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Abstract

Consider a situation where two objects that are complements
are misallocated to different bidders. As a result, bidders try to
trade via a double auction. The trade may be inefficient if the
identities of buyer and seller are determined before they bid. To
overcome inefficiency, we consider that the identities are determined
by their bids. Under symmetric beliefs, we show that the bidders’
expected buy and sell prices are equivalent for a rich family of bar-
gaining rules. Consequently, bidders’ expected utilities are equiv-
alent under all bargaining rules. We also capture the impact of
endogenous selection on the expected prices and utilities.
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1 Introduction

If objects are complements, it leads to synergistic effects. Often, com-
plementary objects are misallocated to different bidders which creates
inefficiency. The misallocation occurs due to complex auction rules, un-
certain future values, coordination failures, holdout problems, regulation,
asymmetric information, liquidity constraints, etc. Certain examples are:
airport slots, spectrum rights, mining rights, air rights, land parcels,
patent portfolios, electricity grids, broadcasting rights, and so on.

An airline can work more efficiently if it can acquire adjacent depar-
ture and landing slots. To exploit economies of scale, a telecommuni-
cation firm wants to acquire spectrum rights for adjacent geographical
regions. Two adjacent land parcels are worth more than two far-located
land parcels. To develop a new technology, a firm has to acquire patents
of other firms.
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In order to rectify the misallocation of complementary objects, agents
attempt to trade their object with other agents via a double auction.
However, trade may fail due to the following reasons: (a) both the agents
want to be sellers, (b) both the agents want to be buyers, and (c) if one
agrees to be a seller and other a buyer, they may not reach an agreeable
price. As a result, the three scenarios lead to an inefficient outcome. In
particular, (a) and (b) lead to trade failure with certainty while (c) leads
to trade failure with a positive probability.

To overcome the trade failure, we devise an allocation rule that is
efficient: buyer and seller are chosen endogenously, i.e., the identities of
the agents are determined by their bids. To do a comparative analysis, we
also consider the standard rule: buyer and seller are chosen exogenously,
i.e., the identities of the agents are determined before they bid.

An obvious concern that arises is: does the endogenous selection
criterion perform better than the exogenous selection criterion (part (c))
and the no-trade situation (parts (a) and (b))? The answer is yes, at
least, for a special belief system.

Broadly, we address the following questions:

1. Given the endogenous selection of buyer and seller, what is the im-

pact of bargaining power on the bid behavior and expected payoffs?

2. Does the expected buy price equal the expected sell price?

3. What is the impact of endogenous selection of buyer and seller on
the bid behavior and expected prices at which trade occurs?

Consider a double auction with two bidders who possess one object
each. The two objects are complements to each other and the value of
each object is private information for the bidders. The degree of com-
plementarity of the two objects is homogeneous and common knowledge
among the bidders. The value spaces are subsets on the real line and the
probability distributions are mutually independent.

Consider two environments: (a) buyer-seller uncertainty where the
identities of the buyer and seller are endogenous and (b) buyer-seller
certainty where the identities of the buyer and seller are exogenous. Un-
der (a), the identities are determined by the bids. In particular, the
highest bidder acts as a buyer while the lowest bidder acts as a seller.
This ensures that trade occurs with certainty. Under (b), the identities
are common knowledge before the agents bid and trade occurs if buyer’s
bid is at least as large as seller’s bid.

In each of the two environments, we consider a family of bargaining
rules where the market power is shared between the two bidders. In
this family, two bargaining rules deserve special emphasis: (a) first-price
double auction and (b) second-price double auction. Under the first-price
double auction, the price of the object equals the buyer’s bid, i.e., the
buyer has all the market power. Under the second-price double auction,



the price of the object equals the seller’s bid, i.e., the seller has all the
market power.!

Under buyer-seller uncertainty, we characterize an equilibrium with
asymmetric beliefs for a generalized family of bargaining rules. With
symmetric beliefs, we show that the bidders bid higher in the first-price
double auction than the second-price double auction. We also establish
two principles. The first is the price-equivalence principle which states
that the bidders’ ex-ante expected sell price equalizes their ez-ante ex-
pected buy price. The second is the payoff-equivalence principle which
states that the bidders’ ez-ante expected utilities are equivalent under
all bargaining rules, i.e, the allocated market power is irrelevant in de-
termining their expected utilities.

Under buyer-seller certainty, we characterize an equilibrium with
asymmetric beliefs for a generalized family of bargaining rules. In the
first- and second-price double auction, the inverse bid functions are de-
rived analytically for a generalized family of probability distributions. We
show that, under both the rules, the seller bids higher than the buyer
as long as the degree of complementarity between the objects is not too
large. In addition, if the seller is more likely to draw a higher value than
the buyer, the buyer’s belief about success is smaller than the seller’s
belief about failure. We also show that both the seller and buyer bid
higher under the second-price double auction than the first-price double
auction.

The rest of the results that are discussed below hold for a special belief
system and the first-price double auction. In the buyer-seller uncertainty
with asymmetric beliefs, we show that the price-equivalence principle
fails. Particularly, if a bidder is more likely to draw a higher value, then
his ex-ante expected buy price is larger than his ez-ante expected sell
price. As a result, he induces higher ex-ante expected probability of
being a buyer.

In the buyer-seller certainty with asymmetric beliefs, we show that
the price-equivalence principle holds. We also show that the expected
beliefs about trade succeeding are equivalent for buyer and seller. These
properties hold without imposing stochastic orders on the belief system.

