

Ashoka University
Economics Discussion Paper 157

Heat, Gender, and Time: The Impact of Temperature on Time Allocation in India

November 2025

Aparajita Dasgupta, Ashoka University
Ashokankur Datta, Shiv Nadar Institution of Eminence
Anushree Khatri, Shiv Nadar Institution of Eminence

<https://ashoka.edu.in/economics-discussionpapers>

Heat, Gender, and Time: The Impact of Temperature on Time Allocation in India

Aparajita Dasgupta* Ashokankur Datta[†] Anushree Khatri[‡]

November 30, 2025

Abstract

This paper examines how heat stress influences gendered time allocation across diverse activity domains in a developing country context. We match high-resolution climate data (ERA5 global reanalysis dataset) with large-scale, high-frequency individual-level panel data from the Consumer Pyramids Household Survey (2019–2024). We find that extreme heat sharply reduces time spent in paid work, learning, and social–community participation, with larger declines for men in paid work and learning and for women in social activities. By contrast, time-use on unpaid household work remains relatively unresponsive, while self-care increases for both genders. Remarkably, these effects are especially pronounced in historically hotter regions and among never-married individuals.

JEL Classification: Q54; J16; J22

Keywords: Temperature; Time Use; Gender; India

¹Ashoka University, Sonipat, India. E-mail: aparajita.dasgupta@ashoka.edu.in.

²Shiv Nadar Institution of Eminence, Uttar Pradesh, India. E-mails: ashokankur.datta@snu.edu.in, ak510@snu.edu.in.

³We would also like to thank Raavi Aggarwal, Rashmi Barua, Ujal Gandhi, Roopal Jain, Natasha Jha, Abhiroop Mukhopadhyay, and Tom Zeising as well as the participants of the Association for Mentoring and Inclusion in Economics (AMIE) 3rd Workshop in Applied Microeconomics, the European Association of Environmental and Resource Economists (EAERE) 29th Annual Conference (2024), the Environment for Development (EfD) 18th Annual Meeting, and the Centre for Research on the Economics of Climate, Food, Energy, and Environment (CECSEE) 9th Annual Workshop for their valuable feedback and insightful suggestions.

1 INTRODUCTION

Climate change poses one of the most severe challenges for economic development. A growing body of literature indicates that extreme heat exposure reduces agricultural yields, decreases labour supply and productivity, and worsens health outcomes (Burgess et al., 2017; Burke et al., 2015; Colmer, 2021; Dell et al., 2012; Somanathan et al., 2021). While these studies document substantial aggregate damages, they offer limited insights into the mechanisms through which households experience and respond to climatic stress. Understanding micro-level adjustments in time-use within households is crucial, as they determine who bears the costs of climate change and how it affects the allocation of time across different domains of economic activity. In this context, it is important to understand how individuals reallocate hours across paid work, unpaid care, learning, and self-care in response to extreme heat shocks. In India, where unpaid domestic and caregiving work is concentrated among women, the scope for adjustment is asymmetric and arguably gendered—particularly between participation in paid work, caregiving, self-care and human capital investments—which may have disproportionate costs on women (Afridi et al., 2023; Dasgupta and Datta, 2024; Deshpande and Singh, 2021). In this context, we examine how extreme heat affects the time allocation across various economic activities and the extent to which gender mediates these responses.

Time use is an underexplored but critical margin of climate adaptation (Rubiano-Matulevich and Viollaz, 2019a). Exposure to extreme heat can lower physical capacity for work, increase rest requirements, and heighten caregiving demands, compelling individuals to adjust how they divide their limited time (Graff Zivin and Neidell, 2014; Jiao et al., 2021). These reallocations have far-reaching consequences on development outcomes. A decline in paid work directly reduces earnings and productivity, and a reduction in time-use on learning and childcare activities has long-run implications on human capital formation and intergenerational mobility.

The extent of reallocation of time-use across activities, however, depends on the institutional and resource environment (Apps and Rees, 2005; Berlinski and Galiani, 2007; Graff Zivin and Neidell, 2014; Heyes and Saberian, 2022; Somanathan et al., 2021). For example, in high-income settings, access to infrastructure, technology, and social protection—such as air conditioning, flexible schedules, or paid leave—makes it easier for individuals to cope

with extreme heat stress. By contrast, in low- and middle-income countries (LMICs), where such support systems are scarce, behavioural responses in time-use emerge as the primary margin of climate adaptation (Jiao et al., 2021; Garg et al., 2020a,b; Huang et al., 2020). Understanding these patterns is central to assessing the welfare costs of climate change and designing effective adaptation policies.

Furthermore, these time-use adjustments are rarely neutral across gender within households. Across countries, women undertake a disproportionate share of unpaid domestic and caregiving work, while men participate more in paid work activities (Apps, 2004; Berniell and Sánchez-Páramo, 2011; Ferrant et al., 2014; Rubiano-Matulevich and Viollaz, 2019a). During extreme heat, the demand for water, food, and care rises, and women's time often shifts away from paid work and learning toward domestic responsibilities, deepening time poverty and constraining adaptive options. These patterns reflect structural constraints—rigid social norms, limited childcare provision, and segmented labour markets—that constrain women's ability to adjust. Consequently, women face chronic time poverty and limited scope to adjust when climate shocks occur (Bardasi and Wodon, 2010), while men are more flexible in reallocating their time across activities. These asymmetries imply that climate stress redistributes—not merely reduces—time, deepening gendered time poverty and altering household welfare. Yet most climate-economics studies treat labour supply and productivity as aggregate outcomes, obscuring the invisible intra-household adjustments that underpin them.

This paper brings these behavioural and distributional dimensions together by examining how exposure to extreme heat affects the allocation of time across major activity domains—paid work, unpaid household work, learning, and self-care—by gender in India. We combine individual-level panel data from the Consumer Pyramids Household Survey (2019–2024) with high-resolution ERA5 weather data to estimate how heat exposure shifts time across four primary activity domains—*Paid Work & Travel, Unpaid Household Work, Learning, Self-care* and *Social & Community* for both men and women. Together, these categories capture the core dimensions of economic participation, household welfare, and human capital accumulation (Alberto et al., 2021; Jiao et al., 2021). Exploiting within-individual variation in heat exposure, we estimate four specifications for the following set of models. (i) a linear model, (ii) a bin-based non-linear model, (iii) day-count hot-day measures, and (iv) cumulative degree-days to identify behavioural re-

sponse. The inclusion of multiple heat metrics ensures robustness to alternative exposure measures and aligns with recent methodological advances in climate–economics research. We further explore heterogeneity by rural–urban residence, marital status, and baseline climatic conditions to uncover the social and institutional conditions that mediate adaptation strategies. Following the literature, we treat temperature as exogenous and use this exogeneity to examine the effect of heat shocks on time-use choices.

Extreme heat induces similar directional shifts in time use for men and women, but the magnitude of these adjustments—and the baselines from which they adjust—differ considerably across genders. We find that with extreme heat exposure, time reallocation is substantial, asymmetric, and highly non-linear. Highlighting both men and women substitute time away from paid work, learning, and social & community activities toward self-care and indoor activities. The non-linear model captures the threshold effects of heat stress (Graff Zivin and Neidell, 2014; Somanathan et al., 2021), revealing sharp adjustments—once monthly mean temperatures exceed 34°C relative to the baseline of 22–25°C. At these levels, time in *Paid Work & Travel* declines substantially for both men and women, with steeper declines among men, while *Learning* time contracts significantly for both. Corresponding to these declines, individuals spend more time in *Self-care*, with men showing the larger increase. Moreover, *Unpaid household work* remains largely unresponsive to heat, underscoring its rigidity even under heat stress for both men and women. Engagement in social & community activities declines for both genders, with a larger reduction among women. These patterns are robust across heat exposure measures. Bin-based and day-count metrics yield similar patterns in reallocation. Interestingly, the cumulative degree days metric shows a modest increase in time spent in unpaid household work for both men and women. Finally, our heterogeneity analyses reveal that reallocation is stronger among the never-married individuals—consistent with higher flexibility in their schedule and fewer caregiving constraints. Furthermore, this pattern is more prominent in historically hotter regions with more hot-day prevalence.

By documenting how extreme heat reorganises time within households, our analysis illuminates a behavioural channel through which climate change generates welfare losses beyond income and health. Reallocation of time away from work and learning implies hidden productivity and human-capital costs that conventional climate-damage functions underestimate. At the same time, the rigidity of unpaid domestic work reveals that gendered

divisions of labour constrain adaptation and compound women’s vulnerability to climate stress. These findings highlight the importance of viewing adaptation not merely as technological or occupational change but also as a set of behavioural adjustments shaped by social norms and household responsibilities.

Our study contributes to three strands of literature. First, we add to the growing literature on the economic effects of rising temperatures (Burke et al., 2015; Dell et al., 2012; Graff Zivin and Neidell, 2014; Somanathan et al., 2021), which has focused primarily on agricultural yields, output, and health. We extend this literature by documenting a micro-level behavioural channel—time allocation. Importantly, we show that individuals reallocate time away from paid work and learning and toward self-care, implying welfare losses that productivity- or health-based accounts underestimate. We complement emerging studies linking climate shocks to time-use (Alberto et al., 2021; Connolly, 2008; Garg et al., 2020a; Hajdu, 2024; Huang et al., 2020; Jiao et al., 2021; Nguyen et al., 2021), by analysing a comprehensive activity portfolio and centring gendered non-paid work time as a core margin of adaptation. Second, it contributes to the literature on gender and time use by linking structural inequalities to environmental stress. Existing studies attribute persistent gender gaps to social norms, labour-market segmentation, and institutional barriers (Afridi et al., 2023; Apps, 2004; Berniell and Sánchez-Páramo, 2011; Deshpande and Singh, 2021; Dasgupta and Datta, 2024; Ferrant et al., 2014; Rubiano-Matulevich and Viollaz, 2019b). We show that climate change interacts with these constraints, amplifying gendered time poverty and reproducing inequality through the very process of adaptation. Third, methodologically, we provide a systematic comparison of four complementary heat metrics—linear, non-linear, frequency-based, and cumulative—within a unified empirical framework. This allows us to disentangle threshold effects from persistence effects and to assess behavioural versus physiological limits. The combination of high-frequency individual panel data, fine-grained weather records, and multiple exposure measures helps to do comprehensive micro-level examinations of climate adaptation in a developing-country context. To our knowledge, this is the first large-scale causal study of gendered time-use responses to temperature on key activity domains- paid work & travel, unpaid household work, learning, self-care and social & community activities - together in a developing-country context.

These findings contribute to a growing recognition that climate damages are mediated

by human behaviour within social institutions. Traditional economic models attribute heat-related output losses to reduced physical productivity or supply-side shocks. Our results instead show that individuals actively reoptimize time subject to physiological limits and gendered norms, implying that observed productivity changes are the outcome of constrained choices. From a welfare perspective, the costs of climate change include not only foregone income but also the disutility of constrained reallocation—time diverted from learning, leisure, or rest to maintain essential tasks.

Our findings carry three important implications. First, adaptation to heat operates through household time reallocation—away from paid work, learning, social & community activities and into self-care—which has potentially negative consequences down the line. Welfare accounting and policy design should ideally incorporate time-use responses over and above productivity and health outcomes. This aligns with the evidence that heat reduces the capacity to work and increases the need for rest. Second, for women, the scope for adjustment across various domains of time-use is relatively more inflexible. Structural constraints like sticky gender norms and limited institutional support make substitution across activities more challenging. Furthermore, the narrowing of gender gaps at high temperatures reflects men’s larger pullback from paid work and learning, alongside increased self-care, not improvements in women’s opportunities. This masks the welfare losses—lower earnings, foregone learning, and less time on paid work—while women’s unpaid workload appears largely rigid. Third, a multi-metric heat exposure approach is essential. Our non-linear specification reveals threshold effects that a linear model masks, and the robustness across bin-based, day-count, and cumulative metrics provides a more nuanced picture of behavioural margins and welfare costs of extreme heat.

The rest of the paper is structured as follows: Section 2 describes the data. In Section 3, we discuss our empirical strategy. Section 4 presents the main results. Section 5 examines heterogeneity. Section 6 reports the robustness checks. Finally, section 7 concludes the paper.

2 DATA

We combine panel data on individual time use with high-resolution reanalysis weather data to examine the relationship between temperature and time allocation. The sections

below describe the datasets and construction of key variables.

2.1 TIME-USE DATASET

Our analysis uses individual-level time-use data from the People of India module of the Consumer Pyramids Household Survey (CPHS), conducted by the Centre for Monitoring Indian Economy (CMIE). CPHS follows a rolling panel in which households are interviewed once every four months¹. This structure generates a high-frequency panel with repeated observations for the same individuals across months and seasons. This high-frequency panel design is central to our empirical strategy, as it allows us to implement individual fixed effects and exploit within-person variation in exposure to local temperature shocks.

Our analysis covers data from September 2019 to December 2024². It collects information for all individuals above the age of 12. Respondents report the average hours per day spent on activities during the week preceding the interview. While the survey does not provide the exact interview date, it records the interview month, which we use to align time-use responses with contemporaneous district-month weather conditions. The module collects information on eleven activity categories.³. For analysis, we aggregate these into seven mutually exclusive groups that span the 24-hour day (1,440 minutes)—*Paid Work & Travel, Unpaid Household Work, Learning, Self-Care, Indoor Entertainment, Outdoor Sports, and Soc. & Com.*⁴. We exclude fewer than 0.5% of observations where reported time does not sum to 1440 minutes.⁵

¹There are three four-month waves per year—January–April, May–August, and September–December

²CPHS introduced a dedicated time-use module, beginning with the September–December 2019 wave (2019–Wave 3).

³(i) working for employers, (ii) unpaid household work, (iii) learning, (iv) self-care, (v) indoor entertainment, (vi) outdoor sports, (vii) travel, (viii) religious activities, (ix) unpaid volunteering, (x) unpaid trainee activities, and (xi) time spent with friends.

