY : pY ∈ ∆(Y )}

• for any y ∈ Y , ∆y = {pX ◦ y : pX ∈ ∆(X)}

Step 1: Show that there exists a continuous function w : X × Y → R such that the func-

tion W : ∪y∈Y ∆y → R given by W (pX ◦ y) =
∑
x∈X pX(x)w(x, y) represents < restricted

to ∪y∈Y ∆y.
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Since �6= ∅, we know from Lemma 8 that for any y ∈ Y , � restricted to the set ∆y is

non-empty. Further, our three axioms of Weak Order, Continuity and MH Independence

imply that for any such set ∆y, there exists a continuous, bounded function w̃y : X → R
such that the function Wy : ∆y → R, given by Wy(pX ◦ y) =

∑
x∈X pX(x)w̃y(x) represents

< restricted to ∆y.
19 Further, the function w̃y and, hence, Wy is unique up to a positive

affine transformation. We will next piece together the family of w̃y and Wy functions to

arrive at the functions w : X × Y → R and W : ∪y∈Y ∆y → R as hypothesized above.

To that end, pick any y∗ ∈ Y . Begin by defining the function W on the set ∆y∗ by set-

ting W (pX ◦ y∗) = Wy∗(pX ◦ y∗), for all pX ◦ y∗ ∈ ∆y∗ . Next, we define the function W

on the sets ∆y for y 6= y∗. For any such y, we know from Lemma 9 that there exists

p̃X , p̃
′
X , q̃X , q̃

′
X ∈ ∆(X) such that p̃X ◦ y ∼ q̃X ◦ y∗ � p̃′X ◦ y ∼ q̃′X ◦ y∗. As mentioned

above, the function Wy is defined uniquely up to a positive affine transformation, that is,

we have two degrees of freedom in specifying it. Accordingly, we can redefine it by setting

Wy(p̃X ◦ y) = W (q̃X ◦ y∗) and Wy(p̃′X ◦ y) = W (q̃′X ◦ y∗). Clearly, in the process, we rede-

fine the function w̃y as well. We can, then, extend the function W to the set of lotteries

in ∆y by defining W (pX ◦ y) = Wy(pX ◦ y) for all pX ◦ y ∈ ∆y. Observe that the MH

Independence and Continuity axioms imply that for any pX ◦ y ∈ ∆y and qX ◦ y∗ ∈ ∆y∗ ,

pX ◦ y ∼ qX ◦ y∗ iff W (pX ◦ y) = W (qX ◦ y∗).20 Next, define the function w : X × Y → R
by w(x, y) = w̃y(x). Accordingly, we have defined a function W : ∪y∈Y ∆y → R, given by

W (pX ◦ y) =
∑
x∈X pX(x)w(x, y). Using Lemma 9 and MH Independence, it is straight-

forward to verify that the function W represents < restricted to the product measures in

∪y∈Y ∆y, i.e., for all pX ◦ y, p′X ◦ y′, pX ◦ y < p′X ◦ y′ iff W (pX ◦ y) ≥W (p′X ◦ y′).21

The final thing we need to show to establish the conclusion of Step 1 is that the function

w is continuous. This is accomplished by showing that the function W is continuous. To

that end, let pkX ◦ yk be a sequence in ∪y∈Y ∆y that converges to some p̂X ◦ ŷ ∈ ∪y∈Y ∆y.

First, consider the case where p̂X ◦ ŷ is neither the best nor the worst lottery in ∆. In this

19The proof establishing that such a continuous function w̃y : X → R exists can be shown along similar
lines as in Grandmont (1972).