Our ultimate goal is to compare the bid behavior, expected prices and
expected utilities between the buyer-seller uncertainty and buyer-seller
certainty. With asymmetric beliefs, it is implausible, since equilibria in
each framework is characterized by two asymmetric differential equations.
Despite having analytical solutions for a special belief system, it cannot
be done, as both the frameworks have different boundary conditions. In
particular, both the boundary conditions cannot be true simultaneously.

!The first-price double auction (resp., second-price double auction) may be called
as a monopsony bargaining rule (resp., monopoly bargaining rule).



Therefore, we compare them under symmetric beliefs. Particularly, we
show that the bidders are better off under buyer-seller uncertainty than
under buyer-seller certainty and no-trade situation.

1.1 The literature

To the best of my knowledge, the present paper is the first to consider
that bidders’ identities as a buyer and seller are determined by their bids
for two indivisible objects. Our work fits in two strands of literature:
double auctions and standard auctions.

Double auctions have been considered in Chatterjee and Samuelson
[1], Myerson and Satterthwaite [11], Gresik [3, 4], Makowski and Mezzetti
[9], Lu and Robert [8], Leininger et al. [7], Williams [13], among others.
Standard auctions have been considered in Riley and Samuelson [12],
Cheng [2], Kirkegaard [6], Maskin and Riley [10], Hu et al. [5], among
others.

The double auction literature has largely considered that bidders’
identities are exogenous. Chatterjee and Samuelson [1] characterize dou-
ble auctions for one object with a predefined buyer and seller. Myerson
and Satterthwaite [11] show that there does not exist any mechanism
that is incentive compatible, interim individually rational and ex-post
efficient. Gresik [4] generalizes Myerson and Satterthwaite’s framework
by considering ex-post individual rationality and shows that there is no
loss in efficiency.

In some sense, our first-price double auction is analogous to the first-
price auction while the second-price double auction is analogous to the
second-price auction in single-unit standard auctions. Under symmet-
ric auctions, Riley and Samuelson [12] show revenue equivalence princi-
ple between the first- and second price auction. Maskin and Riley [10]
consider asymmetric auctions and show that a general revenue ranking
principle between the first- and second-price auction does not exist.

2 The model

Consider a double auction with two indivisible objects that are comple-
ments to each other. There are two risk-neutral bidders who own one
object each. Let the set of bidders be N = {1,2}. The value of the object
is privately known to the bidders. The value space is T; = [0, a;] C R4+
for every ¢ € N with aj,a2 € Ry4.

Let the random variables of values be 77 and 73. The probability
distribution is F; : T; — R4 with density functions f; : T; — R4 for every
1 € N. We assume that the distribution functions are twice continuously
differentiable and the density functions are atomless. Let the degree of



complementarity between the two objects be denoted by 1 > 1. That is,
if a bidder draws a value of ¢, then his value from owning his object is ¢
and if he obtains the second object, his value rises to (u+ 1)t. Note that
1 is homogeneous and common knowledge between the bidders.

We consider two economic environments: (a) buyer-seller uncertainty
and (b) buyer-seller certainty. Under buyer-seller uncertainty, the iden-
tities of the buyer and seller are endogenous, i.e., they are determined
by their bids. In particular, the highest bidder serves as a buyer while
the lowest bidder serves as a seller. Under buyer-seller certainty, the
identities of the buyer and seller are exogenous, i.e., they are predeter-
mined before bids are placed. The buyer-seller uncertainty is considered
in Section 3 and the buyer-seller certainty is considered in Section 4.

Let a family of bargaining rules be:

p(bg,bs) := Apbp + Asbs

where bp is the buyer’s bid, bg is the seller’s bid and Ag and Ag are
exogenous parameters which indicate the market power of the buyer and
seller respectively.

If A\ = 1 and Ag = 0, the bargaining rule is called the first-price
double auction. If Ap = 0 and Ag = 1, the bargaining rule is called
the second-price double auction. In the first-price double auction, the
price of an object equals the highest bid while in the second-price double
auction, the price of an object equals the lowest bid. That is, all the
market power is allocated to the buyer in the first-price double auction
and all the market power is allocated to the seller in the second-price
double auction.

3 Buyer-seller uncertainty

In this section, we consider that the identities of the buyer and seller
are uncertain while placing bids; they are revealed only after the bids
are submitted. Each bidder is supposed to bid in a sealed envelope.
Whosoever bids the highest acts as a buyer while the other bidder acts
as a seller. If bidder ¢ with value ¢; bids b; while bidder j bids b; so
that b; > b;, then bidder j’s object is allocated to bidder i at a price of
Apbi+Agb;. In this case, bidder i’s ex-post utility is (u+1)t;—Apb;—Agb;.

Let the bid functions be continuous, strictly monotone and onto. Let
the bid function be denoted by o; and the inverse bid function be denoted
by m; for every ¢ € N. Consider bidder ¢ € N with value ¢;. Suppose
he bids b while bidder j implements his bid function o;. Then, bidder
i becomes a buyer if and only if b > ¢;(7;), which equals 7; < 7;(b).
Otherwise, he becomes a seller. Therefore, the expected utility function,
Ui:ﬂx%+4)%,is



m;(b)
Us(t:, ) :/0 (0 + 1)t — Apb — Aso (w)]f; (w)dw .
1
+

aj
/ 3o (@) + Asb — ] f;(w)dw
7 (b)
where the first term is the expected utility from being a buyer while the
second term is the expected utility from being a seller.
In the following result, we characterize an equilibrium.