⁴Following Jiao et al. (2021), we combine ‘working for employers’ and ‘travel’ into a single category, *Paid Work & Travel*, since travel time is predominantly work-related. Similarly, respondents report minimal time in religious, volunteering, trainee, and social activities. We aggregate these four into ‘Soc. & Com.’ category.

⁵This corresponds to 15,493 observations with partial responses or recording errors. We convert reported hours into minutes.

The resulting panel comprises 5,885,327 individual-wave observations from 774,695 individuals in 197,125 households across 510 districts, spanning 16 survey waves from late 2019 through 2024. The high-frequency panel design, which interviews each household multiple times per year, allows us to exploit within-person variation in heat exposure to study short-run adjustments in time allocation.

2.2 WEATHER DATA

We obtain weather data from the ERA5 global reanalysis dataset (Hersbach et al., 2020), produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). ERA5 integrates satellite observations, weather station data, and climate models to generate a continuous, hourly climate record from 1940 onward at a $0.25^\circ \times 0.25^\circ$ latitude-longitude resolution. ERA5 and related ECMWF products are widely used in empirical research across both developed and developing country contexts (Auffhammer et al., 2013; Colmer, 2021; Craigie et al., 2023; Zappalà, 2024; Holtermann, 2020). Existing literature has consistently validated these datasets as reliable sources of meteorological information for South Asia, with particular applications demonstrated for India and Bangladesh (Islam and Cartwright, 2020; Mahto and Mishra, 2019). In particular, Colmer (2021) shows a high degree of concordance between ERA5 estimates and ground-based observations in the Indian context, supporting its use here.

Following Garg et al. (2020a), we compute, for each day: maximum and minimum temperature, mean relative humidity, and total precipitation at the grid cell level.⁶ We overlay the ERA5 raster on 2020 district boundaries⁷, calculating area-weighted averages whereby each grid cell contributes to a district in proportion to its shared land area, with fractional weights assigned to cells spanning multiple districts. This procedure produces a balanced daily weather panel for all 640 districts from 1 September 2019 to 31 December 2024,

⁶We obtain hourly 2-meter temperature and total precipitation from the ERA5 single-level product, while both relative and specific humidity are derived from the pressure-level product; specific humidity is additionally used as an alternative measure of atmospheric moisture in our robustness analysis. ERA5 provides monthly aggregates, but the hourly data allow us to construct derived metrics such as monthly means of daily maximum and minimum temperatures and alternative measures of heat exposure.

⁷India district shapefile sourced from <https://www.kaggle.com/datasets/imdevskp/india-district-wise-shape-files>.

perfectly aligned with the period covered by our CPHS time-use microdata.

2.3 LINKING TIME-USE DATA TO WEATHER DATA

We merge CPHS time-use microdata with ERA5 weather data at the district-month level based on each respondent’s district of residence and interview month-year. Our final dataset comprises 5.88 million individual-month observations, containing detailed daily activity minutes, demographic characteristics, and matched weather measures. This rich individual-level panel, combined with spatial and temporal heat exposure, enables us to exploit within-individual and across-time variation to estimate how temperature shocks influence daily behaviour across gender and activity domains.

Using this merged dataset, we begin by documenting baseline gender differences in time allocation. Panel A of Table 1 summarises daily activity minutes across seven categories, disaggregated by gender. On average, men spend 312 minutes per day on paid work and travel, compared to 55 minutes for women, implying a substantial gender gap of 257 minutes. In contrast, women devote 272 minutes per day to unpaid household work, nearly double the 126 minutes recorded for men. Differences in other domains are smaller but systematic: women spend more time on self-care and indoor leisure, while men allocate slightly more time to learning and outdoor sports. These descriptive patterns provide a benchmark for assessing how climatic conditions may reshape existing gendered allocations of time.

Building on these baseline differences, we next examine how time use varies across the temperature distribution. To capture behaviour at climatic extremes, we focus on the 10th percentile (22.9°C) and 90th percentile (37.2°C) of the monthly maximum temperature distribution, alongside the comfortable range of 22–25°C. We find that the time-use responses to temperature are highly non-linear. Men’s time in *Work & Travel* peaks at 22–25°C but declines steadily at higher temperatures. Time devoted to *Unpaid Household Work* decreases for both genders in hotter months, whereas *Self-Care* rises sharply above 37°C, consistent with increased rest or recovery. *Learning* also falls outside moderate temperature ranges, indicating sensitivity to thermal comfort. These patterns provide strong motivation for adopting a flexible empirical specification that accommodates non-linear responses.

Finally, Panel B of Table 1 documents substantial variation in monthly weather conditions across districts and seasons. The mean maximum temperature is 30.3°C, while the mean minimum is 20.6°C. Precipitation and humidity also vary considerably across space and time, generating rich exogenous variation that underpins our identification strategy. This heterogeneity in heat exposure enables us to estimate how behavioural responses differ not only by activity domain but also by gender, allowing us to test whether climate stress exacerbates or narrows existing disparities in time allocation.

3 EMPIRICAL APPROACH

We combine individual-level panel data with high-resolution monthly weather records and exploit temporal fluctuations in maximum temperatures within districts to identify behavioural responses in time use. Our identification strategy compares individuals to themselves across months, controlling for local seasonal patterns and time-invariant characteristics, and estimates the effect of temperature on time allocation separately for men and women.

3.1 LINEAR MODEL

As a baseline, we estimate a linear fixed-effects model for each activity and gender:

$$TU_{kihdst}^g = \alpha_0^g + \alpha_1^g T_{maxdst} + \alpha_2^g X_{ihdst} + \alpha_3^g W_{dst} + \zeta_i^g + \eta_y^g + \beta_{dm}^g + \varepsilon_{ihdst}^g \quad (1)$$

where TU_{kihdst}^g is the total minutes individual i in household h , district d , state s allocates to activity k in month–year t , and $g \in \{\text{female, male}\}$ indexes gender. T_{maxdst} is the monthly mean of daily maximum temperatures of district d .

The richness of our dataset enables the inclusion of high-dimensional fixed effects in the model. Specifically, we include individual fixed effects (ζ_i), which absorb all time-invariant household and individual characteristics. Year fixed effects (η_y) account for nationwide macroeconomic and institutional shocks that could influence time allocation. District-month fixed effects (β_{dm}) capture local seasonal patterns, ensuring that identification comes from deviations from usual monthly weather within a district. In addition, we

control for two sets of time-varying covariates. The vector X_{ihdst} includes demographic characteristics: marital status, three age groups (12–15, 16–64, 65+), and five education categories ranging from no schooling to higher education. The vector W_{dst} includes additional weather variables— monthly averages of minimum temperature, total precipitation, and relative humidity—to isolate the impact of $Tmax$ from other climatic factors. Standard errors are clustered at the district level to account for spatial autocorrelation in both temperature exposure and time use, and the error term, ε_{ihdst} , captures unobserved variation.

In this framework, α_1^g is the parameter of interest. It measures the average change in time allocated to activity k for a 1°C increase in $Tmax$, estimated for each g . Estimating the model separately for men and women allows us to compare behavioural margins of adaptation across genders. While this model provides a benchmark, it imposes a restrictive constant-marginal effect assumption, potentially masking sharp behavioural adjustments at extreme temperatures.

3.2 BIN MODEL

To capture potential non-linearities in behavioural responses, we adopt a bin-based specification as our primary empirical strategy. Physiological and behavioural mechanisms suggest that temperature effects are unlikely to be constant: extreme heat reduces physical endurance, impairs cognitive functioning, and alters daily routines, whereas moderate deviations around thermally comfortable conditions often have limited effects. Prior studies consistently document strong non-linearities: labour supply declines disproportionately at high temperatures (Graff Zivin and Neidell, 2014; Somanathan et al., 2021), while extreme heat worsens health and cognitive performance (Banerjee and Maharaj, 2020; Burgess et al., 2017; Garg et al., 2020b).

Based on this evidence, we allow temperature effects to vary across disjoint intervals by dividing the monthly average maximum temperature into six mutually exclusive 3°C bins: $< 22^\circ\text{C}$, $22\text{--}25^\circ\text{C}$, $25\text{--}28^\circ\text{C}$, $28\text{--}31^\circ\text{C}$, $31\text{--}34^\circ\text{C}$ and $\geq 34^\circ\text{C}$.⁸ We take the $22\text{--}25^\circ\text{C}$ range as

⁸We test the robustness of our findings by altering the bin width (to 2°C and 4°C) and adjusting the upper bound of the highest temperature bin to 37°C. These alternative specifications test the sensitivity of our results to different temperature bin definitions. Results are reported in Section 6.

the omitted reference category, identifying this range as thermally comfortable for most human activities as established in the literature by [Graff Zivin and Neidell \(2014\)](#) and [Krüger and Neugart \(2018\)](#). The estimating equation is:

$$TU_{kihdst}^g = \sum_{b=1, b \neq 2}^6 \alpha_{1b}^g TmaxBin_{bdst} + \alpha_2^g X_{ihdst} + \alpha_3^g W_{dst} + \zeta_i^g + \beta_{dm} + \eta_y^g + \varepsilon_{ihdst}^g \quad (2)$$

where $TmaxBin_{bdst}$ represents an indicator variable for temperature bin b . We retain the same notation, control variables, and fixed effects. As mentioned before, parameters are estimated separately by gender and for each time-use category. In the regression for gender g and activity k , the coefficient α_{1b}^g measures the change in time spent on activity k in bin b relative to the reference bin. By estimating temperature effects across discrete intervals, this approach captures potential thresholds and extreme temperature responses, providing a more nuanced picture of behavioural adjustments across activity domains.

A growing literature highlights that non-linear temperature models based on binning may suffer from binning bias if long-run climate change mechanically alters the number of days in each temperature bin, and these shifts coincide with underlying district-level outcome trends (?). In such settings, the estimated non-linear temperature responses may partially reflect differential district-specific trends rather than genuine behavioural adjustments to heat. This concern is less pronounced in our context for two reasons. First, our analysis spans a relatively short panel (2019–2024), which limits the extent of long-run trend-driven changes in the distribution of temperature bins across districts. Second, we show a robustness check by controlling for district-specific year trends, which absorb any systematic district-level evolution in outcomes that might otherwise correlate with climate-driven changes in bin exposure (Table A2). Together, they mitigate the concern that our estimated non-linear temperature effects are artefacts of binning bias rather than true responses to heat exposure.

While the gender-specific bin model captures within-gender adjustments across the temperature distribution, estimating separate regressions does not reveal whether these adjustments differ between men and women. To assess whether heat exposure widens or narrows gender gaps in time allocation, we estimate an interaction model that pools both

genders and interacts the temperature-bin indicators with a female dummy. This specification quantifies how gender differences in time allocation evolve across the temperature distribution and whether exposure amplifies or attenuates these gaps.

$$TU_{ihdst} = \sum_{b=1, b \neq 2}^6 \alpha_{1b} (TmaxBin_{bdst} \times Female_{ihds}) + \sum_{b=1}^6 \alpha_{2b} TmaxBin_{bdst} + \alpha_3 X_{ihdst} + \zeta_i + \beta_{dm} + \eta_y + \varepsilon_{ihdst} \quad (3)$$

where, $Female_{ihds}$ is an indicator variable for female. The interaction terms ($TmaxBin_{bdst} \times Female_{ihds}$) allow the temperature–time use relationship to differ by gender. The coefficients of interest, α_{1b} , capture how the gender gap in time devoted to activity k changes in temperature bin b relative to the omitted reference range (22–25°C). We define the gender gap in time use as $TU_k^{female} - TU_k^{male}$. A positive α_{1b} indicates that this gender gap widens in bin b relative to the reference bin—either because women increase their time in activity k relative to men or because men reduce theirs. If the baseline gender gap (female–male) is positive, a positive α_{1b} reflects a further widening of the gap or a reversal if large enough; if the baseline gap is negative, the same positive α_{1b} implies a narrowing in magnitude. Conversely, a negative α_{1b} signals a reduction in the gender gap, arising either from a decline in women’s relative time allocation or an increase in men’s. Thus, while the sign of α_{1b} indicates whether the female–male difference expands or contracts, its interpretation in terms of absolute inequality depends on the baseline level and direction of the gender gap.

Together, these two specifications provide a comprehensive view of behavioural responses. The separate-gender bin models show how men and women adjust independently, and the interaction model quantifies whether these adjustments widen or narrow gender gaps in time use.

3.3 ALTERNATE HEAT METRICS

While the binned specification remains our primary specification, alternate measures of heat exposure are frequently used in the literature to capture different dimensions of thermal stress (Graff Zivin et al., 2018; Banerjee and Maharaj, 2020; Heyes and Saberian,

2022). To ensure that our findings are not driven by a specific definition of exposure, we re-estimate our models using these alternate metrics. This exercise serves two purposes: it enables comparability with prior studies. It evaluates the robustness of our results under different formulations of heat exposure, thereby strengthening the reliability and generalisability of our results.

Our first alternative specification uses a day-count methodology, where we construct a vector measure of monthly heat exposure. Each element of this vector records the number of days in a month that fall into one of six predefined temperature bins.⁹ For each individual-month observation, the total number of days across bins equals the number of days in that month.¹⁰ Unlike the linear and the binned model, where the monthly distribution of temperature was captured by its mean value, this day-count approach uses a richer measure of monthly temperature that captures the full distribution of monthly variations in temperature. We estimate the model by regressing time use on the counts of days in each of the five non-reference bins, following the structure of Equation 2 with a key modification: $TmaxBin_{bdst}$ now denotes the number of days in month-year t and district d with a maximum daily temperature falling within bin b . Under this specification, α_{1b} , captures the marginal effect of one additional day in bin b , relative to the reference category, on minutes allocated to a given activity. This method builds on established approaches that leverage daily variation to study cumulative temperature impacts (Deschênes and Greenstone, 2011; Cohen and Dechezleprêtre, 2017).

