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Abstract

We consider implementation of the efficient state in a large population public goods game.

Agents are divided into a finite set of types. The planner asks agents to report types, which

generates a reported type distribution. Based on reported types and distribution, the planner

calculates the efficient strategy level and a Pigouvian transfer for each type of agent. We show

that this direct mechanism satisfies incentive compatibility in strictly dominant strategies, strong

budget balance and ex–post individual rationality.
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1 Introduction

Implementation of the efficient outcome in a public goods provision model is an enduring problem

in microeconomic theory. Since agents do not internalize positive externalities in such a situation,

the equilibrium outcome falls short of the efficient outcome. Pigouvian pricing is the most well–

known solution to such a problem. This, however, requires the social planner to possess considerable

information about agents’ individual characteristics. Mechanism design approaches circumvent this

problem but raises other issues. The classical VCG mechanism for public goods induces truthful

revelation of type as a weakly dominant strategy but does not satisfy budget balance, at least

in a strong sense (Moulin [8]).1 An alternative is the AGV mechanism that induces truthful

revelation as a Bayesian Nash equilibrium (Arrow [1], d’Aspremont and Gérard–Varet [3]). But

this mechanism does not satisfy ex–post individual rationality and also assumes that the type

distribution is common knowledge.

This paper addresses these classical issues by adopting a large population approach. A con-

tinuum of agents of finitely many types play a public goods game in which the benefit depends

upon the aggregate strategy level and the cost upon individual strategy. Following the intuition of

Pigouvian pricing and the classical VCG mechanism, we introduce a direct mechanism in which the

planner calculates optimal strategies on the basis of reported types and offers a transfer to agents

that equals the externality created by the agent minus a lumpsum amount. This mechanism, there-

fore, makes no assumption about the planner’s knowledge of the type distribution. The fact that

each agent is of measure zero then induces truthful revelation, and not just as a weakly dominant

but as a strictly dominant strategy. In addition, we also obtain strong budget balance and ex–post

individual rationality. Of course, in reality, no society has a continuum of agents. Therefore, like

the model of a perfectly competitive market, our results are relevant only when the number of

agents are sufficiently large that they take aggregate social variables as given.

Lahkar and Mukherjee [6] applied evolutionary implementation (Sandholm [9]) to achieve effi-

ciency in a large population public goods model.2 The present paper applies a more conventional

mechanism design approach in which the planner creates incentives for truthful revelation. The

possibility of reconciling efficiency with incentive compatibility in large economies was first noted

by Hurwicz [5] and extended to incorporate public goods by Hammond [4]. We go beyond possi-

bility results and explicitly characterize the mechanism and its properties. Makowski and Ostroy

[7] extend VCG mechanisms to large economies with public goods and establish dominant strategy

implementation along with budget balance and individual rationality. They, however, only consider

quasi–linear preferences while we do not impose any such restriction. These papers are also in a

general equilibrium framework while ours is a partial equilibrium model (more in line with the

classical VCG setting in a large economy). As mentioned earlier though, our results are stronger

1Strong budget balance means the total transfer made by the planner should be zero. VCG mechanisms at best
ensure a negative total transfer, which leaves a surplus with the planner.

2In evolutionary implementation, the planner imposes an externality price to induce convergence to the efficient
state. There is no reliance on truthful revelation in such a model.
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than in conventional VCG mechanisms in the sense that we also obtain strong budget balance in

which the planner is left with neither surplus nor deficit.

Section 2 presents the model and discusses Pigouvian pricing under the assumption that the

planner knows the type distribution. In Section 3, we weaken the informational assumption and

characterize the mechanism that implements efficiency in dominant strategies. Section 4 concludes.

2 Pigouvian Pricing

We consider a society of a continuum of agents of mass 1. Thus, each agent is of measure zero. The

society is divided into a finite set of populations P = {1, 2, · · · , n}, which we interpret as types.