Proposition 1. A profile of measurable functions (71, m2) constitutes a
Bayesian equilibrium if and only if

Drra(b) = (AB + As)Fa oma(b) — Ag 1
fa o ma(b) (1 +2)mi(b) = 2(As + Ag)b

Drry (b) = (A + As)F1om(b) — As 1 (2)
fromi(b) (1 +2)m2(b) = 2(A + Ag)b

m1(0) =m2(0) =0, o1(a1) =o2(az) a.e.

We say that beliefs are symmetric if F} = Fb 2 Fand a1 = ay £
a. Under a symmetric equilibrium, we denote the value spaces, values,
inverse bid function, bid functions and utility functions by dropping the
subscripts. We use superscripts to denote the first- and second-price
double auction.

Let PB(7) be the ex-ante expected buy price, P¥() be the exz-ante
expected sell price and V' (7) be the bidders’ ez-ante expected utility. Let
V* be the bidders’ ez-ante expected utility under the no-trade situation.

We establish one of the main results below.

Theorem 1. Let m be a symmetric Bayesian equilibrium. Then,
1. PB(x) = P%(r) & P(m)
2. V(m) = 2l + 2P () — of (w)dw
3. Aslong as pn > 2 [ wf(w)dw/ [ wf(w)F(w)dw —2, V(r) > V*.

The first part is the price-equivalence principle which says that the ex-
ante expected sell price equals ex-ante expected buy price. The second
part is the payoff-equivalence principle which says that the impact of
market power is redundant on the bidders’ expected utilities. The third
part says that the endogenous selection of buyer and seller dominates the
no-trade situation, as long as the degree of complementarity is sufficiently
large.

Consider the first-price double auction (resp., second-price double
auction). For every t € T, the ex-post buy price is lower (resp., higher)
than the ex-post sell price. Given t € T, the interim expected buy price



is [y o(t) f(w)dw (resp., [3 o(w)f(w)dw) and interim expected sell price is
[ o(w)f(w)dw (resp., [ o(t)f(w)dw). For sufficiently low (resp., high)
values, the interim expected sell price exceeds the interim expected buy
price while for sufficiently high (resp., low) values, the interim expected
buy price exceeds the interim expected sell price. Moreover, the interim
expected buy price rises (resp., declines) in value while the interim ex-
pected sell price declines (resp., rises) in value.

The rest of the results of the present section concern about either the
first-price double auction or the second-price double auction.

Proposition 2. Let 7' be a symmetric Bayesian equilibrium under the
first-price double auction and let F/f be increasing everywhere on the
type space. Then, (1 + 1)Dat(b) > 1 a.e.

The above result interprets that if a bidder ends up being a buyer,
then his utility rises in his value. From (1), the bidder’s utility conditional
on being a buyer is (1 + 1)7!(b) — b. If (u + 1)Dat(b) > 1, then (u +
1)7!(b) — b is strictly increasing in b. Consequently, (u+ 1)t — ol (t) rises
in ¢. Since 61(0) = 0 and (u + 1)t — o} (¢) rises in ¢, it must be the case
that (u+ 1)t — o'(t) > 0 for every ¢ € (0,a) which equalizes that

ol(t) < (u+ 1)t

for every t € (0, a).

Under symmetric equilibrium, an explicit expression for the bid func-
tion cannot be established. Nonetheless, we establish lower and upper
bounds on the bids and prices under the first-price double auction.

Proposition 3. Let 7' be a symmetric Bayesian equilibrium under the
first-price double auction.
1. For every t € [0,a], a'(t) < ol(t) < a'(t) where

al(t) = %/Otwf(w)dw
is the lower bound of bid by a bidder and
at(t) = (u+ 1)t
is the upper bound of bid by a bidder.
2. P(r') < P(7!') < P(n') where

Pty = 122 ")t - P

is the lower bound of ex-ante expected price at which trade occurs
and

P = (u+2) [ ") - F(w)]dw

is the upper bound of ex-ante expected price at which trade occurs.



In the result that follows, we compare the bid functions between the
first-price double auction and second-price double auctions.

Proposition 4. Let 7' be a symmetric Bayesian equilibrium under the
first-price double auction and let 7% be a symmetric Bayesian equilibrium
under the second-price double auction. Then, 72(b) > w(b) for every
b e (0,0%(a)).

The above result conveys that the bidders bid higher under the first-
price double auction than under the second-price double auction. The
intuition is as follows. Under the first-price double auction, the buyer will
have all the market power while under the second-price double auction,
the seller will have all the market power. So, under the first-price double
auction, a bidder will want to be a buyer while under the second-price
double auction, a bidder will want to be a seller. As a result, a bidder
bids higher under the first-price double auction and bids lower under the
first-price double auction.

The next result compares the bid functions and bid distributions
between the two bidders under the the first- and second-price double
auction.

Proposition 5. Let (71, 7d) be a Bayesian equilibrium under the first-
price double auction. Let (73,73) be a Bayesian equilibrium under the
second-price double auction. Then,
1. If f1/F1 > fo/ Fy with ay > ag, then 71 (b) > 74 (b) and Fyomi(b) <
Fyom3(b) for every b € (0,01 (a1)).
2. If f1/(1 — Fy) > fo/(1 — F) with ay > ag, then 73(b) > w3(b) and
Fyo72(b) < Fyo73(b) for every b € (0,0%(a1)).

The above result says that, bidder 1 bids lower and produces a
stronger bid distribution than bidder 2 as long as bidder 1’s probability
distribution dominates bidder 2’s probability distribution. As a result,
bidder 1’s probability of being a buyer is higher than that of bidder 2.