By accounting for exposure frequency, the day-count framework provides insights into behavioural dynamics less visible in models based solely on monthly averages or categorical bins. Continuous exposure to extreme heat may shape time allocation through anticipatory adjustments, altered routines, and fatigue accumulation. Capturing the duration and persistence of heat exposure allows us to assess whether behavioural responses—potentially differing by gender—reflect not just sensitivity to extreme events but also adaptation to sustained high-temperature environments.

⁹The six bins (intervals) as defined in Section 3.2 are $< 22^{\circ}\text{C}$, $22\text{--}25^{\circ}\text{C}$, $25\text{--}28^{\circ}\text{C}$, $28\text{--}31^{\circ}\text{C}$, $31\text{--}34^{\circ}\text{C}$ and $\geq 34^{\circ}\text{C}$. ($22\text{--}25$) is the reference bin.

¹⁰Months may have 28–31 days. Since we use raw counts rather than proportions, we assume that the marginal effect of an additional hot or cold day is constant regardless of month length. Any direct effect of month length is absorbed by district-by-month fixed effects.

Second, we employ the cumulative degree day (CDD) method to quantify monthly cumulative heat exposure. This approach measures the total exceedance of daily maximum temperatures above a predefined threshold, aggregated over all days in the interview month. Days below the threshold contribute zero, while days above it contribute the difference between the observed temperature and the threshold. Following prior literature¹¹, we set the threshold at 25°C. For instance, a daily maximum temperature of 30°C contributes 5 degree days, 27°C contributes 2 degree days, and a day below 25°C contributes zero. This formulation captures both the intensity and duration of heat exposure.

Unlike the bin or hot-day frequency models, which focus on specific temperature thresholds and identify the points at which behavioural adjustments begin, the CDD model measures the aggregate burden of heat across the month. It captures the intensity of all temperatures exceeding a baseline threshold to quantify the cumulative burden of thermal stress. This makes it especially useful for understanding behavioural responses when heat intensity compounds across consecutive days.

In summary, our empirical framework combines multiple measures of heat exposure—including linear, binned, day-count, and cumulative degree-day specifications—to capture different dimensions of thermal stress. We estimate effects separately for men and women and additionally assess whether temperature responses differ by gender. Identification relies on within-individuals, month-to-month variation after accounting for high-dimensional fixed effects. This multi-metric approach provides a comprehensive basis for interpreting the results, highlighting how extreme temperatures affect time allocation, reveal adaptation margins, and potentially exacerbate gender inequalities across activities.

4 RESULTS

We begin by presenting the results of the baseline linear model, which provides an estimate of the average effects. We then present findings from our preferred bin specification, which captures salient non-linear responses and allows us to examine both gender-specific

¹¹The degree day approach is commonly used in studies examining non-linear temperature effects across a range of outcomes, including agricultural productivity (Schlenker and Roberts, 2009), energy consumption (Auffhammer and Aroonruengsawat, 2011), economic growth (Hsiang, 2010), educational performance (Graff Zivin et al., 2018), and mortality (Banerjee and Maharaj, 2020)

adjustments and shifts in gender gaps. Finally, we confirm the robustness of our core findings using alternative heat metrics.

4.1 LINEAR MODEL

Our baseline linear model reveals gender-specific adjustments to rising temperatures. The results, summarised in Table 2, show that higher temperatures are associated with significant reductions in time spent on both paid work and human capital accumulation through learning activities. Specifically, for each additional degree, men reduce time in *Paid Work & Travel* by approximately 4 minutes—a 1.3% decline from their mean daily time. In contrast, the corresponding change for women is small and imprecisely estimated. However, the decline in *Learning* time is significant for both genders, falling by 3 minutes per degree for both men and women. Because women, on average, devote fewer minutes to learning, this translates into a larger percentage loss for them—approximately 5.6% compared to 4.7% for men. These differences highlight that percentage losses appear larger for groups with lower baseline levels of time use. These patterns suggest that higher temperatures impose significant physical and cognitive costs, leading individuals to scale back activities that demand both physical exertion and mental focus.

The reductions in learning and paid work are accompanied by a reallocation of time toward indoor and restorative activities. Men increase time spent on *Self-care* by about 7 minutes per degree, a 1% rise, indicating a clear shift toward rest and recovery. Women exhibit a more varied response, with a modest rise in *Self-care* but a more pronounced shift into *Indoor Entertainment*, increasing this activity by about 3 minutes per degree (1.5% of their mean).¹² By contrast, *Unpaid Household Work* remains largely unchanged for both genders, underscoring the rigidity of domestic responsibilities even under heat stress. *Outdoor Sports* move little from already low baselines but are imprecisely estimated. Furthermore, discretionary or community-oriented activities grouped under *Soc. & Com.*, decline by around 2 minutes per degree for both men and women, suggesting that rising temperatures also crowd out lower-priority social or voluntary engagements.

¹²We compare our findings with related studies in the next subsection.

4.2 BIN MODEL

While the linear specification provides a useful overview, it potentially may mask non-linear responses that likely occur at specific temperature thresholds. It highlights a general pattern where men reduce time in heat-exposed, labour-intensive activities and learning and shift towards leisure, while women's responses are more constrained, particularly within the domestic sphere.

The bin estimates, reported in Table 3, reveal that the relationship between temperature and time use is highly non-linear. Effects are muted at moderate temperatures but intensify sharply beyond critical thresholds, particularly at average monthly maximum temperatures $\geq 34^{\circ}\text{C}$. Relative to the $22\text{--}25^{\circ}\text{C}$ reference bin, $\geq 34^{\circ}\text{C}$ bin, individuals substantially reorganise their daily schedules, but these adjustments differ markedly by gender and across activities.

We find that relative to the $22\text{--}25^{\circ}\text{C}$ bin, time in *Paid Work & Travel* declines progressively with rising temperature, with the effect steepening dramatically at the extremes. At temperatures $\geq 34^{\circ}\text{C}$, men reduce *Paid Work & Travel* by about 29 minutes- a 9.4% reduction of their daily mean. While women's absolute reduction is smaller at about 9 minutes, this represents an even larger proportional decline of 16.4%, reflecting their low baseline participation in paid labour. These effects are statistically significant, contrasting with the linear model, where women's responses appeared negligible and imprecisely estimated. This narrowing of the gender gap in *Paid Work & Travel*—a 16-minute convergence at temperatures $\geq 34^{\circ}\text{C}$ (Table 4)—is driven almost entirely by men withdrawing from paid work. Such a contraction in male labour supply has substantial economic implications, amounting to a heat-induced labour supply shock that can depress household earnings and reduce aggregate productivity, consistent with prior evidence from India (Somannathan et al., 2021; Colmer, 2021). For women, even modest absolute reductions may carry significant long-term costs. Given their already low participation in paid labour, further declines risk deepening structural disadvantages, weakening intra-household bargaining power, and reinforcing persistent gender gaps in economic opportunity. This pattern of convergence contrasts sharply with evidence from high-income settings, where heat stress tends to widen the gender gap as women reduce labour supply more than men (Jiao et al., 2021). The divergence in responses underscores how extreme heat inter-

acts with labour market structures, social norms, and constrained adaptive capacity in low-income contexts, shaping gendered vulnerabilities in distinct ways.

In contrast to the flexibility observed in paid work, *Unpaid Household Work* remains rigid even at extreme temperatures. For both men and women, coefficients are close to zero and statistically insignificant across all bins, mirroring the linear estimates. This rigidity is consistent with prior evidence that unpaid domestic tasks—such as cooking, cleaning, and care-giving—are non-discretionary and disproportionately borne by women in low- and middle-income contexts (Jayachandran, 2020; Deshpande and Kabeer, 2024). Such tasks leave little room for temporal adjustment, thereby constraining an individual’s ability to reallocate time in response to thermal stress. Reflecting this inelasticity, our gender-gap estimates (Table 4) show a modest narrowing of about 8 minutes—equivalent to 5.48% of the gap at the reference bin—at high temperatures, driven not by reductions in women’s unpaid work but by slight adjustments among men. This stands in contrast to high-income settings, such as the United States, where women tend to increase unpaid care work during heat waves due to rising childcare and elder-care needs (Jiao et al., 2021). The results indicate that unpaid domestic work is largely unresponsive to thermal stress, shaped by deep-seated social norms and the fixed nature of many household tasks. Unlike paid work, which can often be reduced or postponed, unpaid household responsibilities exhibit limited elasticity, particularly for women, highlighting an important domain where adaptation to extreme heat is structurally constrained.

The negative effect of heat on *Learning* is both substantial and sharply non-linear. While our linear model shows significant reductions in study time for both genders, the bin specification reveals that these losses accelerate as temperatures move further above the 22–25°C reference, reflecting disproportionately higher costs of extreme heat exposure. At maximum temperatures $\geq 34^\circ\text{C}$, men reduce learning time by 17 minutes (23.3% decline from the baseline), while women cut 16 minutes—a 30.2% reduction from an already lower baseline.¹³ This reduction is particularly concerning because time spent on *Learning* is largely non-substitutable, representing a direct and potentially irreversible loss of human capital. In a district experiencing 30 days $\geq 34^\circ\text{C}$, the implied annual loss in learning time amounts to more than eight hours. While this calculation is illustrative rather than

¹³Results for the full sample are reported here; re-estimating equation 3 on the student subsample (ages 12–18) yields comparable coefficients (Table A4).

precise, it highlights the potential for sustained heat exposure to meaningfully disrupt study routines—especially for women, whose baseline learning time is lower. Our findings align with prior research demonstrating that heat impairs cognitive function, reduces study effort, and disrupts educational routines (Park et al., 2021; Alberto et al., 2021). While the gender gap in learning narrows slightly by 2 minutes under extreme heat, rising temperatures may nevertheless exacerbate existing structural inequalities in educational opportunities and long-term economic mobility.

Consistent with the linear estimates, extreme heat drives a reallocation of time toward *Self-Care* and *Indoor Entertainment*, but the non-linear specification reveals a more layered gendered pattern. At temperatures above 34°C, men spend an additional 41 minutes (6.0% increase from their baseline on self-care, while women increase by 33 minutes (4.4% increase from the baseline). The sharper male response is intuitive: having cut back substantially on physically demanding activities such as paid work and learning, men redirect a significant share of their freed time toward rest and recovery. Women, however, remain more constrained. Their smaller increase suggests that household and care-giving duties—largely non-discretionary—limit the extent to which they can adjust even when the physiological need for rest is high. Although the gender gap in self-care narrows marginally at extreme temperatures, this difference is statistically imprecise. A parallel adjustment emerges in the domain of *Indoor Entertainment*. Here, both men and women turn to passive, heat-sheltered activities, with men increasing their time by 18 minutes (13.8% above baseline) and women by 17 minutes (10.4% above baseline). Unlike the linear model, which obscured these responses, the bin specification underscores a clear substitution away from heat-exposed domains into indoor leisure. These patterns suggest a shared adaptive strategy—seeking shelter and lowering energy expenditure—but one conditioned by persistent gender asymmetries in discretionary time allocation.

For *Outdoor Sports*, consistent with our linear results, we find the coefficients to be small and statistically imprecise. In the *Som. & Com.* category—which includes communal, social, and religious activities—we find a sharper decline in female participation. At temperatures of 34°C and above, females reduce time in this domain by 22 minutes (a 19.23% decline from the baseline), while males reduce theirs by 14 minutes (a 14% decline from the baseline). As a result, the gender gap widens by 5 minutes in this activity. This suggests that women’s time in these activities is being sacrificed more as domestic and physical

strain increases. Understanding this decline is important. Although time in social and community activities is not a direct measure of networks, it is where individuals build and maintain ties that enable information-sharing, informal support, and coping during shocks (Munshi, 2003; De Weerdt and Dercon, 2006; Debnath and Jain, 2020). These interactions are also linked to better mental health and lower psychological distress (Kawachi and Berkman, 2001; Thoits, 2011; Helliwell and Huang, 2013). For women, these channels matter even more, as they often rely on informal ties for advice, emotional support, and access to welfare and health services (Aizer and Currie, 2004; Bedrov and Gable, 2023). Thus, when rising temperatures reduce participation in this domain, individuals—and especially women—lose access to these non-market forms of support, weakening their ability to cope with stress and shocks. Ignoring this contraction risks understating a key mechanism through which heat undermines well-being and resilience.¹⁴

Taken together, there are two things: First, heat stress responses are highly non-linear; linear models miss the steep changes that occur only above the 22-25°C reference bin. Second, men exhibit greater elasticity in time use, reallocating significantly from labour and learning toward rest and leisure. Women’s adjustments, by contrast, are constrained by persistent unpaid care obligations, forcing them to take their time away from paid work, learning, and social participation to maintain household responsibilities—even under extreme heat. Our linear specification obscures these sharp margins, reinforcing the importance of non-parametric temperature bins for capturing behavioural responses in hot climates.

4.3 ALTERNATE HEAT METRICS

Having established our main findings using the bin-based specification, we now turn to results from two alternate models that capture heat exposure differently: (i) the frequency of hot days and (ii) cumulative degree days (CDD) above 25°C. The corresponding estimates are reported in Table 5.

Panel A of Table 5 replaces monthly average maximum temperature bin dummies with

¹⁴The results remain similar with the inclusion of district-specific year trends, suggesting that our findings are not affected by the binning-bias concern discussed in Section ???. The corresponding estimates are reported in Table A2.

the *number of days* in a month that maximum temperatures fall within each bin. The estimates closely mirror the non-linear results in Table 3, reinforcing the robustness of our core findings. Each additional day in $\geq 34^{\circ}\text{C}$ bin, relative to the omitted bin, is associated with a 2.22-minute reduction in men’s time spent on *Paid Work & Travel* and a 0.38-minute reduction for women. Consistent with this, the partially interacted model (Table A3) indicates a narrowing of the gender gap by 0.67 minutes per hot day. In the case of *Learning*, both genders reduce time allocated to education by 1.32 minutes for men and 1.18 minutes for women—resulting in a modest 0.15-minute decline in the gender gap. Panel A also reinforces our earlier finding that men are more likely to substitute time into *Self-Care* and other indoor activities under thermal stress: each additional hot day increases male self-care time by 3 minutes and female self-care time by 1.89 minutes. Time spent on *Indoor Entertainment* also increases by approximately 1.36 minutes for both genders. Results for *Outdoor Sports* and *Soc. & Com.* activities corroborate our main result patterns- with gradual convergence in gender gaps. By incorporating the *frequency* of hot days, this specification enables our empirical strategy to reflect how behaviour adjusts to sustained patterns of heat rather than to one-off spikes. This framework aligns with evidence that repeated exposure induces anticipatory coping strategies and routine re-optimisation and is consistent with prior studies leveraging day-level variation.