We denote the type distribution as m = (m1,m2, · · · ,mn), with
∑

p∈P mp = 1. Thus, mp denotes

the mass or proportion of agents of type p ∈ P . Each agent in the society has the strategy set

S = [0,∞). We denote by the finite positive measure µp the distribution of strategies in population

p, with µp(A) ∈ S denoting the mass of type−p agents playing strategies in A ⊆ S.3. Equivalently,

µp is the state of population p. If all agents in a population p play the same strategy x, then that

is a monomorphic population state which we denote as mpδx.

A social state is then µ = (µ1, µ2, · · · , µn). To introduce a large population public goods game,

we define the aggregate strategy level

A(µ) =
∑
p∈P

∫
S
xµp(dx) =

∫
S
x
∑
p∈P

µp(dx). (1)

Note that A(µ) ∈ [0,∞).4 The payoff of a type−p agent who plays strategy x in the public goods

game is then

Fx,p(µ) = v(A(µ))− cp(x), (2)

where v : [0,∞) → R+ is the common benefit function and cp : S → R+ are the type specific

individual cost functions. We assume that all such functions are strictly increasing, smooth and

satisfy v(0) = cp(0) = 0 for all p ∈ P. Further, v is concave and cp is strictly convex for all p ∈ P.

The public goods character of (2) arises because the benefit is due to aggregate strategy whereas

cost is due to individual strategy. This game also constitutes an aggregative game as the payoffs

depend only upon individual strategy and the aggregate strategy (Corchón [2]). We describe this

game concisely as F .

Since every agent is of measure zero, the action of a single agent has no effect on aggregate

variables. Hence, the benefit part of (2) is independent of a single agent’s strategy. Therefore, the

Nash equilibrium and, in fact, the dominant strategy equilibrium of F is µN = {m1δ0, · · · ,mnδ0}.
All agents in all populations play the 0 strategy at this equilibrium.

3Note that µp(S) = mp for all p ∈ P.
4Depending upon context, strategies may represent effort or monetary contributions to a public project. The

aggregate strategy would then be aggregate effort or aggregate monetary contribution.
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Using (2), we calculate the aggregate payoff at a state µ in our public goods game F as

∑
p∈P

∫
S
Fx,p(µ)µp(dx)

=
∑
p∈P

∫
S

(v(A(µ))− cp(x))µp(dx)

=v(A(µ))−
∑
p∈P

∫
S
cp(x)µp(dx). (3)

An efficient state of F is a social state µ∗ that maximizes (3). To identify such a state, we introduce

the function

v

∑
q∈P

mqαq

−∑
p∈P

mpcp(αp). (4)

We characterize the efficient state in the following proposition. The proof follows from Lemma 3.3

and Proposition 3.4 in Lahkar and Mukherjee [6].

Proposition 2.1 The public goods game F defined by (2) has a unique efficient state (up to a

difference of a measure zero of agents) µ∗ = (m1δα∗1 , · · · ,mnδα∗n), where (α∗1, · · · , α∗n) ∈
∏n
p=1(0,∞)

is the unique maximizer of (4).

The result follows because, as shown in Lahkar and Mukherjee [6], (3) is concave in µ with a

unique maximizer. Further, the maximizer must be in monomorphic population states. At such

states, (3) equals (4) if x = αp for all type−p agents. The assumptions about v and cp imply that

(α∗1, · · · , α∗n) ∈
∏n
p=1(0,∞). If we denote

α∗ =
∑
p∈P

mpα
∗
p, (5)

then (4) implies that each α∗p defined in Proposition 2.1 is characterized by

v′(α∗) = c′p(α
∗
p), (6)

where α∗ is as defined in (5). Notice that α∗ = A(µ∗) > 0. Thus, the aggregate strategy at the

efficient state is strictly greater than that at the Nash equilibrium, which is a characteristic of all

public good models.

We introduce a planner who seeks to implement the efficient state. Suppose the planner knows

the functions {v, c1, c2, · · · , cn} and, more importantly, the type distribution m. In that case,

we argue that the planner can implement the efficient state µ∗ using standard Pigouvian pricing.

To do so, the planner uses (4) and (5) to calculate α∗ = A(µ∗). The planner then announces

v(α∗) + xv′(α∗) as the benefit for an agent who plays strategy x. This is independent of an agent’s

type so that the planner has no need to know the type to make this announcement. A type−p

3



agent who plays strategy x then subtracts her private cost cp(x) thereby generating the payoff

Fx,p(µ
∗) + xv′(A(µ∗))

=v(α∗)− cp(x) + xv′(α∗) (7)

for such an agent.