4 Buyer-seller certainty

In this section, we consider that bidders know the identities of buyer
and seller before they place their bids, i.e., the identities are exogenously
determined.

We restrict to the family of continuous, strictly monotone and onto
bid functions. Let the bid function of player i € N be 6; and the inverse
bid function be ¢;. Since we do not impose any stochastic order on the
probability distributions, without loss of generality, bidder 1 is the buyer
while bidder 2 is the seller. Thus, trade takes place if and only if the
buyer’s bid weakly exceeds the seller’s bid.



Consider bidder 1 with value ¢; and bid b. Let bidder 2 respect 6s.
Then, trade takes place if and only if b > 65(72) which is equivalent to
T2 < ¢2(b). Therefore, the expected utility of bidder 1 is

@2(b)
U (1, b) = /0 (1)t = A b= ()] fo (w)dew[1— Fooda(B)]t1 (3)

where the first term indicates the expected utility in case the trade suc-
ceeds and the second term indicates the expected utility in case the trade
fails.

Now, consider bidder 2 with value to and bid b. Let bidder 1 respect
01. Then, trade takes place if and only if b < 61 (77) which is equivalent
to T1 > ¢1(b). Therefore, the expected utility of bidder 2 is

al
Us(ta, b) = /¢ o B0) FAsh Bl + Foai(): (1
1
where the first term indicates the expected utility in case the trade suc-
ceeds and the second term indicates the expected utility in case the trade
fails.
In the following result, we characterize an equilibrium.

Proposition 6. A profile of measurable functions (¢1,p2) constitutes a
Bayesian equilibrium if and only if

. )\BFQ o ¢2(b) 1
Da(b) = Jao¢a(b) pd1(b) — (A + As)b
Do (8) = As[L — Fy o ¢1(b)] 1 5)

fiogi(d) (A + Ag)b— 2¢2(b)
$1(0) = ¢2(0) =0, 01(a1) = O2(a2) a.e.

Remark 1. Under the first-price double auction, the equilibrium is char-
acterized as

b 2 Fy(b/2) 1 b
Blb) =~ + = . o) = 6
Under the second-price double auction, the equilibrium is characterized
as
b b pl—Fi(b/n)
»20b)=—, ¢ab)=-———T2 7

The next result presents a comparative property.

Proposition 7. Let (¢1,#3) be a Bayesian equilibrium under the first-
price double auction. Let (¢3,$3) be a Bayesian equilibrium under the
second-price double auction. Then,



1. ¢}(b) > ¢1(b) and ¢3(b) > ¢3(b) a.e. as long as p < 2.

2. 1) > G3(b) and 61(6) > G3(D) a.c.

3. Fyo¢l(b) < Fyopi(b) a.e. aslong as u<2 and Fy < F.
4 b) < Fyo¢3(b) a.e. aslong as p <2 and Fy < Fy.

The first part says that the seller bids higher than the buyer as long
as the degree of complementarity is sufficiently low. The second part
says that both the buyer and seller bid higher under the second-price
double auction than under the first-price double auction. The third and
fourth parts say that the seller produces a stronger bid distribution than
the buyer as long as the degree of complementarity is sufficiently low and
the seller’s probability distribution dominates the buyer’s, i.e., buyer’s
belief about trade occurring is less than the seller’s belief about the trade
failing.

5 A special belief system

In this section, we do a comparative analysis of expected prices, expected
probabilities and expected utilities for a special family of power distri-
butions. Consider the first-price double auction. In the buyer-seller
uncertainty, let PiB (r},73) be bidder i’s ex-ante expected buy price,
P?(r},7d) be bidder i’s ex-ante expected sell price and Cj(n],m3) be
bidder i’s ex-ante expected probability of being a buyer for every i € N.
In the buyer-seller certainty, let Pi(¢}, #3) be the ez-ante expected buy
price, Py(¢1, ¢3) be the ez-ante expected sell price and C;(¢1, #3) be the
ex-ante expected probability of bidder ¢ for every ¢ € N.
Define a family of probability distributions as

Fe {F T Ry Fi(t) = (t> Vi€ N} (8)

a;

where k1, ko > 0.
In the following result, we compare the expected prices and expected
probabilities between the two bidders under the buyer-seller uncertainty.

Theorem 2. Let (wi,73) be a Bayesian equilibrium of the buyer-seller
uncertainty environment under the first-price double auction. Let Fy, Fy €
F, koa1(2k1 + 1) = K1a2(262 + 1) and k1 > ka. Then,

1. PIB(W%’W%) = Pﬁg(ﬁ%vﬂ-é) > PQB(T‘-%?W%) = Pls(ﬂ-%vﬂ-%)

2. Cy(mi,m3) > Co(nmi,md)

It says that, if bidder 1’s probability distribution dominates bidder
2’s probability distribution, then (a) bidder 1’s expected buy price equals
bidder 2’s expected sell price, (b) bidder 1’s expected sell price equals
bidder 2’s expected buy price, (c) bidder 1’s expected buy price exceeds

10



his expected sell price, (d) bidder 2’s expected sell price exceeds his
expected buy price, and (e) bidder 1’s expected probability of being a
buyer exceeds that of bidder 2’s.

In the next result, we compare the expected prices and expected
probabilities of the buyer and seller under the buyer-seller certainty.