20Consider, for instance, the case p̃X ◦ y ∼ q̃X ◦ y∗ < pX ◦ y ∼ qX ◦ y∗ < p̃′X ◦ y ∼ q̃′X ◦ y∗, where
p̃X ◦ y, q̃X ◦ y∗, p̃′X ◦ y, q̃′X ◦ y∗ are as above. In this case, it follows from the axioms of Continuity and MH
Independence that there exists a unique α ∈ [0, 1] such that pX ◦ y ∼ α(p̃X ◦ y) + (1 − α)(p̃′X ◦ y) and
qX◦y∗ ∼ α(q̃X◦y∗)+(1−α)(q̃′X◦y∗). Accordingly, W (pX◦y) = W (α(p̃X◦y)+(1−α)(p̃′X◦y)) = αW (p̃X◦y)+
(1−α)W (p̃′X ◦ y) and W (qX ◦ y∗) = W (α(q̃X ◦ y∗) + (1−α)(q̃′X ◦ y∗)) = αW (q̃X ◦ y∗) + (1−α)W (q̃′X ◦ y∗).
Accordingly, W (pX ◦ y) = W (qX ◦ y∗), since W (p̃X ◦ y) = W (q̃X ◦ y∗) and W (p̃′X ◦ y) = W (q̃′X ◦ y∗).
We arrive at a similar conclusion for the other two cases of pX ◦ y ∼ qX ◦ y∗ � p̃X ◦ y ∼ q̃X ◦ y∗ and
p̃′X ◦ y ∼ q̃′X ◦ y∗ � pX ◦ y ∼ qX ◦ y∗ as well. Similar arguments establish that the implication also goes in
the opposite direction, i.e., if W (pX ◦ y) = W (qX ◦ y∗) then pX ◦ y ∼ qX ◦ y∗.

21To see this, first, note that Lemma 9 together with the axioms of Continuity and MH Independence
guarantees that there exists p̂X , p̂

′
X , q̂X , q̂

′
X , r̂X , r̂

′
X ∈ ∆(X) such that p̂X ◦ y ∼ q̂X ◦ y∗ ∼ r̂X ◦ y′ �

p̂′X ◦ y ∼ q̂′X ◦ y∗ ∼ r̂′X ◦ y′. Based on the conclusion established in the last footnote, it therefore follows
that W (p̂X ◦ y) = W (q̂X ◦ y∗) = W (r̂X ◦ y′) > W (p̂′X ◦ y) = W (q̂′X ◦ y∗) = W (r̂′X ◦ y′). Following similar
arguments as in the last footnote, we can then show drawing on MH Independence that for all pX ◦y, p′X ◦y′,
pX ◦ y ∼ p′X ◦ y′ iff W (pX ◦ y) = W (p′X ◦ y′). It is also straightforward to establish that pX ◦ y � p′X ◦ y′
iff W (pX ◦ y) > W (p′X ◦ y′).
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case, there exists y ∈ Y and qX , qX ∈ ∆(X) such that qX ◦ y � p̂X ◦ ŷ � q
X
◦ y.22 By

the Continuity and MH Independence axioms, it follows that there exists α̂ ∈ (0, 1) such

that p̂X ◦ ŷ ∼ α̂(qX ◦ y) + (1− α̂)(q
X
◦ y). Further, since pkX ◦ yk converges to p̂X ◦ ŷ, by

continuity of <, it follows that for all k large enough, qX ◦y � pkX ◦yk � qX ◦y. Therefore,

for all such k, there exists αk ∈ (0, 1) such that pkX ◦ yk ∼ αk(qX ◦ y) + (1−αk)(q
X
◦ y). It

is fairly straightforward to see that αk → α̂. This implies that (αkqX + (1− αk)q
X

) ◦ y =
αk(qX ◦y)+(1−αk)(q

X
◦y) converges to (α̂qX+(1−α̂)q

X
)◦y = α̂(qX ◦y)+(1−α̂)(q

X
◦y).