Panel B of Table 5 presents results for the CDD metric, a continuous measure of the aggregate burden of heat over the month. This specification provides a complementary perspective, confirming that the overall patterns from our main results hold. For *Learning* and *Indoor Entertainment*, the results align closely with the bin and frequency models, showing that effects emerge once individuals move beyond a comfortable temperature range (25°C). However, the CDD model uncovers a distinct and important behavioural nuance: both men and women increase time spent on *Unpaid Household Work* under sustained heat exposure, a pattern absent in the bin and frequency models. This contrast highlights that a few isolated extremely hot days leading to higher average do not meaningfully alter household routines, but cumulative heat build-up across the month creates additional domestic demands—potentially due to faster food spoilage, greater water-related chores, or intensified care-giving needs. The CDD measure captures these compounding pressures, which discrete threshold-based models cannot detect. Further, we find that the results for *Paid Work & Travel* and *Self-Care* are imprecisely estimated

in this model, suggesting that individuals tend to decrease time in physically demanding work only when it becomes physically intolerable and subsequently increase time in self-care.

5 HETEROGENEITY

To examine how socio-economic and geographic contexts shape gendered responses to thermal stress, we analyse three dimensions of heterogeneity: (i) rural–urban residence, (ii) marital status, and (iii) baseline climatic exposure. These dimensions capture distinct structural constraints—place of residence, domestic obligations, and historical climate conditions—that may condition the scope for behavioural adjustment. We estimate the bin model in equation 3, replacing the *female* indicator with each heterogeneity variable indicator in turn. The resulting coefficients are presented in tables 6 and 7.¹⁵ Full coefficient tables for all bins are provided in the Appendix (tables A5 to A7).

5.1 AREA OF RESIDENCE

A substantial body of evidence shows that extreme heat disproportionately harms populations dependent on climate-sensitive sectors—particularly agriculture—by reducing labour productivity, depressing yields, and exacerbating vulnerability where adaptive capacity is limited (Somanathan et al., 2021; Graff Zivin and Neidell, 2014; Garg et al., 2020b). In developing-country contexts, this vulnerability is increased by a persistent “cooling deficit,” marked by limited access to air-conditioning, inadequate housing insulation, and constrained financial resources for adaptation (Heyes and Saberian, 2022; Mastrucci et al., 2019; Pavanello et al., 2021). Given these constraints, one might expect rural individuals—who are more exposed to outdoor work and have fewer technological buffers—to exhibit stronger behavioural responses to heat.

However, our findings challenge the assumption that heat vulnerability is concentrated primarily in rural areas. Rural and urban individuals display broadly similar patterns of time reallocation under extreme heat (Panel A of tables 6 and 7), suggesting that thermal

¹⁵For ease of interpretation, tables 6 and 7 report coefficients only for the 34°C bin and its interaction with the heterogeneity indicator.

stress constrains daily activities across both settings. A plausible explanation is that men in both areas are concentrated in outdoor, labour-intensive occupations—agriculture in rural regions and construction, delivery, or street vending in urban areas—that face comparable thermal constraints. Short-run adjustments, such as rescheduling tasks to cooler hours, appear to operate in both contexts. This parallels evidence from the United States showing that outdoor occupations bear the steepest heat-related productivity losses irrespective of geography (Graff Zivin and Neidell, 2014). In India, widespread exposure to high temperatures, coupled with limited cooling access, further narrows rural–urban differences in short-run adaptive capacity.

We likewise do not observe rural–urban differences across other activity domains. Activities such as *Learning*, *Self-Care*, *Indoor Entertainment*, and routine domestic tasks are primarily undertaken indoors and are shaped more by thermal discomfort and household norms than by location-specific conditions. Reductions in *Soc.* & *Com.* activities similarly reflect heat-related limitations on mobility that affect individuals regardless of residence. These patterns suggest that despite distinct economic structures, the everyday margins along which individuals adjust to heat remain broadly comparable across rural and urban settings.

5.2 MARITAL STATUS

Marital institutions shape the distribution of time within households and, consequently, the margins along which individuals can adjust under heat stress. A large literature shows that intrahousehold bargaining and the allocation of resources depend on individuals' control over income (Aizer, 2010; Field et al., 2021; Heath and Tan, 2020). Marriage, however, reconfigures economic roles: men are reinforced as primary earners, while women assume greater responsibility for unpaid domestic and caregiving work, especially following childbirth (Kleven et al., 2019; Miller and Bairoliya, 2022). Time-use research consistently documents that women continue to shoulder the majority of unpaid work even when their market participation increases, both globally (Addati et al., 2018) and in India (Sinha et al., 2024). These asymmetries have direct implications for climate adaptation. Extreme heat reduces productivity in paid work and increases care needs (Table 3), but the scope for adjustment differs sharply by marital status. Married women, with heavier domestic

responsibilities and weaker outside options, face tighter constraints and may withdraw from paid work, whereas married men may intensify labour to stabilise household income. Never-married individuals, by contrast, face fewer household obligations and therefore possess greater adaptive flexibility. We therefore expect never-married individuals to exhibit more autonomy in reallocating time in response to thermal stress.¹⁶

Consistent with these expectations, Panel B of tables 6 and 7 shows systematic differences in how married and never-married individuals respond to extreme heat. In *Paid Work & Travel*, both groups reduce time, but married men cut back roughly 15 minutes more than the never-married. This larger decline reflects their stronger baseline attachment to market work (Table 1) and the reduced flexibility that accompanies their breadwinner role (Kleven et al., 2019). For women, by contrast, the difference by marital status is small: ever-married women reduce work time only slightly less than never-married women. This muted contrast highlights how domestic responsibilities constrain women's ability to adjust labour supply, regardless of marriage.

In *Unpaid Household Work*, heat leads to increases in domestic time for never-married men and women, although the estimates are imprecise. The gap between married and unmarried individuals narrows—by about 4 minutes for men and nearly 17 minutes for women—suggesting that never-married individuals, especially women, absorb additional household tasks under stress. Married women's apparent decline instead reflects the limited flexibility in their schedules: already carrying the bulk of domestic and caregiving responsibilities, they have little remaining margin to expand unpaid work. This aligns with global evidence that women disproportionately shoulder unpaid care work (Addati et al., 2018).

For *Self-care*, never-married individuals show a larger increase than the married, indicating that personal restoration is a margin of adaptation available primarily to those without binding household obligations. Married women exhibit the smallest rise, consistent with evidence that caregivers often sacrifice personal well-being when demands intensify (Miller and Bairoliya, 2022). They also reduce *Soc. & Com.* time slightly more than never-married women, indicating that social activities are another margin constrained by

¹⁶For our analysis, we classify respondents as never-married versus ever-married (including currently married, divorced, and widowed).

domestic responsibilities. Taken together, these results show that marital institutions not only shape household specialisation but also condition the margins of climate adaptation, with married women facing the narrowest space to preserve their own well-being.

5.3 GEOGRAPHICAL

Finally, we examine whether long-run exposure to extreme heat moderates its marginal effects on time use by exploiting regional variation in climatic baselines. India's pronounced climatic diversity means that households in chronically hot regions are repeatedly exposed to high temperatures, while others face such conditions only seasonally or sporadically. District fixed effects absorb average, time-invariant differences across districts—such as typical climate, geography, infrastructure, and long-standing economic conditions—and therefore account for the additive component of living in a hotter or cooler place. However, fixed effects do not capture how households may have gradually adapted to persistent heat over time. Such adaptations—like shifting work hours, investing in basic cooling, re-organising household routines, or adjusting expectations about outdoor activity—reflect cumulative behavioural adjustments rather than static district characteristics.

Because fixed effects remove only the level differences, but not the interaction between long-run climate and short-run heat shocks, we use geographical heterogeneity to test whether the marginal impact of extreme heat differs between chronically hot and cooler regions. If long-run adaptations are effective, as suggested by [Banerjee and Maharaj \(2020\)](#), the impact of an additional hot day should be attenuated in regions with high baseline exposure. To test this, we classify districts into four tiers based on their long-run climate. Using ERA5 daily maximum temperatures for 1979–2018, we calculate each district's average annual count of days with $T_{max} \geq 34^{\circ}\text{C}$. Districts are then grouped into four tiers: rarely hot (0–20 hot days), occasionally hot (21–60 hot days), seasonally hot (61–100 hot days), and perennially hot (>100 hot days). This categorisation proxies for the degree of climatic acclimatisation and infrastructural adaptation. One might expect that chronic exposure attenuates the marginal impact of additional hot days through behavioural and technological adjustments. Instead, the results point to ceiling effects: in the hottest regions, individuals appear to have exhausted available coping margins.

For men living in perennially hot districts, extreme heat leads to dramatic reductions

in *Paid Work & Travel*—about 115 minutes per person per day relative to the thermal comfort range—and similarly large increases in *Self-Care* (by 122 minutes) and Indoor Entertainment (by 79 minutes). Time in *Learning* also falls steeply by 52 minutes. These magnitudes, far larger than in occasionally hot regions, suggest that chronic exposure has eroded intra-day flexibility: with heat persisting across most months, workers can no longer shift effort to cooler periods and instead withdraw from strenuous activity altogether. In contrast, men in occasionally hot districts show somewhat smaller reductions in *Paid Work & Travel* (decreases by 101 minutes) but substantial increases in *Unpaid Household Work* (by 54 minutes), indicating short-term reorganisation within households when unexpected heat waves occur. They also reduce *Soc. & Com.* time by 64 minutes, indicating that sudden disruptions crowd out discretionary social engagement.

For women, the strongest contractions in *Paid Work & Travel* occur in occasionally hot districts (46 minutes), where heat shocks are less routine and caregiving demands surge abruptly. In perennially hot districts, *Paid Work & Travel* and *Learning* time also decline markedly by 39 and 47 minutes, respectively, but increases in *Self-Care* are muted and statistically insignificant, confirming that unpaid domestic responsibilities constrain recovery even when heat is chronic. Women in occasionally hot districts also show a pronounced reduction in *Soc. & Com.* time (by 74 minutes). In occasionally hot regions, sudden heat spikes create abrupt increases in caregiving and household demands. With no prior adjustment in routines, social participation is crowded out more sharply than in places where households have stable heat-coping patterns.

These results reveal two distinct adaptation regimes. In perennially hot areas, households operate at the physiological limits of endurance: adaptation takes the form of withdrawal from productive activity rather than smoother rescheduling. In regions where heat is occasional, shocks trigger intrahousehold substitution—men assist more in domestic work while women curtail labour force participation to meet intensified care demands. Both patterns underscore that time reallocation, not technological change, remains the primary coping strategy, but the scope and distribution of that adjustment depend on baseline climatic conditions.

Across these three dimensions, a common pattern emerges: the capacity to adapt through time reallocation depends on flexibility—physical, economic, and social—not merely on

exposure. Individuals with fewer binding commitments or more stable infrastructure adjust by resting or rescheduling work; those constrained by caregiving duties or chronic heat cannot. From a welfare perspective, heterogeneity analyses reveal the mechanisms behind the aggregate results. Rural and urban workers alike face physiological constraints; married women face social constraints; and residents of chronically hot regions face technological constraints. In all cases, the burden of adaptation manifests in time, not only income. Policies that relax these constraints—by providing cooling facilities, public childcare, or infrastructure for heat-resilient employment—can expand the feasible set of behavioural responses and reduce the unequal costs of climate change.

6 ROBUSTNESS

We perform a comprehensive set of robustness checks to ensure that our findings are not sensitive to modelling assumptions, estimation strategies, or sample composition. Both Equation 2 and Equation 3 are re-estimated under a range of alternative specifications, with the corresponding results reported in the Appendix. Across these exercises, we find that our core results remain consistent throughout.

First, we address concerns regarding the precise construction of our temperature bins. Given the lack of consensus in the literature on the precise temperature threshold at which non-linear effects emerge, we test an alternative upper bound of 37°C (tables A8 and A9). In addition, we assess the sensitivity of our estimates to bin widths of both 2°C and 4°C intervals, while keeping the lower and upper bounds fixed at 22°C and 34°C. Across these alternative bin definitions, our core results remain unchanged. These findings are presented in tables A10 to A13.

Next, we explore the robustness of our results to alternative fixed-effect structures, particularly to account for seasonal variation in labour market characteristics. We augment our baseline specification by including occupation-by-month and industry-by-month fixed effects, both separately and jointly. The results, reported in tables A14 to A19, show that the inclusion of these richer fixed effects does not alter our conclusions, confirming that our findings are not driven by unobserved time-varying heterogeneity within specific industries or occupations. We further confirm this by replacing individual fixed effects with household fixed effects; the effects remain stable (tables A20 and A21). Further, we drop

individual fixed effects to assess whether our results rely exclusively on within-person variation. This helps ensure that the results are not driven only by changes within the same person over time, but also reflect broader patterns in how different individuals respond to temperature. The estimates remain comparable, suggesting that the temperature effects are well identified and consistent even when this restriction is relaxed (Table [A22](#)).

We then turn to estimation choices. Our main specification does not include weights; however, we test whether incorporating sample weights affects the estimates. As shown in tables [A23](#) and [A24](#), the results are identical. We also estimate a parsimonious version of the model without any control variables. The consistency of the results in tables [A25](#) and [A26](#) suggests that our findings are not driven by the choice of covariates. We also consider sample-specific concerns. A small number of individuals in our dataset report allocating the entire day (1440 minutes) to a single activity, which could reflect reporting issues or outliers. Excluding these observations does not affect our estimates, as seen in tables [A27](#) and [A28](#). In a similar spirit, we exclude all observations from Jammu and Kashmir to account for potential region-specific anomalies or data quality issues. This exclusion also has no measurable impact on the results. Finally, we test the robustness of our results to the choice of climate control variables. While our main specification includes specific humidity, we re-estimate our models using relative humidity instead. As reported in tables [A29](#) and [A30](#), the estimates remain consistent.