Intuitively, xv′(α∗) is the subsidy given by the planner to an agent playing x to induce her to

internalize the positive externality she creates at the efficient state µ∗.5 This is of course standard

Pigouvian pricing with xv′(α∗) being the Pigouvian transfer. Further, (7) is a simple individual

maximization problem. If we assume that agents are standard payoff maximizers, then a type−p
agent will clearly choose x = α∗p as characterized in (6). Thus, Pigouvian pricing implements the

efficient state in our public goods model.

3 Dominant Strategy Implementation

In applying Pigouvian pricing, the planner needs to know the type distribution m but not the type

of individual agents. But suppose the planner doesn’t even know the type distribution. This is

a typical mechanism design problem, which we analyze using the standard approach of a direct

mechanism. The planner asks every agents to report her type from P = {1, 2, · · · , n} and then

assigns a strategy and transfer to every agent based on reported type. We call this direct mechanism

φ. The planner would like to design φ such that for any type distribution, the efficient state is

implemented in equilibrium. Throughout, we continue to assume that the planner knows the benefit

function v and the possible cost functions {c1, c2, · · · , cn}.
Agents are free to report their types truthfully or falsely. Suppose that the distribution gener-

ated by the reported types is m̃ = {m̃1, m̃2, · · · , m̃n}. Thus, m̃p is the proportion of agents who

report their type to be p or, equivalently, their cost function to be cp. It is possible that m̃p 6= mp. If

an agent announces type to be q ∈ {1, . . . , n}, then the planner assigns strategy α̃∗q and the transfer

α̃∗qv
′(α̃∗) − α̃∗v′(α̃∗) to that agent, where α̃∗ =

∑
p∈P m̃pα̃

∗
p and (α̃∗1, · · · , α̃∗n) is the maximizer of

(4) when we replace m with m̃.6 Since the planner knows the function v and {c1, c2, · · · , cn}, these

calculations are feasible.

Thus, the payoff of a type−p agent in φ who announces type to be q and when the reported

type distribution is m̃ is

φp(q; m̃) = v(α̃∗) +
(
α̃∗qv

′(α̃∗)− α̃∗v′(α̃∗)
)
− cp(α̃∗q). (8)

5More generally, xv′(A(µ)) is the positive externality imposed by agents who uses strategy x at state µ on the
society. It is the marginal impact on the payoff (3) of other agents when the mass of strategy x users increases.
This interpretation of positive externalities can be formalized using the calculations in Appendix A.1.1 in Lahkar and
Mukherjee [6]. It is this positive externality that causes the aggregate strategy at the efficient state to be greater
than that at the Nash equilibrium in our model.

6Formally, (q, m̃) 7→
(
α̃∗q , α̃

∗
qv
′(α̃∗)− α̃∗v′(α̃∗)

)
is the output function of the mechanism φ. Reported type q and

reported type distribution m̃ leads to strategy and transfer allotment
(
α̃∗q , α̃

∗
qv
′(α̃∗)− α̃∗v′(α̃∗)

)
.
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Once again, because agents are of measure zero, reports by a single agent does not affect m̃ and,

therefore, also does not affect the aggregate variable α̃∗. Hence, the terms v(α̃∗) and α̃∗v′(α̃∗)

are strategically irrelevant in (8). Nevertheless, they will play an important role in the main

result of this paper where we show that φ possesses three important desirable characteristics in a

mechanism–incentive compatibility, individual rationality and budget balance.

Proposition 3.1 For any type distribution m, the mechanism φ defined by (8) implements the effi-

cient state µ∗ in the public goods game F defined by (2). Further, φ satisfies incentive compatibility

in strictly dominant strategies, ex-post individual rationality and budget balance.

Proof. Budget balance is the most obvious. It requires that the total transfer made by the

planner be zero. Since α̃∗ =
∑

p∈P m̃pα̃
∗
p, we can calculate the total transfer in φ to be∑

q∈P
m̃q

(
α̃∗qv

′(α̃∗)− α̃∗v′(α̃∗)
)

= 0. (9)

Hence, φ satisfies budget balance.