We know from above that the function Wy is continuous, which implies that Wy((αkqX +
(1− αk)q

X
) ◦ y)→Wy((α̂qX + (1− α̂)q

X
) ◦ y). But, by construction, Wy = W restricted

to the set ∆y. Therefore, W ((αkqX + (1 − αk)q
X

) ◦ y) → W ((α̂qX + (1 − α̂)q
X

) ◦ y)
and, accordingly, W (pkX ◦ yk) → W (p̂X ◦ ŷ). Now, consider the case where p̂X ◦ ŷ is

the best lottery in ∆. In this case, there exists p̂′X ◦ ŷ such that for all k large enough,

p̂X ◦ ŷ < pkX ◦yk � p̂′X ◦ ŷ and we can establish that W (pkX ◦yk)→W (p̂X ◦ ŷ) along similar

lines as above by drawing on the continuity of Wŷ. Likewise for the case when p̂X ◦ ŷ is the

worst lottery in ∆. This establishes that the function W is continuous and, accordingly,

so is w.

Step 2: Show that there exist continuous functions u : X → R and v : Y → R such that

the function W : ∪y∈Y ∆y → R given by W (pX ◦ y) =
∑
x∈X pX(x)u(x) + v(y) represents

< restricted to ∪y∈Y ∆y. That is, establish that < restricted to the set ∪y∈Y ∆y has an

MH representation.

We define the functions u and v using the function w defined in Step 1. To that end,

recall from Lemma 7 that for any pX , qX ∈ ∆(X) and y, y′ ∈ Y , pX ◦ y < qX ◦ y iff

pX ◦y′ < qX ◦y′. This along with the fact that preferences satisfy the axioms of Continuity

and MH Independence implies that the function w derived in Step 1 has the following

property:

• For any y, y′ ∈ Y , w(., y) : X → R is a positive affine transformation of w(., y′) :
X → R.23

22We can take y = ŷ, unless p̂X ◦ ŷ < pX ◦ ŷ for all pX ∈ ∆(X) or, pX ◦ ŷ < p̂X ◦ ŷ for all pX ∈ ∆(X).
In the first case, p � p̂X ◦ ŷ for some p ∈ ∆. In this case, there exists y ∈ Y s.t. (x(pX), y) < x(pX) ◦ pY ∼
pX ◦ pY ∼ p � p̂X ◦ ŷ ∼ (x(p̂X), ŷ), where the first preference follows from Lemma 4, the second and fifth
from Lemma 6, and the third from Lemma 1. Further, (x(p̂X), ŷ) < (x(pX), ŷ). Hence, it follows from the
Richness condition that there exists x′ s.t. (x(pX), ŷ) � (x′, y). Accordingly, (x(pX), y) � p̂X ◦ ŷ � (x′, y).
Working along similar lines, the same conclusion can also be established for the second case in which
pX ◦ ŷ < p̂X ◦ ŷ for all pX ∈ ∆(X).

23This is straightforward to establish. Consider pX , qX ∈ ∆(X) such that pX ◦ y � qX ◦ y. This
implies that pX ◦ y′ � qX ◦ y′. Now consider any rX such that pX ◦ y < rX ◦ y < qX ◦ y and, accordingly,
pX ◦y′ < rX ◦y′ < qX ◦y′. Lemma 7 along with the axioms of Continuity and MH Independence implies that
there exists a unique α ∈ [0, 1] s.t. rX◦y ∼ α(pX◦y)+(1−α)(qX◦y) and rX◦y′ ∼ α(pX◦y′)+(1−α)(qX◦y′),
i.e., W (rX ◦ y) = αW (pX ◦ y) + (1− α)W (qX ◦ y) and W (rX ◦ y′) = αW (pX ◦ y′) + (1− α)W (qX ◦ y′). It
follows from these two equalities that:

W (rX ◦ y)−W (qX ◦ y)
W (pX ◦ y)−W (qX ◦ y) = α = W (rX ◦ y′)−W (qX ◦ y′)