Across a wide range of alternative temperature bins, fixed-effect structures, estimation strategies, sample restrictions, and climate control definitions, our results remain highly stable. These exercises demonstrate that the effects we document are not artefacts of modelling choices or sample peculiarities, reinforcing the robustness of our results.

7 CONCLUSION

This paper examines how rising temperatures reshape daily time allocation in India and documents distinct adjustment margins for men and women. We find that heat reduces time spent in paid work, learning, and social and community activities for both genders and increases time in self-care and indoor activities. For men, we find larger absolute declines in paid work and learning, which directly lower labour supply and affect human capital accumulation. Women also reduce time in these domains, with no change in unpaid

household work. This rigidity limits their ability to reorganise daily schedules, and reductions in learning and paid work—activities that support human capital and labour force participation—carry different implications for them given their lower initial participation. Declines in social and community activities are also sizeable, and more pronounced for women. Reductions in social and community participation weaken access to information and informal support needed during shocks. For women, the loss is particularly damaging because these networks also sustain emotional well-being and provide critical health- and welfare-related information. As a result, even though adjustment patterns move in the same direction for both genders, the constraints under which women allocate their time amplify the consequences of these changes. We also find that the gender gaps narrow in several activities at high temperatures, this narrowing reflects different constrained adjustments across genders, not greater agency or flexibility.

These results underscore an asymmetry in men’s and women’s capacity to adapt to environmental stress through time reallocation. Declines in paid work have immediate consequences for household earnings, while reductions in learning and social participation shape longer-run prospects by affecting educational time investments and access to social networks that facilitate coping during shocks. Because unpaid domestic responsibilities remain fixed for women and men, rising temperatures compound existing constraints, leaving them with fewer buffers to adapt. As extreme heat becomes more frequent, these gendered adjustment margins are likely to affect labour supply, educational investments, and social connectedness, with implications for individual welfare and household resilience, particularly in resource-constrained settings.

These findings are important for two reasons. First, they suggest that recognising these behavioural margins is important for understanding the full economic impact of heat exposure. Standard assessments may underestimate climate vulnerability if they overlook non-market activities and the intra-household allocation of time. Second, they highlight that women, particularly in low-income contexts, face compounded vulnerability—not only to productivity losses but also to increased time poverty under climate stress. Policies that reduce the burden of unpaid work—such as improving water access, energy-efficient cooking options, and affordable childcare—can expand women’s ability to adjust during periods of heat stress. Support for continued participation in education and labour markets under high temperatures can help preserve human capital and mitigate long-run

disparities. More broadly, integrating time-use responses by gender into climate–economy models can generate more realistic assessments of vulnerability and guide adaptation strategies that reflect the uneven capacity of individuals to reorganise daily life under environmental stress. Moreover, threshold-based triggers should be paired with cumulative monitoring, since sustained heat builds burdens that day-by-day metrics can miss.

The analysis is subject to certain limitations arising from the structure of the time-use data. The CMIE dataset records average time-use over the preceding seven days, yielding only one observation per individual per wave. Furthermore, activities are grouped into broad categories, limiting our ability to examine adjustments within specific tasks or to capture short-run dynamics in response to temperature fluctuations. Future research could build on this work by using higher-frequency time use data and more detailed activity logs to better understand mechanisms and long-run adaptation strategies. Overall, this study contributes to the emerging literature on climate impacts in low- and middle-income countries by highlighting the gendered nature of behavioural responses to environmental stress. Incorporating an understanding of time-use constraints—particularly those shaped by gender norms—is essential for the formulation of climate adaptation strategies that are both effective in mitigating risk and equitable in their distributional outcomes.

REFERENCES

ADDATI, L., U. CATTANEO, V. ESQUIVEL, AND I. VALARINO (2018): *Care Work and Care Jobs for the Future of Decent Work*, Geneva, Switzerland: International Labour Organization.

AFRIDI, F., M. BISHNU, AND K. MAHAJAN (2023): “Gender and Mechanization: Evidence from Indian Agriculture,” *American Journal of Agricultural Economics*, 105.

AIZER, A. (2010): “The gender wage gap and domestic violence,” *American Economic Review*, 100, 1847–1859.

AIZER, A. AND J. CURRIE (2004): “Networks or neighborhoods? Correlations in the use of publicly-funded maternity care in California,” *Journal of public Economics*, 88, 2573–2585.

ALBERTO, I. C., Y. JIAO, AND X. ZHANG (2021): “Too hot or too cold to study? The effect of temperature on student time allocation,” *Economics of Education Review*, 84, 102152.

APPS, P. (2004): “Gender, Time Use, and Models of the Household,” Policy Research Working Paper Series 3233, The World Bank.

APPS, P. AND R. REES (2005): “Gender, time use, and public policy over the life cycle,” *Oxford Review of Economic Policy*, 21, 439–461.

AUFFHAMMER, M. AND A. AROONRUENGSAWAT (2011): “Simulating the impacts of climate change, prices and population on California’s residential electricity consumption,” *Climatic change*, 109, 191–210.

AUFFHAMMER, M., S. M. HSIANG, W. SCHLENKER, AND A. SOBEL (2013): “Using weather data and climate model output in economic analyses of climate change,” *Review of Environmental Economics and Policy*.

BANERJEE, R. AND R. MAHARAJ (2020): “Heat, infant mortality, and adaptation: Evidence from India,” *Journal of Development Economics*, 143, 102378.

BARDASI, E. AND Q. WODON (2010): “Working long hours and having no choice: Time poverty in Guinea,” *Feminist Economics*, 16, 45–78.

BEDROV, A. AND S. L. GABLE (2023): “Thriving together: the benefits of women’s social ties for physical, psychological and relationship health,” *Philosophical Transactions of the Royal Society B*, 378, 20210441.

BERLINSKI, S. AND S. GALIANI (2007): “The effect of a large expansion of pre-primary school facilities on preschool attendance and maternal employment,” *Labour Economics*, 14, 665–680.

BERNIELL, M. AND C. SÁNCHEZ-PÁRAMO (2011): “Overview of Time Use Data Used for the Analysis of Gender Differences in Time Use Patterns,” Background paper for the World Development Report 2012.

BURGESS, R., O. DESCENES, D. DONALDSON, AND M. GREENSTONE (2017): “Weather, climate change and death in India,” *University of Chicago*, 577–617.

BURKE, M., S. M. HSIANG, AND E. MIGUEL (2015): “Global non-linear effect of temperature on economic production,” *Nature*, 527, 235–239.

COHEN, F. AND A. DECHEZLEPRÊTRE (2017): “Mortality inequality, temperature and public health provision: evidence from Mexico,” *Grantham Research Institute on Climate Change and the Environment Working Paper*, 268.

COLMER, J. (2021): “Temperature, labor reallocation, and industrial production: Evidence from India,” *American Economic Journal: Applied Economics*, 13, 101–124.

CONNOLLY, M. (2008): “Here comes the rain again: Weather and the intertemporal substitution of leisure,” *Journal of Labor Economics*, 26, 73–100.

CRAIGIE, T.-A., V. TARAZ, AND M. ZAPRYANOVA (2023): “Temperature and convictions: evidence from India,” *Environment and Development Economics*, 28, 538–558.

DASGUPTA, A. AND A. DATTA (2024): “Gendered Time Use and Its Heterogeneities: The Role of Region, Religion, and Caste,” *Journal of Economics, Race, and Policy*, 7, 244–266.

DE WEERDT, J. AND S. DERCON (2006): “Risk-sharing networks and insurance against illness,” *Journal of development Economics*, 81, 337–356.

DEBNATH, S. AND T. JAIN (2020): “Social connections and tertiary health-care utilization,” *Health Economics*, 29, 464–474.

DELL, M., B. F. JONES, AND B. A. OLKEN (2012): “Temperature shocks and economic growth: Evidence from the last half century,” *American Economic Journal: Macroeconomics*, 4, 66–95.

DESCHÈNES, O. AND M. GREENSTONE (2011): “Climate change, mortality, and adaptation: Evidence from annual fluctuations in weather in the US,” *American Economic Journal: Applied Economics*, 3, 152–185.

DESHPANDE, A. AND N. KABEER (2024): “Norms that matter: Exploring the distribution of women’s work between income generation, expenditure-saving and unpaid domestic responsibilities in India,” *World Development*, 174, 106435.

DESHPANDE, A. AND J. SINGH (2021): “Dropping Out, Being Pushed Out or Can’t Get in? Decoding Declining Labour Force Participation of Indian Women,” IZA Discussion Papers No. 14639, Institute of Labor Economics (IZA), Bonn.

FERRANT, G., L. M. PESANDO, AND K. NOWACKA (2014): “Unpaid Care Work: The Missing Link in the Analysis of Gender Gaps in Labour Outcomes,” Oecd development centre issues paper, OECD Development Centre.

FIELD, E., R. PANDE, N. RIGOL, S. SCHANER, AND C. TROYER MOORE (2021): “On her own account: How strengthening women’s financial control impacts labor supply and gender norms,” *American Economic Review*, 111, 2342–2375.

GARG, T., M. GIBSON, AND F. SUN (2020a): “Extreme temperatures and time use in China,” *Journal of Economic Behavior & Organization*, 180, 309–324.

GARG, T., M. JAGNANI, AND V. TARAZ (2020b): “Temperature and human capital in India,” *Journal of the Association of Environmental and Resource Economists*, 7, 1113–1150.

GRAFF ZIVIN, J., S. M. HSIANG, AND M. NEIDELL (2018): “Temperature and human capital in the short and long run,” *Journal of the Association of Environmental and Resource Economists*, 5, 77–105.

GRAFF ZIVIN, J. AND M. NEIDELL (2014): “Temperature and the allocation of time: Implications for climate change,” *Journal of Labor Economics*, 32, 1–26.

HAJDU, T. (2024): “Temperature exposure and sleep duration: Evidence from time use surveys,” *Economics & Human Biology*, 54, 101401.

HEATH, R. AND X. TAN (2020): “Intrahousehold bargaining, female autonomy, and labor supply: Theory and evidence from India,” *Journal of the European Economic Association*, 18, 1928–1968.

HELLIWELL, J. F. AND H. HUANG (2013): “Comparing the happiness effects of real and on-line friends,” *PloS one*, 8, e72754.

HERSBACH, H., B. BELL, P. BERRISFORD, S. HIRAHARA, A. HORÁNYI, J. MUÑOZ-SABATER, J. NICOLAS, C. PEUBEY, R. RADU, D. SCHEPERS, ET AL. (2020): “The ERA5 global reanalysis,” *Quarterly journal of the royal meteorological society*, 146, 1999–2049.

HEYES, A. AND S. SABERIAN (2022): “Hot Days, the ability to Work and climate resilience: Evidence from a representative sample of 42,152 Indian households,” *Journal of Development Economics*, 155, 102786.

HOLTERMANN, L. (2020): “Precipitation anomalies, economic production, and the role of “first-nature” and “second-nature” geographies: A disaggregated analysis in high-income countries,” *Global Environmental Change*, 65, 102167.

HSIANG, S. M. (2010): “Temperatures and cyclones strongly associated with economic production in the Caribbean and Central America,” *Proceedings of the National Academy of sciences*, 107, 15367–15372.

HUANG, K., H. ZHAO, J. HUANG, J. WANG, AND C. FINDLAY (2020): “The impact of climate change on the labor allocation: Empirical evidence from China,” *Journal of Environmental Economics and Management*, 104, 102376.

ISLAM, M. A. AND N. CARTWRIGHT (2020): “Evaluation of climate reanalysis and space-borne precipitation products over Bangladesh,” *Hydrological Sciences Journal*, 65, 1112–1128.

JAYACHANDRAN, S. (2020): “Social norms as a barrier to women’s employment in developing countries,” Tech. rep., National Bureau of Economic Research.

JIAO, Y., Y. LI, AND M. LIU (2021): “Widening the gap? temperature and time allocation between men and women,” *Applied Economics*, 53, 595–627.

KAWACHI, I. AND L. F. BERKMAN (2001): “Social ties and mental health,” *Journal of Urban health*, 78, 458–467.

KLEVEN, H., C. LANDAIS, AND J. E. SØGAARD (2019): “Children and gender inequality: Evidence from Denmark,” *American Economic Journal: Applied Economics*, 11, 181–209.

KRÜGER, J. J. AND M. NEUGART (2018): “Weather and Intertemporal Labor Supply: Results from German Time-Use Data,” *Labour*, 32, 112–140.

MAHTO, S. S. AND V. MISHRA (2019): “Does ERA-5 outperform other reanalysis products for hydrologic applications in India?” *Journal of Geophysical Research: Atmospheres*, 124, 9423–9441.

MASTRUCCI, A., E. BYERS, S. PACHAURI, AND N. D. RAO (2019): “Improving the SDG energy poverty targets: Residential cooling needs in the Global South,” *Energy and Buildings*, 186, 405–415.

MILLER, R. AND N. BAIROLIYA (2022): “Parental caregivers and household power dynamics,” *Feminist Economics*, 28, 114–144.

MUNSHI, K. (2003): “Networks in the modern economy: Mexican migrants in the US labor market,” *The Quarterly Journal of Economics*, 118, 549–599.

NGUYEN, H. T., H. T. LE, AND L. B. CONNELLY (2021): “Weather and children’s time allocation,” *Health economics*, 30, 1559–1579.

PARK, R. J., A. P. BEHRER, AND J. GOODMAN (2021): “Learning is inhibited by heat exposure, both internationally and within the United States,” *Nature human behaviour*, 5, 19–27.