Theorem 3. Let (¢}, ¢}) be a Bayesian equilibrium of the buyer-seller
certainty under the first-price double auction. Let Fy, F» € F and 2az(1+
ko) = pkaai. Then,

1. Pi(1, ¢3) = Pa(61, ¢3)

The above result establishes (a) price-equivalence and (b) probability-
equivalence. Despite the asymmetry among bidders, the expected buy
price equals the expected sell price and expected probability of trade
occurring is equivalent for the buyer and seller. Note that no stochastic
order on probability distributions is imposed to establish the aforesaid
property.

The next result compares the bid functions and expected prices be-
tween the buyer-seller uncertainty and buyer-seller certainty environ-
ments.

Theorem 4. Let 7! be a symmetric Bayesian equilibrium of the buyer-
seller uncertainty under the first-price double auction. Let ¢' be a sym-
metric Bayesian equilibrium of the buyer-seller certainty under the first-
price double auction. Let beliefs be symmetric, i.e., a1 = az = 1 and
K1 = ko = k. Let p=2(1+r)/k. Then,

1. ot(t) = 0L(t) for every t € [0,1].

2. P(n)) = Pi(¢)) = Pa(oV)

3. V(rl) > Vi(el) > Va(el) > V*

The above result establishes certain properties: (a) bids are equiv-
alent under buyer-seller uncertainty and buyer-seller certainty, (b) the
ez-ante expected prices at which trade occurs are equivalent under buyer-
seller uncertainty and under buyer-seller certainty, (c¢) buyer-seller uncer-
tainty dominates buyer-seller certainty and no-trade situation.

6 Conclusion

In this paper, we have considered a double auction with two bidders and
two objects that are complements. Each bidder owns exactly one object.
Since the two objects are complements, bidders can benefit from trading
with each other. If the identities of buyer and seller are determined
before they place bids, the trade may lead to inefficiency in one of the
following ways: (a) both the bidders wants to be buyers, (b) both wants

11



to be sellers, and (c¢) one wants to be buyer while the other wants to be
seller. In order to overcome the inefficiency, we have considered that the
identities of the buyer and seller are determined by the bids.

Under symmetric beliefs, we have shown that the sell price equals the
buy price in expectations and the bidders’ expected utilities are equiva-
lent under all bargaining rules. Under asymmetric beliefs, the expected
buy and sell prices may be unequal. We have also shown that, for a
special belief system, bidders’ are better off by endogenous selection of
the buyer and seller’s identities.

Appendix A: Proofs

Proof of Proposition 1. Let (71, m2) be a Bayesian equilibrium. Con-
sider bidder ¢ with value ¢; and bid b. Using Leibniz integral rule, the
first-order derivative of (1) is

DyUi(ti, b) = Dy o m;(b)[(1 + 1)ti — (AB + As)b] — ApFj o m;(b)
— Dij o Wj(b)[()\B + As)b — ti] + )\5[1 — Fj o Wj(b)]

In equilibrium, ¢; = m;(b) and DyU;(7;(b),b) = 0. Therefore, we have
Dij o Wj(b)[(u + 2)7Ti(b) - 2()\3 + As)b] = ()\B + As)Fj o TI'j(b) - )\S

which simplifies to the system of differential equations in (2).

To show the converse, let a profile of measurable functions (71, m2)
satisfies the Dirichlet problem in (2). Consider bidder ¢ with value ¢;
and bid b. Suppose he overbids to ¢ so that m;(c) > t;. Then, from the
first-order derivative of (1), we have

D.Ui(ti,c) = DeFjomj(e)[(p+ 2)ti — 2(AB + Ag)c] + As
— (AB + As)Fjomj(c)
< DeFjomi(c)[(p+2)mi(c) —2(AB + As)c] + As
— (A + As)Fjomj(c)
= D.U;(mi(c), )
=0

which signifies that overbids reduce the expected utility. In similar vein,
it can be shown that underbids raise the expected utility. Thus, (71, 72)
is stable. |

Proof of Theorem 1. We show the first part. Consider a bidder with
value t. Then, his ex-ante expected buy price is

12



P = [ [so(t) + rsole )]f(w)dw}f(t)dt

= )\B/ / t)dwdt + )\s/ / t)dwdt

Using Fubini’s theorem, we have

PB(TF):)\B/ ol dt+)\5/ / w)dwdt

e /Oaa(t)f() ()t +As [ o501 - Foldt
- “Is + O — As)F(B)]o(t) f(1)dt

His ex-ante expected sell price is

P = [{ [ aote) + Asae )]f(w)dw}f(t)dt

a a
—)\B/ / dwdt+>\s/ / t)dwdt

Using Fubini’s theorem, we have

~ s / / w)dwdt + As / "o (O — F(8)dt
=g [ oOFOF@d+ A [ o O - PO

0
- /0 “s + (s — As)F(B)]o(t) f(t)dt
— PB(x)

Therefore, the price-equivalence principle holds.
We show the second part. Consider a bidder with value ¢. Then, his
interim expected utility is

Ult,o(t) = /O 1+ 1)t = Apo(t) — Ago(w)] fw)dw

" / “po(w) + Aso(t) — t]f(w)dw

= [(w+2)F(@) -1t - ; [Ao(t) + Aso(w)]f(w)dw

+ [ Do) + Aso(t)] fw)de

13



Therefore, the ex-ante expected utility is

- / CUt o) f(1)dt

_/ (1 +2)F(t) — 1]if(t)dt
_/‘/L“W“Vﬁwawﬂﬂwﬁ@mmﬂ
0 0
+/ / [Apo(w) + Ao ()] f(w) f(t)dwdt
_/ [(n+2)F(t) — 1)t f(t)dt — PP (m) + P*(m)
Since PP(r) = P5(7), we have