Incentive compatibility requires that in the equilibrium of φ, every agent reveals her type truth-

fully. Since α̃∗v′(α̃∗) and v(α̃∗) are strategically irrelevant, we can reinterpret our problem in (8)

to be one where a type−p agent chooses α̃∗q to maximize α̃∗qv
′(α̃∗)− cp(α̃∗q). But once we replace m

with m̃, (6) implies that the unique solution to this problem is α∗p.

Therefore, φ ensures truthful revelation. Moreover, truthful revelation is a dominant strategy

because it happens irrespective of the reported type distribution m̃. In fact, dominance is strict

because α̃∗p is the unique maximizer of (8).

Ex-post individual rationality requires that in equilibrium, no agent obtains a negative payoff.

In equilibrium, due to truthful revelation, α̃∗p = α∗p and m̃ = m. Therefore, using (8), we can write

the equilibrium payoff of a type−p agent in φ as

φp(p,m) = v(α∗) +
(
α∗pv

′(α∗)− α∗v′(α∗)
)
− cp(α∗p)

=
[
v(α∗)− α∗v′(α∗)

]
+
[
α∗pv

′(α∗)− cp(α∗p)
]
, (10)

We need to show that φp(p,m) ≥ 0. The second term in (10), α∗pv
′(α∗) − cp(α∗p) > 0. This is

because by (6), α∗p is the unique maximizer of xv′(α∗) − cp(x) in S. The properties of v and cp

imply that this maximum value is strictly positive. The first term, v(α∗)− α∗v′(α∗) ≥ 0, with the

inequality being strict if v is strictly concave. This is because by concavity of v, v(α)
α ≥ v′(α) for

all α ∈ [0,∞). Hence, φ(p;m) > 0. �

The intuition behind the mechanism φ is the same as Pigouvian pricing but with the true

distribution m replaced by the reported distribution m̃. The large population characteristic of

our model then ensures incentive compatibility. No agent can individually affect α̃∗ through their

report. Hence, the problem in (8) reduces to maximizing α̃∗qv
′(α̃∗) − cp(α̃∗q) for a type−p agent
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which is solved at α̃∗p. Every agent, therefore, reveals type truthfully so that m̃ = m. Each agent

gets allotted the efficient strategy level α∗p, which implements the efficient state µ∗ (Propositon 2.1).

Since individual agents cannot affect α̃∗, the term α̃∗v′(α̃∗) becomes a lumpsum. This ensures

budget balance. Without it, budget balance is obviously not satisfied as every agent would receive

a positive transfer α̃∗pv
′(α̃∗). We note that budget balance is satisfied in the strong sense that total

transfer is zero rather than being just negative. Individual rationality ensures that no coercion is

required to induce participation in the mechanism. It is significant that this is satisfied in the ex–

post sense instead of an expected ex–ante sense. The actual equilibrium payoff is strictly positive.

4 Conclusion

We have, therefore, shown that our mechanism φ satisfies incentive compatibility, budget balance

and individual rationality in the strongest possible sense. Hence, when applied to the large popu-

lation scenario, this mechanism combines the virtues of the classical finite–player VCG and AGV

mechanisms for implementing efficiency in public goods provision. As discussed in the Introduction,

neither of these mechanisms satisfy all three properties, at least in the strong sense of Proposition

3.1.

The key factor that drives our results is that individual reports do not influence the reported

type distribution thereby making truthful revelation incentive compatible. It is interesting to

compare this with Hammond [4], which characterizes the class of incentive compatible mechanisms

in large economies using the concept of decentralizability. Decentralizable mechanisms are the ones

where an individual agent is unable to affect the distribution of reported types in a large economy.

We have used a similar line of argument and actually characterized such a mechanism. Makowski

and Ostroy [7] show that for individual rationality to hold in large economy VCG mechanisms,

individuals need to fully internalize externalities. In our model also, agents internalize externalities

and individual rationality holds. But we do not require preferences to be quasi–linear.
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