PAVANELLO, F., E. DE CIAN, M. DAVIDE, M. MISTRY, T. CRUZ, P. BEZERRA, D. JAGU, S. RENNER, R. SCHAEFFER, AND A. F. LUCENA (2021): “Air-conditioning

and the adaptation cooling deficit in emerging economies,” *Nature communications*, 12, 6460.

RUBIANO-MATULEVICH, E. AND M. VIOLLAZ (2019a): “Gender differences in time use,” *Allocating time between the market and the household Policy Research Working Paper*, 8981.

——— (2019b): “Gender Differences in Time Use: Allocating Time between the Market and the Household,” Policy Research Working Paper 8981, The World Bank.

SCHLENKER, W. AND M. J. ROBERTS (2009): “Nonlinear temperature effects indicate severe damages to US crop yields under climate change,” *Proceedings of the National Academy of sciences*, 106, 15594–15598.

SINHA, A., A. K. SEDAI, T. SONOBE, ET AL. (2024): “Well-being costs of unpaid care: Gendered evidence from a contextualized time-use survey in India,” *World Development*, 173, 106419.

SOMANATHAN, E., R. SOMANATHAN, A. SUDARSHAN, AND M. TEWARI (2021): “The impact of temperature on productivity and labor supply: Evidence from Indian manufacturing,” *Journal of Political Economy*, 129, 1797–1827.

THOITS, P. A. (2011): “Mechanisms linking social ties and support to physical and mental health,” *Journal of health and social behavior*, 52, 145–161.

ZAPPALÀ, G. (2024): “Adapting to climate change accounting for individual beliefs,” *Journal of Development Economics*, 169.

Table 1: Descriptive Statistics: Time-Use by Gender and Activity

PANEL A: Time Use	Work & Travel		Unpaid HH Work		Learning		Self-Care		Indoor Ent.		Outdoor Sports		Soc. & Com.	
	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female
Time	311.69	55.15	126.18	271.57	71.30	52.22	686.26	773.27	129.09	162.11	19.37	13.13	96.11	112.54
Tmax (0-22°C)	297.46	38.09	167.66	319.67	74.25	58.14	667.07	756.10	116.16	141.38	21.52	15.96	95.88	110.64
Tmax (22-25°C)	309.09	47.46	138.54	284.96	78.55	61.51	677.75	769.73	114.30	143.28	23.26	16.46	98.51	116.60
Tmax (37°C and above)	293.45	51.85	116.14	253.58	66.15	46.58	701.88	790.36	140.64	168.54	19.75	14.08	102.00	115.00
Rural	311.84	58.40	127.21	270.07	70.90	52.83	688.34	777.63	123.63	153.52	20.32	13.81	97.76	113.74
Urban	311.44	49.96	124.51	273.98	71.94	51.24	682.85	766.31	138.01	175.82	17.83	12.05	93.41	110.64
Never Married	146.03	41.28	131.16	162.01	164.84	198.30	727.57	767.24	137.54	145.64	37.40	31.87	95.47	93.67
Ever Married	430.10	59.72	122.62	307.68	4.43	4.08	656.73	775.26	123.05	167.54	6.49	6.96	96.57	118.76
Age 12-15	32.35	31.32	127.21	134.80	224.45	224.96	770.27	772.06	142.04	144.05	51.64	42.53	92.04	90.28
Age 16-64	352.37	58.76	123.53	285.41	58.83	38.42	668.04	769.41	125.42	162.98	16.64	10.73	95.16	114.27
Age 65+	74.66	22.76	177.51	243.69	2.97	2.73	878.15	864.40	175.98	180.40	7.05	5.94	123.68	120.07
Observations	5,885,327													
PANEL B: Weather	Mean	Std. Dev.												
Maximum temperature (°C)	30.29	6.24												
Minimum temperature (°C)	20.61	6.84												
Precipitation (mm)	3.74	5.05												
Relative humidity (%)	65.27	15.98												
Specific humidity (g/kg)	13.02	4.67												

Note: Time use is reported as average minutes per day per person. The seven activity categories are mutually exclusive and exhaustive, summing to 1,440 minutes by construction. Estimates are disaggregated by gender and subgroup. *Tmax* bins are defined using the district-month average of daily maximum temperature (°C) for the interview month; the cut-offs shown (≤ 22 , $22-25$, ≥ 37) correspond to the 10th percentile, a temperate range, and the 90th percentile of the temperature distribution. The sample includes individuals aged 12 and above.

Table 2: Linear Estimates: Temperature and Time Use by Activity and Gender

	Work & Travel		Unpaid HH Work		Learning		Self-Care		Indoor Ent.		Outdoor Sports		Soc. & Com.			
			(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female
Maximum Temperature (°C)	-3.954*** (0.819)	-0.570 (0.526)	1.789 (1.420)	-1.065 (1.676)	-3.399*** (0.734)	-2.931*** (0.506)	6.750*** (2.221)	4.255 (2.734)	1.309 (1.059)	2.517** (1.276)	-0.295 (0.427)	-0.170 (0.381)	-2.199** (0.971)	-2.035* (1.112)		
Observations	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	
Mean of Dep.	313.2798	54.63182	123.8128	270.8049	72.5826	52.48871	680.3068	766.0845	131.6254	166.1613	19.83812	13.38839	98.55452	116.4404		
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	

Note: The dependent variables are measured as minutes per person per day spent in each activity. *Maximum Temperature* is defined as the monthly mean of daily maximum temperatures at the district level. Controls include individual demographics (age, education, and marital status) as well as district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table 3: Binned Specification: Effect of Temperature by Activity and Gender

	Work & Travel		Unpaid HH Work		Learning		Self-Care		Indoor Ent.		Outdoor Sports		Soc. & Com.			
			(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
		Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	
Less than 22°C	9.183**	1.337	-1.628	-0.057	-0.726	0.262	-10.569	-7.249	3.800	3.313	-0.592	-0.179	0.532	2.573		
	(3.600)	(2.535)	(5.421)	(7.454)	(2.805)	(2.053)	(10.718)	(13.077)	(5.524)	(6.811)	(1.798)	(1.845)	(4.437)	(5.303)		
25–28°C	-12.468***	-3.915**	-9.452*	-7.431	-3.808	-4.590**	24.862***	18.437**	7.625**	6.437	-0.964	-0.859	-5.795**	-8.079**		
	(2.755)	(1.873)	(5.549)	(5.529)	(3.065)	(2.084)	(7.154)	(8.032)	(3.563)	(4.340)	(1.496)	(1.515)	(2.651)	(3.517)		
28–31°C	-24.220***	-8.571***	-4.976	-10.206	-11.597***	-9.580***	40.415***	35.680***	15.719***	15.307**	-3.486**	-2.928*	-11.856***	-19.704***		
	(3.603)	(2.342)	(6.544)	(6.651)	(3.662)	(2.481)	(8.794)	(9.679)	(5.120)	(6.206)	(1.696)	(1.598)	(3.877)	(4.871)		
31–34°C	-29.962***	-8.087***	-1.431	-5.935	-15.174***	-14.002***	43.628***	35.927***	22.323***	20.275**	-3.968**	-2.722	-15.416***	-25.456***		
	(4.705)	(2.951)	(8.033)	(8.209)	(4.234)	(2.931)	(11.088)	(12.124)	(6.842)	(8.196)	(2.005)	(1.805)	(5.090)	(6.282)		
34°C and above	-29.449***	-9.181***	1.430	-3.794	-16.996***	-15.855***	40.928***	33.632**	18.215**	17.194*	-0.327	0.410	-13.802**	-22.406***		
	(5.764)	(3.479)	(9.287)	(10.147)	(4.972)	(3.393)	(13.639)	(15.674)	(7.575)	(9.191)	(2.427)	(2.199)	(6.368)	(7.752)		
Observations	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892		
Mean of Dep.	313.2798	54.63182	123.8128	270.8049	72.5826	52.48871	680.3068	766.0845	131.6254	166.1613	19.83812	13.38839	98.55452	116.4404		
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22–25°C. Controls include individual demographics (age, education, and marital status) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table 4: Gender Differences in Time-Use Responses to Temperature Bins

	Work & Travel	Unpaid HH Work	Learning	Self-Care	Indoor Ent.	Outdoor Sports	Soc. & Com.
Less than 22°C × Female	-3.532*	5.603*	-0.260	-2.506	-0.594	-0.073	1.363
	(1.909)	(3.275)	(0.752)	(2.823)	(1.503)	(0.480)	(1.308)
25–28°C × Female	1.594	0.760	-0.724	-2.778	0.743	-0.471	0.877
	(1.569)	(2.738)	(0.819)	(2.776)	(1.391)	(0.448)	(1.235)
28–31°C × Female	4.384***	-4.505*	0.785	1.777	0.309	-0.352	-2.398**
	(1.435)	(2.605)	(0.701)	(2.521)	(1.239)	(0.409)	(1.165)
31–34°C × Female	9.456***	-4.809*	0.973	0.037	-1.916	0.256	-3.997***
	(1.473)	(2.562)	(0.649)	(2.346)	(1.170)	(0.371)	(1.075)
34°C and above × Female	16.556***	-8.056***	2.497***	-2.294	-3.918***	0.480	-5.265***
	(1.772)	(2.771)	(0.725)	(2.621)	(1.251)	(0.420)	(1.073)
Observations	5885327	5885327	5885327	5885327	5885327	5885327	5885327
Mean of Dep.	189.923	193.918	62.999	721.217	148.097	16.762	107.085
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22–25°C. Female is an indicator variable for female. Controls include individual demographics (age, education, and marital status) and district-level weather covariates (precipitation and relative humidity). Standard errors (in parentheses) are clustered at the district level. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table 5: Alternate Heat Metrics

	Work & Travel		Unpaid HH Work		Learning		Self-Care		Indoor Ent.		Outdoor Sports		Soc. & Com.	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female
PANEL A: No. of Days in a Month in a Bin														
Days Tmax < 22°C	1.551***	0.295	0.218	1.176*	0.351	0.367*	-1.626*	-1.109	-0.326	-0.645	0.010	0.061	-0.179	-0.144
	(0.270)	(0.183)	(0.463)	(0.655)	(0.327)	(0.211)	(0.899)	(1.204)	(0.382)	(0.477)	(0.172)	(0.170)	(0.453)	(0.462)
Days Tmax 25–28°C	-0.682***	-0.069	0.205	0.268	-0.405	-0.333**	1.229*	0.442	0.547	0.607	-0.086	-0.084	-0.808**	-0.831**
	(0.201)	(0.139)	(0.367)	(0.481)	(0.287)	(0.166)	(0.696)	(0.881)	(0.334)	(0.429)	(0.136)	(0.114)	(0.334)	(0.323)
Days Tmax 28–31°C	-1.408***	-0.392***	0.246	-0.275	-0.706**	-0.599***	2.582***	2.146***	0.770**	0.767*	-0.330***	-0.299***	-1.155***	-1.348***
	(0.205)	(0.133)	(0.361)	(0.432)	(0.280)	(0.165)	(0.627)	(0.788)	(0.328)	(0.403)	(0.123)	(0.094)	(0.294)	(0.300)
Days Tmax 31–34°C	-1.624***	-0.269*	0.224	-0.064	-0.881***	-0.790***	2.534***	1.487*	1.296***	1.300***	-0.281**	-0.215**	-1.268***	-1.449***
	(0.248)	(0.146)	(0.430)	(0.509)	(0.314)	(0.189)	(0.739)	(0.892)	(0.394)	(0.476)	(0.139)	(0.106)	(0.334)	(0.338)
Days Tmax ≥ 34°C	-2.227***	-0.381**	0.788	0.006	-1.324***	-1.175***	3.039***	1.892*	1.366***	1.369**	-0.188	-0.137	-1.454***	-1.574***
	(0.321)	(0.173)	(0.522)	(0.626)	(0.364)	(0.213)	(0.874)	(1.047)	(0.475)	(0.559)	(0.181)	(0.135)	(0.407)	(0.433)
PANEL B: Cumulative Degree Days														
CDD above 25°C	0.024	0.010	0.095**	0.099*	-0.084***	-0.074***	-0.073	-0.121	0.063*	0.082*	0.011	0.019	-0.037	-0.015
	(0.029)	(0.018)	(0.045)	(0.051)	(0.027)	(0.019)	(0.074)	(0.087)	(0.036)	(0.044)	(0.016)	(0.014)	(0.034)	(0.037)
Observations	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892
Mean of Dep.	313.2798	54.63182	123.8128	270.8049	72.5826	52.48871	680.3068	766.0845	131.6254	166.1613	19.83812	13.38839	98.55452	116.4404
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Panel A reports estimates using the number of days in a month in each temperature bin as regressors. Panel B reports results using cumulative degree days (CDD) above 25°C. Controls include individual demographics (age, education, and marital status) and district-level weather covariates (precipitation and relative humidity). Standard errors (in parentheses) are clustered at the district level. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table 6: Heterogeneity in Temperature Effects on Time Use — Male

	Work & Travel	Unpaid HH Work	Learning	Self-Care	Indoor Ent.	Outdoor Sports	Soc. & Com.	
PANEL A: Area of Residence								
34°C and above	-34.328*** (5.654)	2.887 (9.210)	-16.649*** (5.093)	44.053*** (13.398)	20.792*** (7.687)	-0.295 (2.568)	-15.158** (6.094)	
34°C and above \times Rural	1.472 (2.767)	-1.679 (3.593)	-2.530 (2.003)	4.995 (5.470)	-3.798 (2.905)	0.469 (1.218)	1.071 (2.095)	
PANEL B: Marital Status								
34°C and above	-24.910*** (5.673)	4.727 (8.827)	-33.811*** (5.883)	53.692*** (13.242)	20.599*** (7.577)	-4.929** (2.492)	-15.368*** (5.927)	
34°C and above \times Ever Married	-15.495*** (2.440)	-4.103** (1.763)	28.249*** (3.584)	-13.914*** (3.408)	-1.960* (1.079)	6.098*** (1.062)	1.124 (0.932)	
PANEL C: Hot-Day Prevalence								
42	34°C and above	66.415*** (19.403)	-32.613 (26.169)	25.242** (10.529)	-43.074 (36.696)	-49.361** (21.517)	9.875** (4.736)	23.515* (12.702)
	34°C and above \times Occasionally Hot	-101.482*** (26.906)	54.219* (29.238)	-39.010*** (12.326)	114.408** (44.999)	53.938 (37.199)	-17.581*** (6.779)	-64.492*** (20.934)
	34°C and above \times Seasonally Hot	-80.954*** (20.572)	38.944 (28.336)	-34.696*** (11.915)	41.516 (40.828)	66.449*** (22.121)	-3.300 (5.974)	-27.960** (14.020)
	34°C and above \times Perennially Hot	-115.333*** (19.846)	27.949 (27.246)	-51.889*** (11.235)	122.259*** (38.390)	78.589*** (22.966)	-16.638*** (5.331)	-44.937*** (13.934)
	Controls	Yes	Yes	Yes	Yes	Yes	Yes	
	Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	
	District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	
	Year FE	Yes	Yes	Yes	Yes	Yes	Yes	