V(m) = [+ DF () - Utst)ae

which establishes the payoff-equivalence principle.
We show the third part. Under no-trade situation, the ez-ante ex-
pected payoff is

V= / wf(w)dw
0
Comparing V(7) with V*, we get the desired result. [ |

Proof of Proposition 2. Consider bidder ¢ with value ¢t and bid b. In
equilibrium, ¢t = 7(b). We show that (u + 1)Dml(b) > 1 for every
b€ (0,0%(a)). From (2), we have

) Lo . Foml(b) 1
WP O =0 T or ) i om () — 2
i (b)f o 7r1(b)

= lim

410 f ot (0)[(i+ 2)Dw(8) — 2] + DIf 0w (5)][(u + 2)1 (b) — 20]

which implies

3
D7t (0) = ——
7 (0) 1o
Therefore, we have
2u+1
+1)Dr'(0) — 1 = >0
1+ 1)Dr1(0) -1 = 20

Since 7! is continuous, it follows that there exists e > 0 sufficiently close

to 0 so that (u + 1)Drl(e) > 1 +e. We show that there does not exist

14



b so that (u + 1)Dnl(h) = 1. To do so, we contradict. Suppose there
exists b* € (0,0'(a)) so that (u+ 1)Dat(b*) = 1 and (u + 1)D7al(b) > 1
for every b € (0,0%). Then, from (2), the second-order derivative is

Fort(t*) (u+2)Drl(b*) —2

2 _1/71%
PO = o) [+ 2 ) — 2P
Forl(v)
T ) — 2 {f onl(bﬂ}
_ Forl(b")
fomt(b) (u+ Dl(p+ 2)7r1 — 2b*]?
. {Fow )}
(u+ 2)7t(b*) —2b* | f owk(b*)
>0

as I/ f is strictly increasing. This implies (u+1)D?7!(b*) > 0. Therefore,
there exists § > 0 so that (u + 1)Dr!(b* — 6) < 1 — §, which establishes
a contradiction. Thus, (u 4+ 1)D7!(b) > 1 for every b € (0,0 (a)). [ |

Proof of Proposition 3. We show the first part. From (2), we have
Forl(b) 1

fomt(b) (p+2)mt(b) —2b

Since b = ¢! o 7!(b) implies 1 = Do! o 7! (b)D7!(b), we have

D7l(b) =

Dol o7l (h) = 1{:27; (<Iz)>)) (1 + 2)7 (b) — 20]
which equals
Do () = [+ 2t — 20 (1)

as t = w(b). This can be rewritten as

D[F(t)o! ()] = (n+2)tf(t) — o' () f(1)
Using the fundamental theorem of calculus on limits ¢ and 0 along with
o1(0) = 0, we have

_LH tw W (AJ—L tO’ w w)dw
o) ="y [ @t — g [ot @)

>%>2 / wf () s [ o) flwe

o+ 2
-5 / wi(w)dw — o' (t)

15



which implies

u+2/ (e

Therefore, we have established a lower bound of o!(t) for every ¢t € T.
The upper bound has already been established in the main body of the

paper.
We show the second part. The ex-ante expected price is

_ /aF(t)al(t)f(t)dt
,u+2// wf(w)f(t)dwdt
N+2/‘/tf w)dwdt

2

_ T/0 tf(t)[1 — F(1)dt

which gives a lower bound on the expected price. To establish an upper
bound, the expected price can be written in terms of bid as

p(r!) = /O T o (B)F o 2 (db)
— BFor' () For'(B)] @ — /0 T P o (0)DF o 7 (b)]db
— ol(a) - /ol(a) For' (b)D[bF o ! (b)|db
0

o'(a)
:/1 [1— For!(b)]DF o' (b)]db

0

where the second equality arrives by applying integration-by-parts and
1

the fourth equality arrives by using the condition o'(a) = [ (@) D[bF o
71(b)]db. From (2), we have D[bF or!(b)]db = DFor!(b)[(u+2)7t(b) —0b].
Using it in the expression of P(r!), we have

p(rl) = /Ogl(a) [1— For (0)]DF o ()1 + 2)7 (b) — bldb

Since t = 7! (b), we have

P = [T = A+ 2t - o' )t
<+ [t - P

16



This establishes an upper bound on the expected price. |

Proof of Proposition 4. From (2) with the second-price double auc-
tion, we infer that

Do?(t) < m[(M + 2)t — 20°%(t)]

F(t)
From (2) with the first-price double auction, we infer that
f(t) 1
Do'(t) = -~ 2)t — 20 (t
7(0) = Hlu+2)t =20 (1)

Suppose for some t > 0, 0?(t) > o'(t). Then, from the above two
equations Do?(t) < Dol(t). Since o(0) = 0%(0) = 0 and the two bid
functions are continuous, o2(t) > o!(t) implies Do?(t) < Dol (t) leads to
a contradiction. Therefore, for every ¢t > 0, it should be the case that
al(t) > o%(t). [ |

Proof of Proposition 5. We show the first part. As 7} o oi(a1) =
a1 > ay = 7 0 0 (ay), there exists € > 0 so that 7 o (0] (a1) —€) > 73 o
(01 (a1) —€). Suppose there exists b* € (0,01 (a1)) so that 71 (b*) = 73 (b*)

and 7} (b) > 7 (b) for every b € (b*,01(a1)). Then, from (2), we have

1% Fy o my(b*) 1
Pma’) = 3w w2
Fy o7} (b*) 1
faoml (b*) (u+ 2)my(b*) — 2b*
Fy o7} (b*) 1
fromi(v*) (u+ 2)my(b*) — 2b*
— Drl(v")

Thus, there exists § > 0 so that 73 (b* +6) > 7} (b* + ) — a contradiction.
Hence, 7 (b) > w3 (b) for every b € (0,01 (a1)).