W (pX ◦ y′)−W (qX ◦ y′)
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Now, pick any y∗ ∈ Y and define the function u : X → R by letting u(x) = w(x, y∗).
Clearly, the function u is continuous given that w is. Since each of the functions w(., y),
y ∈ Y , is a positive affine transformation of w(., y∗), there exist constants f(y) > 0 and v(y)
such that w(x, y) = f(y)u(x) + v(y). Of course, f(y∗) = 1 and v(y∗) = 0. This allows us

to define the function v : Y → R. We next show that f(y) = 1, for all y ∈ Y , which in turn

establishes that v is continuous, given that w is. To do so, recall from Lemma 9 that for any

such y 6= y∗ we can find p̃X , p̃
′
X , q̃X , q̃

′
X ∈ ∆(X) such that p̃X◦y ∼ q̃X◦y∗ � p̃′X◦y ∼ q̃′X◦y∗.

By the Separability axiom, it then follows that (1
2 p̃X + 1

2 q̃
′
X) ◦ y ∼ (1

2 p̃
′
X + 1

2 q̃X) ◦ y. This

implies that:

f(y)
∑
x∈X

(1
2 p̃X + 1

2 q̃
′
X)(x)u(x) + v(y)

= f(y)
∑
x∈X

(1
2 p̃
′
X + 1

2 q̃X)(x)u(x) + v(y)

=⇒
∑
x∈X

p̃X(x)u(x)−
∑
x∈X

p̃′X(x)u(x) =
∑
x∈X

q̃X(x)u(x)−
∑
x∈X

q̃′X(x)u(x) > 0

At the same time p̃X ◦ y ∼ q̃X ◦ y∗ and p̃′X ◦ y ∼ q̃′X ◦ y∗ implies that:

f(y)
∑
x∈X

p̃X(x)u(x) + v(y) =
∑
x∈X

q̃X(x)u(x)

f(y)
∑
x∈X

p̃′X(x)u(x) + v(y) =
∑
x∈X

q̃′X(x)u(x)

Subtracting the second equation from the first, then, gives us that:

f(y)
[∑
x∈X

p̃X(x)u(x)−
∑
x∈X

p̃′X(x)u(x)
]

=
∑
x∈X

q̃X(x)u(x)−
∑
x∈X

q̃′X(x)u(x)

Putting everything together, it follows that f(y) = 1. We have, therefore, established

that there exist continuous functions u : X → R and v : Y → R such that the function

W : ∪y∈Y ∆y → R, given by W (pX ◦ y) =
∑
x∈X pX(x)u(x) + v(y), represents < restricted

to the set ∪y∈Y ∆y.

Before proceeding to the next step of the proof, we note an implication of the conclusion

here that we will use in Step 4 below. Recall from Lemma 6 that for any pX ∈ ∆(X),
there exists x(pX) ∈ X such that for any y ∈ Y , pX ◦ y ∼ x(pX) ◦ y. Therefore, it follows

from our conclusion in this step that
∑
x∈X pX(x)u(x) = u(x(pX)).

which, in turn, implies:

W (rX ◦ y) = W (pX ◦ y)−W (qX ◦ y)
W (pX ◦ y′)−W (qX ◦ y′)

W (rX ◦ y′) +W (qX ◦ y)− W (pX ◦ y)−W (qX ◦ y)
W (pX ◦ y′)−W (qX ◦ y′)

W (qX ◦ y′)

It is also straightforward to establish that the same conclusion also follows when rX ◦ y � pX ◦ y or
qX ◦ y � rX ◦ y. From this it immediately follows that w(., y) is a positive affine transformation of w(., y′).
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Step 3: Establish that < restricted to the set (∪x∈X∆x) ∪ (∪y∈Y ∆y) has an MH repre-

sentation.

We now extend the MH representation to the set ∪x∈X∆x using the functions u : X → R
and v : Y → R defined in Step 2. Consider any x◦pY = [(x, y1), α1; . . . ; (x, yN ), αN ] ∈ ∆x.