Notes: The dependent variables are measured as minutes per person per day spent in each activity. Each panel presents heterogeneity in the effect of extreme heat ($T_{\max} \geq 34^{\circ}\text{C}$) across different dimensions. Interaction terms are the specified dummy (which is 1 if the respondent characteristics fall into that category, zero otherwise). Panel A interacts 34°C with rural residence, Panel B with marital status, and Panel C with baseline hot-day prevalence categories (occasionally, seasonally, and perennially hot districts). Controls include individual demographics (age, education, and marital status) and district-level weather covariates (precipitation and relative humidity). Standard errors (in parentheses) are clustered at the district level. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table 7: Heterogeneity in Temperature Effects on Time Use — Female

	Work & Travel	Unpaid HH Work	Learning	Self-Care	Indoor Ent.	Outdoor Sports	Soc. & Com.
PANEL A: Area of Residence							
34°C and above	-10.835*** (3.308)	-3.449 (9.852)	-15.320*** (3.414)	33.860** (15.544)	21.130** (9.435)	-0.526 (2.406)	-24.860*** (7.515)
34°C and above \times Rural	0.302 (1.758)	-0.396 (4.217)	-2.289 (1.524)	7.097 (6.750)	-5.303 (3.934)	-0.618 (1.326)	1.208 (2.778)
PANEL B: Marital Status							
34°C and above	-13.557*** (3.252)	9.260 (9.521)	-42.988*** (5.285)	49.955*** (15.284)	25.021*** (9.031)	-5.320** (2.304)	-22.371*** (7.222)
34°C and above \times Ever Married	3.834*** (0.863)	-17.118*** (3.177)	35.859*** (4.320)	-18.588*** (4.168)	-7.587*** (1.377)	6.134*** (1.120)	-2.534* (1.301)
PANEL C: Hot-Day Prevalence							
34°C and above	23.397** (9.704)	-36.833 (29.634)	23.905*** (8.367)	-6.745 (39.666)	-34.607 (26.794)	7.626 (4.931)	23.256 (15.885)
34°C and above \times Occasionally Hot	-46.422*** (14.830)	41.594 (36.229)	-33.364*** (9.628)	74.951 (53.819)	50.804 (46.140)	-13.526** (6.531)	-74.038*** (23.836)
34°C and above \times Seasonally Hot	-29.573*** (10.579)	49.855 (33.332)	-36.028*** (9.379)	3.451 (44.595)	51.191* (28.084)	-0.207 (6.229)	-38.690** (18.402)
34°C and above \times Perennially Hot	-39.269*** (10.425)	24.944 (30.405)	-46.979*** (8.999)	69.608 (42.608)	60.554** (28.674)	-13.423** (5.464)	-55.435*** (17.504)
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Notes: The dependent variables are measured as minutes per person per day spent in each activity. Each panel presents heterogeneity in the effect of extreme heat ($T_{\max} \geq 34^{\circ}\text{C}$) across different dimensions. Panel A interacts 34°C with rural residence, Panel B with marital status, and Panel C with baseline hot-day prevalence categories (occasionally, seasonally, and perennially hot districts). Controls include individual demographics (age, education, and marital status) and district-level weather covariates (precipitation and relative humidity). Standard errors (in parentheses) are clustered at the district level. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A1: Wave-wise Distribution of Individual Time-Use Observations

Wave Period	Frequency	Percent	Cumulative %
Sep–Dec 2019	513,686	8.57	8.57
Jan–Apr 2020	390,380	6.51	15.08
May–Aug 2020	269,041	4.49	19.56
Sep–Dec 2020	431,201	7.19	26.75
Jan–Apr 2021	452,509	7.55	34.30
May–Aug 2021	405,950	6.77	41.07
Sep–Dec 2021	462,499	7.71	48.78
Jan–Apr 2022	458,777	7.65	56.44
May–Aug 2022	421,045	7.02	63.46
Sep–Dec 2022	428,162	7.14	70.60
Jan–Apr 2023	466,881	7.79	78.38
May–Aug 2023	369,215	6.16	84.54
Sep–Dec 2023	341,027	5.69	90.23
Jan–Apr 2024	313,891	5.23	95.46
May–Aug 2024	129,622	2.16	97.62
Sep–Dec 2024	142,458	2.38	100.00
Total	5,996,344	100.00	

Note: Each wave corresponds to a four-month survey round of the CPHS People of India module. The table reports the number and percentage of individual time-use observations in each wave between September 2019 and December 2024. Percentages are calculated relative to the total sample of 5,996,344 observations.

Table A2: Gender Segregated: Inclusion of District Specific Year Trends

	Work & Travel		Unpaid HH Work		Learning		Self-Care		Indoor Ent.		Outdoor Sports		Soc. & Com.															
	(1)		(2)		(3)		(4)		(5)		(6)		(7)		(8)		(9)		(10)		(11)		(12)		(13)		(14)	
	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female		
Less than 22°C	16.28971*** (3.5413)	2.513418 (2.2820)	-7.931167* (4.6983)	-4.313735 (7.1646)	-6.706833 (3.3147)	1.8611 (2.0793)	-17.28421* (10.3650)	-12.37966 (13.3718)	24.47676 (5.4896)	4.224749 (7.1630)	1.003335 (2.0832)	1.08183 (1.8030)	6.145343 (3.7868)	7.012296 (4.7549)														
25-28°C	-15.88658*** (2.8576)	-6.268448*** (1.6992)	-6.601158 (4.3049)	-5.368369 (4.9884)	-5.158503* (3.0714)	-5.255672** (2.0619)	28.81252*** (6.5941)	23.09971*** (8.1622)	8.478761** (3.8457)	6.19432 (4.7173)	-1.540051 (1.5400)	-1.320882 (1.5356)	-8.104988*** (2.8253)	-11.08066*** (3.6696)														
28-31°C	-28.09606*** (3.6988)	-10.55713*** (2.2109)	-3.69967 (5.2761)	-9.649514 (5.9459)	-12.7594*** (3.5694)	-10.50618*** (2.4347)	45.69506*** (8.0133)	40.03107*** (9.7555)	17.48697*** (5.4272)	16.32494** (6.7470)	-4.213805** (1.6917)	-3.820356** (1.6111)	-13.8131*** (3.7843)	-21.82283*** (4.8413)														
31-34°C	-33.71845*** (4.8015)	-10.17222*** (2.8055)	-1.032212 (6.5728)	-5.46795 (7.1202)	-16.86534*** (4.0786)	-14.98027*** (2.8487)	50.0007*** (10.1439)	40.36888*** (11.9383)	24.37083*** (7.0452)	22.34639*** (8.5332)	-5.34952*** (2.0260)	-4.323942** (1.8094)	-17.40601*** (4.8413)	-27.77091*** (6.0199)														
34°C and above	-32.49299*** (5.7606)	-11.96286*** (3.3422)	-6.623527 (7.6625)	-5.301628 (9.1855)	-18.74425*** (4.8448)	-16.41416*** (3.2281)	50.21044*** (12.4204)	43.17338*** (15.1621)	21.04034*** (7.7639)	19.5908** (9.5394)	-2.739934 (2.4557)	-2.420429 (2.1259)	-16.65008*** (6.0499)	-26.66511*** (7.2598)														
Observations	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892				
Mean of Dep.	313.2798	54.63182	123.8128	270.8049	72.5826	52.48871	680.3068	766.0845	131.6254	166.1613	19.83812	13.38839	98.55452	116.4404														
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			
District Year Trends	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22-25°C. Controls include individual demographics (age, education, and marital status) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-specific year trends, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A3: Alternate Heat Metrics: Gender Differences in Time-Use Responses

	Work & Travel	Unpaid HH Work	Learning	Self-Care	Indoor Ent.	Outdoor Sports	Soc. & Com.
PANEL A: Number of Days in a Month in a Bin							
Days Tmax < 22°C × Female	-0.193 (0.132)	0.285 (0.216)	0.025 (0.074)	-0.178 (0.195)	-0.046 (0.100)	0.018 (0.033)	0.089 (0.095)
Days Tmax 25-28°C × Female	0.098 (0.145)	-0.003 (0.243)	0.080 (0.083)	-0.325 (0.223)	0.095 (0.123)	0.009 (0.038)	0.046 (0.108)
Days Tmax 28-31°C × Female	0.077 (0.094)	-0.192 (0.165)	0.030 (0.056)	0.118 (0.155)	0.024 (0.081)	-0.010 (0.025)	-0.048 (0.070)
Days Tmax 31-34°C × Female	0.169* (0.100)	-0.066 (0.174)	0.048 (0.059)	-0.107 (0.150)	0.003 (0.078)	0.025 (0.026)	-0.071 (0.073)
Days Tmax ≥ 34°C × Female	0.679*** (0.103)	-0.325* (0.166)	0.152*** (0.056)	-0.192 (0.145)	-0.188** (0.078)	0.047* (0.025)	-0.173** (0.068)
PANEL B: Cumulative Degree Days							
CDD above 25°C	0.016 (0.010)	0.050*** (0.018)	-0.042*** (0.009)	-0.055 (0.034)	0.021 (0.018)	0.003 (0.006)	0.007 (0.014)
CDD above 25°C × Female	0.054*** (0.003)	-0.029*** (0.004)	0.010*** (0.001)	-0.005 (0.004)	-0.016*** (0.002)	0.004*** (0.001)	-0.017*** (0.002)
Observations	5,898,032	5,898,032	5,898,032	5,898,032	5,898,032	5,898,032	5,898,032
Mean of Dep.	189.692	193.868	63.163	721.358	148.076	16.781	107.061
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Notes: Outcomes are minutes per person per day. Temperature bins use the monthly mean of daily maximum temperatures at the district level; omitted category is 22-25°C. *Female* is an indicator for female. Controls include individual demographics (age, education, marital status) and district-level weather covariates (precipitation, relative humidity). Standard errors (in parentheses) are clustered at the district level. * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A4: Gender Segregated: Sample Restricted to Age 12 to 21

	Work & Travel		Unpaid HH Work		Learning		Self-Care		Indoor Ent.		Outdoor Sports		Soc. & Com.	
	(1) Male	(2) Female	(3) Male	(4) Female	(5) Male	(6) Female	(7) Male	(8) Female	(9) Male	(10) Female	(11) Male	(12) Female	(13) Male	(14) Female
Less than 22°C	3.862422 (2.9555)	-1.759574 (2.4919)	1.106369 (6.6538)	.4167052 (6.9523)	4.621362 (8.3861)	.6478518 (8.4306)	-11.16945 (14.4171)	-6.245333 (14.1908)	1.983283 (6.3949)	5.142255 (6.2555)	-.8733642 (3.3183)	-1.058204 (3.2949)	.4693783 (5.3214)	1.272683 (4.8510)
25-28°C	-.6168533** (2.4972)	-5.258519** (2.2229)	-12.1183* (6.8540)	-7.579567 (6.6213)	-21.04083*** (7.9405)	-20.99348*** (7.7958)	39.24614*** (10.6089)	37.71931*** (10.3404)	11.35430*** (4.1538)	9.141269** (4.2784)	-4.355913 (2.8197)	-3.640608 (2.3496)	-6.916942** (3.2401)	-9.388405*** (3.3517)
28-31°C	-.16.96521*** (3.0050)	-10.88237*** (2.5508)	-6.545896 (7.8512)	.1464159 (7.8076)	-47.10378*** (10.2063)	-44.65543*** (9.8116)	69.42608*** (13.4572)	61.58197*** (13.1746)	24.19211*** (6.1924)	21.80003*** (6.8839)	-9.896103*** (3.5010)	-10.05653*** (2.7671)	-13.1072*** (4.7366)	-17.93409*** (4.7686)
31-34°C	-.19.90806*** (3.7692)	-12.18377*** (2.9585)	-1.254941 (9.3635)	6.789642 (9.2327)	-61.70647*** (12.0515)	-64.75287*** (11.8756)	80.80363*** (16.5675)	75.16438*** (16.0393)	32.88316*** (8.1402)	31.1441*** (9.2452)	-12.72504*** (4.2354)	-12.55954*** (3.4055)	-18.09228*** (5.9419)	-23.60194*** (6.0126)
34°C and above	-.22.11808*** (4.3220)	-14.44772*** (3.4298)	.243107 (11.4104)	10.15832 (11.4324)	-73.19239*** (13.9039)	-75.35678*** (13.6237)	89.11691*** (20.4206)	84.07787*** (19.9153)	31.0353*** (9.2608)	28.31727*** (10.0994)	-8.571924* (5.1627)	-9.234832** (4.0377)	-16.51292** (7.5075)	-23.51412*** (7.2449)
Observations	831200	580914	831200	580914	831200	580914	831200	580914	831200	580914	831200	580914	831200	580914
Mean of Dep.	59.92767	35.18782	129.4088	150.3905	214.2856	214.9205	745.9674	757.6186	144.0559	149.5928	47.30717	35.77268	99.0475	96.51706
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: For this table, we restrict our sample to individuals aged 12-21. The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22-25°C. Controls include individual demographics (age, education, and marital status) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A5: Gender Segregated: Heterogeneity by Area of Residence