From (2) with the first-price double auction and the result that
7} (b) > 73 (b) for every b € (0,01 (a1)), we have

Fyomi(b)
DF; o i (b)

Fyomi(b)
= 2)m1 (b) — 2b Amh(b) —2b= ———1
which implies

D[Fl o 71 (b)

0
FQOwg(b)} >

17



Since I o7 o 0}(a1) = F oms o 0i(a1) = 1 and the ratio is increasing,
it must be the case that Fy o i (b) < Fy o m3(b) for every b € (0,01 (ay)).

We show the second part. As 72 o 02(a1) = a1 > as = 73 o 02(ay),
there exists € > 0 so that 72 o (6?(a1) — €) > 75 o (63(a1) — €). Suppose
there exists b* € (0,0%(ay)) so that 73(b*) = 73(b*) and 73 (b) > 73(b)

for every b € (b*,0%(a1)). Then, from (2), we have

9 e 1 — Fyom3(b) 1
Pel) = —E om0 W = (it 9m0)
_1—Fyori(b) 1
— feonf(b) 20" — (u+2)m(bY)

1 — Fyom?(b*) 1
fromf(br) 20" — (u+2)m5(b%)
= Dr2(b*)

Thus, there exists § > 0 so that 73 (b* +8) > 73 (b* + ) — a contradiction.
Hence, 72(b) > 73(b) for every b € (0,0%(a1)).

From (2) with the second-price double auction and the result that
72(b) > 73(b) for every b € (0,0%(a1)), we have

1 — Fyo73(b)
DF; o 73(b)

1 — Fy on?(b)

= 20— (- 2mi(b) < 20— (u+ () = Hrm s

which implies
1—Fyo W%(b)]
Dl ———-= 0
[1 — Fy o2(b) <

Since 1 — Fy o?(0) = 1 — Fy o 73(0) = 1 and the ratio is decreasing, it
must be the case that 1 — Fy o 2(b) < 1 — Fy o w3(b) which is equivalent
to Fy o m}(b) < Fy o w2(b) for every b € (0,0%(ay)). [ |

Proof of Proposition 6. Let (¢1,¢2) be a Bayesian equilibrium. Us-
ing Leibniz integral rule, the first-order derivative of (3) gives

D,U; (tl, b) = D(bg(b)fg o ¢2(b)[,ut1 — ()\B + As)b] — ApFyo ¢2(b)

In equilibrium, ¢; = ¢;(b) and utility is maximized when DU (¢1(b), b) =
0. This gives us the first equation.
Using Leibniz integral rule, the first-order derivative of (4) gives

DbUQ(tQ, b) = D¢1(b)f1 o gf)l(b)ptg — ()\B + As)b] + )\5[1 —Fio gf)l(b)]

18



In equilibrium, t2 = ¢2(b) and utility is maximized when DyU; (¢1(b),b) =
0. This gives us the second equation.

We now show sufficiency. Let (¢1, ¢2) solve (5). Consider bidder 1
with value t; and bid b so that t; = ¢1(b). Suppose he overbids to ¢ so
that ¢1(c) > t1. Then, the first-order derivative of (3) implies

DCUl (tl, C) = D(Z)Q(C)fg e} (ﬁg(c) [Mtl — ()\B + )\S)C] — )\BFQ e} ng(C)
< Do (e)f2 0 62() 11 (e) — (A + As)e] — APy 0 da(c)
=0
which implies that overbids reduce expected utility. Simply by flipping
the inequalities, we can show that underbids raise expected utility.
Now, consider bidder 2 with value t3 and bid b so that to = ¢2(b).

Suppose he overbids to ¢ so that ¢2(c) > ta. Then, the first-order deriva-
tive of (4) implies

D Us(ta,c) = Déi(c) f1 0 ¢p1(c)[2ta — (A + As)c] + Ag[l — F1 o ¢1(c)]
< Dé1()f1 0 61(c)[262(¢) — (A + As)d] + As[L = Fi 0 61(0)]
=0

which implies that overbids reduce expected utility. Simply by flipping

the inequalities, we can show that underbids raise expected utility. Thus,
(¢1, P2) is an equilibrium. n

Proof of Theorem 2. From (2), we have the inverse bid functions as

2k +1 2k +1
1 2 1 1
m(b) = ——b, m(b) = ———
1( ) /432(/144—2) 2( ) Hl(ﬂ+2)
and bid functions as
1 Ko (p +2) 1 K1(p+2)
t1) = ————=¢ tg) = ————=t
o) =5 1t el =5 e

The least upper bound of bids is

arko(p+2) _ agki(p+2)
260 +1 2k1+ 1

supb £ a%(al) = = U%(ag)

The bid distributions are

2 1™
Floﬂ'%(b)—[ fia )} b, Fgoﬂ'%(b)_[

_eh2 T 2I€1 + 1 :|H2b,‘£2
arke(p+ 2 )

agki (/J +2
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and their associated densities are

2 1 q™
DF; o i (b) = Ky [FM)] pril

arka(p+ 2
2k1 +1 ]mbnz—l
)

DF; ond(h) = ra 0T

Bidder 1’s ez-ante expected price as a buyer is

sup b
PB(x! 7l) = /0 bFy 0wl (B)F1 o 7 (db)

a1k1k2(p + 2)
(2/4;2 + 1)(/’61 + KR + 1)