We know from Lemma 3 that there exists pX ◦ y = [(x1, y), α1; . . . ; (xN , y), αN ] that is a

risk translation of x ◦ pY . Further, let (α, qX ◦ y, rX ◦ y) be a Gul decomposition of pX ◦ y
defined by letting (xn, y) belong to the support of qX ◦ y iff pX ◦ y � (xn, y). It follows

from the Morally Motivated Bayesianism axiom that x◦pY ∼ α2(qX ◦y)+(1−α2)(rX ◦y).
Let N = {n : pX ◦ y � (x, yn)} and N = {n : (x, yn) < pX ◦ y}. It is straightforward to

verify that (x, yn) < pX ◦ y iff v(yn) ≥
∑N
ñ=1 αñv(yñ).24 We can now extend the function

W to the set ∪x∈X∆x by defining W (x ◦ pY ) for any x ◦ pY as follows:25

W (x ◦ pY ) = W (α2(qX ◦ y) + (1− α2)(rX ◦ y)) = α2W (qX ◦ y) + (1− α2)W (rX ◦ y)

= α2 ∑
n∈N

(
αn
α

)
W (xn, y) + (1− α2)

∑
n∈N

(
αn

1− α

)
W (xn, y)

= α2 ∑
n∈N

(
αn
α

)
W (x, yn) + (1− α2)

∑
n∈N

(
αn

1− α

)
W (x, yn)

= α2 ∑
n∈N

(
αn
α

)
(u(x) + v(yn)) + (1− α2)

∑
n∈N

(
αn

1− α

)
(u(x) + v(yn))

= u(x) + α2 ∑
n∈N

(
αn
α

)
v(yn) + (1− α2)

∑
n∈N

(
αn

1− α

)
v(yn)

= u(x) + α
∑
n∈N

αnv(yn) + (1 + α)
∑
n∈N

αnv(yn)

= u(x) + α
N∑
n=1

αnv(yn) +
∑
n∈N

αnv(yn)

= u(x) +
N∑
n=1

αn max
{
v(yn),

N∑
ñ=1

αñv(yñ)
}

It is straightforward to verify that the function W : (∪y∈Y ∆y) ∪ (∪x∈X∆x) → R thus

defined represents < restricted to (∪y∈Y ∆y) ∪ (∪x∈X∆x).

Step 4: Establish that < has an MH representation on the whole of ∆.

Recall from Lemma 1 that for any p ∈ ∆, p ∼ pX ◦ pY . Further, Lemma 6 establishes

that for any pX ∈ ∆(X), there exists x(pX) ∈ X such that for any pY ∈ ∆(Y ), pX ◦ pY ∼
x(pX) ◦ pY . Hence, by transitivity of <, it follows that p ∼ x(pX) ◦ pY . We now extend

24To see this, note that from Step 2, (x, yn) < pX ◦ y iff u(x) + v(yn) ≥
∑N

ñ=1 αñ[u(xn) + v(y)] =∑N

ñ=1 αñ[u(x) + v(yñ)] = u(x) +
∑N

ñ=1 αñv(yñ). That is, (x, yn) < pX ◦ y iff v(yn) ≥
∑N

ñ=1 αñv(yñ).
25We abuse notation below by writing W (x, y) instead of W ((x, y)).
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the function W to the whole of ∆ by letting W (p) = W (x(pX) ◦ pY ). Accordingly,26

W (p) = W (x(pX) ◦ pY )

= u(x(pX)) +
∑
y∈Y

pY (y) max

v(y),
∑
ỹ∈Y

pY (ỹ)v(ỹ)


=

∑
x∈X

pX(x)u(x) +
∑
y∈Y

pY (y) max

v(y),
∑
ỹ∈Y

pY (ỹ)v(ỹ)


This establishes the sufficiency of the axioms for the representation. The necessity of the

axioms for the representation as well as the uniqueness result is straightforward to establish

and the details are not included here.
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