Using symmetry, we have

agkika(p + 2)
(2/%1 + 1)(&1 + Ko + 1)
airk3(p+2)

(262 + 1)(Kk1 + K2 + 1)

Py (my,m5) =

Comparing PP (7}, 7d) and PP (7}, 7d), we get PP (n}, nd) > PP (ri, md).
Bidder 1’s ex-ante expected price as a seller is

ol(a1) as
Pil )= [T [ obe e | Fyo wlan
2

This implies

@ (1 + 2)K1ko /“2 .
to)Fo(dty) = —————~ to2dt
»/TI'%(b) 03 (t2) Fa(dt2) a§2(2/<01 +1) (b) 2 “42

(4 + 2)K1 K209 (1 + 2)K1koma(b)r2 Tt

(1 + K2)(2K1 + 1) a§2(1 + Hg)(zlﬂ + 1)

Using it in the expression of P (7], 73), we have

/€1/€2a2(,u+ 2)
(261 + 1)(k1 + K2+ 1)
K3a1(p + 2)

(2h2 + 1) (k1 + K2 + 1)

= Py (i, m3)

PP (ni,m3) =

20



Using symmetry, it can be shown that

/€1/€2€L1(M + 2)
(262 + 1)(k1 + K2 + 1)

We now show Cy(mf,m3) > Ca(mi,m3). To do so, let A; : Tj — T;
be defined as A;(t;) := 7} o le-(tj) for every i,j € N. Then, from the
expressions of bid functions and inverse bid functions, we have

PP (n},m3) = Py (n,m3) =

a as
Ai(t2) = ;;tz, Ao(ty) = ;tl
1

and
to K1 t K2
F10A1(t2): - , FQOAQ(tl) = =
ag ai

for every t1 € T1 and every to € T5. The ex-ante expected belief of bidder
1 being a buyer is

al
Oy (x), ) :/0 Fy o As(t1) Fi(dy)

K1

K1+ K2
Symmetrically, we have

K2
Co(mi, my) =

K1+ K2

Comparing Cy (i, 7) and Oy (7, 73), we have Cy(mi, md) > Co(wi, md).

|
Proof of Theorem 3. From (5) and (8), we have the inverse bid func-
tions as
1+ ko b
1 1

b) = b b) = = 9
o10) = =2, ajib) = 3, )

the bid functions as
0 (1) = 22 4 0l(ty) = 2t 10
1(t1) et 5(t2) = 2ta, (10)

the bid distributions as

Fiodl(b) = (1 +K2>mb’“, Fyodb(h) = (b)m (11)

Haiks 2a9

and the bid densities as
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14 ko \™ 1\"™
1 — r1—1 1 _ - Kko—1
DF; o ¢1(b) _ﬂl(ﬂal’€2) b ,  DFyopy(b) —/12(2@) b
(12)

The supremum of bid is

supb = 0y (a1) =

Let ©; : T; — T; be defined as Q;(t;) := ¢} o Gjl(tj) for every t; € T; and
for every i,j € N. Given t; € T}, Q;(t;) is the bid of bidder i so that it
equalizes bidder j’s bid 6;(¢;). So, we have

2(1 + Hg) a1
—to = —io
k2 a2

M (t2) = ¢1002(t2) = ¢1(2t2) =

and

K2 J ) a2
2(t1) = p2 0 01(t1) ¢2(1+,§2 1) 2t T ol
Given t; € T7 and ty € T, we have
tl K2 t2 K1
Fy0Qo(ty) = () , Fro(t) = () (13)
a1 a2

The buyer’s ex-ante expected payment is

1 41 supb 1 1
Pioleh) = [ bR o al0)Fr o 0l(a)
2a9K1

:/‘&1+f€2+1

The seller’s ez-ante expected payment received is

supb rai
Pkl = [ [ ekFi(an) R o ohan

Using (10), we have

al al
[ sieman) = [ oit) @)
¢1(b) ¢1(b)

2CL2I€1 2(12/431

— _ b k1+1
1+ k1 a’f1+1(1 + m)(m( )
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Using it in the expression of Pa(¢1, ¢2), we have
2(12/@1
K1+ Ko+ 1

Comparing P;(¢1, #3) and Py(¢1, ¢3), we arrive at Py (o1, ¢d) = Po(¢i, ¢3).
We now show that Oy (¢}, ¢1) > Ca(é1, ¢3). From (13), we have

PQ(QZ%’ d)%) =

Ci(ot, 6b) = /0 " By o Qu(t1) Fy(dhy)

K1+ Ko
and
11 2
Co(1,83) = /0 [1— Fy o (t2)] Fa(dt2)
K1+ ko
Comparing C1(¢1, #3) and Cz(p1, ¢3), we have C1 (o1, ¢3) = Ca(h1, ¢3).
|
Proof of Theorem 4. From Theorem 2, we have
2 2
o) = "L, ppir) = pS(at) = 2
2k +1 2k+1
and from Theorem 3, we have
i 1 1 2akK
0i(t) = ——t, P, - P —
Comparing the above expressions, we get (1) and (2).
From Theorems 1-3 and (3)-(4), we have
K(pk +p+1) 1 k(p—2) K
14 = ; Vi = )
(™) (k+ 1)(26 + 1) 90 =57 g
k(2K + 3) K
Va(ph) = V=
2(07) (26 + 1)(k + 1) K+ 1
Comparing them, we get (3). [ |
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