	Work & Travel		Unpaid HH Work		Learning		Self-Care		Indoor Ent.		Outdoor Sports		Soc. & Com.	
	(1) Male	(2) Female	(3) Male	(4) Female	(5) Male	(6) Female	(7) Male	(8) Female	(9) Male	(10) Female	(11) Male	(12) Female	(13) Male	(14) Female
Less than 22°C	9.627452** (3.8796)	2.064385 (2.8090)	-2.681275 (6.0607)	-2.964823 (8.6528)	-1.049643 (3.0315)	.4597497 (2.1948)	-10.7967 (11.4106)	-6.851416 (14.2980)	4.606471 (6.4358)	4.888847 (8.0083)	-.2313877 (2.1183)	.3984649 (2.2707)	.5250821 (4.7403)	2.004792 (5.9370)
25-28°C	-.14.92361*** (2.8928)	-5.083350*** (1.9353)	-9.188148 (6.3213)	-7.268308 (6.3327)	-3.133242 (3.4600)	-3.855029* (2.3346)	26.88599*** (8.1922)	18.85615** (9.4688)	8.738442** (4.0125)	8.08587 (5.0822)	-1.638774 (1.9053)	-1.279061 (1.9687)	-6.740648** (2.9240)	-9.456261** (3.9989)
28-31°C	-.26.1855*** (3.5422)	-10.24762*** (2.3638)	-5.275794 (7.0016)	-9.664123 (6.9546)	-11.1207*** (3.9099)	-8.746169*** (2.6014)	41.37108*** (9.4130)	34.52446*** (10.4743)	17.69481*** (5.3546)	18.35911*** (6.6775)	-4.090239** (1.9531)	-3.30151* (1.9197)	-12.3935*** (3.8749)	-20.92415*** (5.0002)
31-34°C	-.32.4773*** (4.6743)	-9.505278*** (2.8440)	-.355932 (8.2332)	-5.219898 (8.1670)	-14.59294*** (4.3938)	-13.07368*** (2.9802)	44.99865*** (11.3456)	35.8807*** (12.5063)	23.79713*** (6.9389)	22.81211*** (8.5198)	-4.832777** (2.2364)	-3.494682* (2.0990)	-16.53684*** (4.9983)	-27.39927*** (6.2263)
34°C and above	-.34.3279*** (5.6537)	-10.83469*** (3.3083)	2.886709 (9.2100)	-3.448716 (9.8521)	-16.64933*** (5.0934)	-15.32037*** (3.4142)	44.05275*** (13.3979)	33.86012** (15.5439)	20.79224*** (7.6867)	21.12972** (9.4352)	-1.596335 (2.5683)	-1.5202144 (2.4059)	-15.15812** (6.0937)	-24.85984*** (7.5150)
Less than 22°C × Rural	.9888632 (3.8286)	-1.344817 (2.1404)	2.744019 (4.3396)	8.596762 (6.0678)	1.358503 (2.8530)	-.3683248 (2.4254)	-1.992408 (8.5554)	-2.732929 (10.1825)	-3.084085 (4.5988)	-5.842449 (6.0110)	-5.127422 (1.7544)	-1.087279 (1.1588)	.49785 (2.1006)	2.779037 (3.0226)
25-28°C × Rural	3.976278 (2.9389)	2.223877 (2.2767)	-.1679618 (4.2398)	-3.268439 (4.8028)	-2.235304 (2.4697)	-2.227425 (1.7614)	-2.544414 (6.0483)	.5082517 (7.5449)	-2.1796 (3.1331)	-3.069191 (4.3306)	1.152319 (1.5888)	.4107177 (1.6966)	1.998684 (2.3880)	2.480612 (2.9471)
31-34°C × Rural	-.23.40862 (2.7259)	.7542413 (1.8090)	-1.12246 (3.9391)	-1.708025 (3.9702)	-2.801476 (2.0461)	-3.270552** (1.5218)	6.616801 (5.2091)	5.912295 (6.4012)	-1.432142 (2.8102)	-2.663164 (4.0287)	.0890813 (1.2849)	-.2271064 (1.3958)	1.092477 (2.2004)	1.202312 (2.7200)
34°C and above × Rural	1.472073 (2.7674)	.3017046 (1.7584)	-1.679063 (3.5926)	-.3960527 (4.2168)	-2.530179 (2.0029)	-2.288861 (1.5240)	4.995032 (5.4703)	7.096724 (6.7504)	-3.798158 (2.9048)	-5.303014 (3.9337)	.4694113 (1.2182)	-.6180953 (1.3261)	1.070883 (2.0953)	1.207595 (2.7784)
Observations	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892
Mean of Dep.	313.2798	54.63182	123.8128	270.8049	72.5826	52.48871	680.3068	766.0845	131.6254	166.1613	19.83812	13.38839	98.55452	116.4404
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22-25°C. Rural is an indicator that takes the value 1 for rural areas of residence, zero otherwise. Controls include individual demographics (age, education, and marital status) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A6: Gender Segregated: Heterogeneity by For Marital Status

	Work & Travel		Unpaid HH Work		Learning		Self-Care		Indoor Ent.		Outdoor Sports		Soc. & Com.	
	(1) Male	(2) Female	(3) Male	(4) Female	(5) Male	(6) Female	(7) Male	(8) Female	(9) Male	(10) Female	(11) Male	(12) Female	(13) Male	(14) Female
Less than 22°C	8.903876** (3.5563)	1.332118 (2.4120)	-1.009661 (6.0984)	-0.6297 (7.5146)	1.368723 (4.6364)	3.164341 (5.3048)	-12.03361 (11.8640)	-5.500943 (13.5519)	3.88137 (5.9345)	6.26336 (6.7742)	-7.187551 (2.2629)	.0809855 (2.4356)	-.3919452 (4.5928)	.3601323 (4.9673)
25-28°C	-12.0319*** (2.7929)	-4.627153** (2.1288)	-9.967444** (5.8393)	-7.685535 (5.5999)	-4.671402 (5.0437)	-6.430591 (5.2756)	-27.04839*** (8.1651)	23.89461*** (8.8612)	7.709006** (3.7019)	6.816666** (4.1364)	-1.367991 (1.9389)	-.9913427 (1.9375)	-6.717366** (2.7004)	-10.97666*** (3.2902)
28-31°C	-24.23*** (3.5046)	-11.02942*** (2.3539)	-5.073486 (6.5209)	-4.383647 (6.4050)	-16.20278*** (5.0792)	-15.11751*** (5.0351)	46.49441*** (9.2979)	38.91614*** (10.1719)	16.51141*** (5.2475)	17.32328*** (6.1354)	-5.041775** (2.0010)	-5.23001*** (1.9000)	-12.45778*** (3.7508)	-20.47883*** (4.5981)
31-34°C	-30.03859*** (4.5783)	-11.76727*** (2.8083)	.8747153 (7.7747)	2.60872 (7.6873)	-24.87186*** (5.3432)	-31.20129*** (5.0793)	53.73797*** (11.1066)	46.08454*** (12.1826)	23.90849*** (6.8863)	26.03878*** (8.1953)	-7.045286*** (2.2370)	-6.659384*** (2.1076)	-16.56544*** (4.8314)	-25.10409*** (5.9228)
34°C and above	-24.91014*** (5.6725)	-13.55707*** (3.2521)	4.726603 (8.8270)	9.260391 (9.5213)	-33.81075*** (5.8825)	-42.98841*** (5.2852)	53.69222*** (13.2418)	49.95543*** (15.2843)	20.59937*** (7.5770)	25.02073*** (9.0305)	-4.929318** (2.4924)	-5.320465** (2.3039)	-15.36798*** (5.9268)	-22.37061*** (7.2216)
Yes	61.5214*** (2.8646)	-9.614658*** (1.2299)	-8.282337* (1.6563)	45.37181*** (3.3053)	-37.05786*** (3.0941)	-54.63799*** (4.2164)	-6.413923* (3.3216)	13.26216*** (4.2534)	-5.278959*** (1.0908)	7.720255*** (1.4066)	-8.739564*** (0.9856)	-8.328412*** (1.0263)	-1.203723 (0.9653)	6.226832*** (1.3635)
Less than 22°C × Ever-Married	1.849112 (2.6929)	.363679 (1.1337)	-1.417158 (2.7079)	5.551406 (4.2105)	-3.441898 (4.2203)	-7.132414 (5.1931)	1.024661 (4.4840)	-2.934354 (5.3058)	-.5595041 (5.1521)	-2.298623 (1.6630)	.6003589 (1.2982)	-.1051182 (1.4441)	1.944427 (1.2384)	3.555423* (1.8774)
25-28°C × Ever-Married	-2.631644 (2.6637)	.4767587 (1.2130)	1.289643 (2.0147)	.3672469 (3.6568)	1.329123 (4.2459)	2.480224 (5.0396)	-1.839763 (4.4761)	-6.606953 (4.5277)	.3363639 (1.2280)	.1844331 (1.6217)	.2537184 (1.3284)	-.1831502 (1.0556)	1.215286 (1.6118)	3.28144** (1.4706)
31-34°C × Ever-Married	-5.470993*** (2.1849)	3.419027*** (0.9017)	-2.761905* (1.6302)	-11.15593*** (3.2219)	16.00988*** (3.5233)	22.64639*** (3.4292)	-11.37649*** (3.3289)	-11.20027*** (4.0897)	-1.125126 (1.1486)	-5.535786*** (1.3994)	.910768*** (0.9920)	4.123295*** (1.1373)	.8138672 (0.9168)	-2.278718 (1.4706)
34°C and above × Ever-Married	-15.49458*** (2.4398)	3.833551*** (0.8633)	-4.1025** (1.7633)	-17.11777*** (3.1766)	28.2491*** (3.5838)	35.85931*** (4.3203)	-13.91402*** (3.4076)	-18.58817*** (4.1677)	-1.959629* (1.0792)	-1.5872*** (1.3765)	6.097869*** (1.0615)	6.133888*** (1.1198)	1.124027 (0.9320)	-2.533613* (1.3012)
Observations	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892
Mean of Dep.	313.2798	54.63182	123.8128	270.8049	72.5826	52.48871	680.3068	766.0845	131.6254	166.1613	19.83812	13.38839	98.55452	116.4404
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22-25°C. Ever-married is an indicator that takes the value 1 for ever-married individuals, zero otherwise. Controls include individual demographics (age and education) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A7: Gender Segregated: Heterogeneity by Hot-Day Prevalence

	Work & Travel		Unpaid HH Work		Learning		Self-Care		Indoor Ent.		Outdoor Sports		Soc. & Com.	
	(1) Male	(2) Female	(3) Male	(4) Female	(5) Male	(6) Female	(7) Male	(8) Female	(9) Male	(10) Female	(11) Male	(12) Female	(13) Male	(14) Female
31-34°C	20.78312 (13.6435)	24.31271*** (7.0798)	35.61081 (21.9147)	8.617338 (23.2974)	6.467435 (7.5733)	7.931409 (5.6641)	-38.14746 (29.4619)	-36.80213 (29.9225)	-32.74857*** (12.5312)	-10.00422 (13.9363)	2.578172 (4.1429)	-.0555067 (3.0431)	5.456494 (9.9267)	6.000404 (11.9317)
34°C and above	66.41548*** (19.4026)	23.39715*** (9.7037)	-32.61253 (26.1693)	-36.8334 (29.6342)	25.24103*** (10.5286)	23.90547*** (8.3668)	-43.07413 (36.6959)	-6.744948 (39.6657)	-49.36134*** (21.5172)	-34.60675 (26.7938)	9.875231** (4.7360)	7.626105 (4.9312)	23.51535* (12.7017)	23.25637 (15.8850)
31-34°C × Occasionally Hot	-62.65503*** (19.4333)	-50.68559*** (12.4807)	-16.40418 (24.1898)	-19.15995 (26.8663)	-23.95354*** (8.9484)	-21.31999*** (6.6173)	93.48299*** (33.3531)	93.14095*** (18.0566)	55.32697*** (24.8165)	49.33182*** (5.8378)	-4.661273 (4.5733)	-1.871477 (16.0063)	-41.15414** (18.7118)	-49.43577*** (16.0063)
31-34°C × Seasonally Hot	-49.93646*** (14.3774)	-35.81464*** (8.0998)	-6.249439 (23.6846)	-18.10344* (26.1712)	-21.80391*** (9.3240)	71.82821** (7.1113)	66.09825* (33.0350)	55.56326*** (34.4073)	26.81825* (13.7618)	-2.130748 (16.2143)	2.37925 (5.3761)	-18.54983* (4.7446)	-31.42776** (10.9579)	-31.42776** (14.3005)
31-34°C × Perennially Hot	-62.6252*** (14.2112)	-35.90606*** (7.9949)	-42.09443* (23.4188)	-19.09292 (24.1154)	-29.02393*** (8.6307)	-27.1665*** (6.5442)	106.6922*** (31.4869)	90.5807*** (33.1027)	64.68987*** (15.3408)	64.869506** (17.7969)	-12.04067** (4.7622)	-8.0596** (3.7592)	-25.59783** (11.3800)	-38.24068** (13.7838)
34°C and above × Occasionally Hot	-101.48157*** (26.9061)	-46.42204*** (14.8296)	54.21878* (29.2380)	41.59435 (32.2285)	-39.00999*** (12.3264)	-33.36361*** (9.6277)	114.408** (44.9987)	74.95065 (53.8190)	53.9375 (46.1395)	50.80407 (37.1988)	-17.58082*** (46.1395)	-13.52566*** (6.7792)	-64.49202*** (6.5314)	-74.03777*** (20.9337)
34°C and above × Seasonally Hot	-80.95359*** (20.5720)	-29.57338*** (10.5789)	38.94883 (28.3358)	49.85549 (33.3322)	-34.69616*** (11.9152)	-36.02796*** (9.3793)	41.51587 (40.8275)	3.451037 (44.5949)	66.44937*** (22.1212)	51.10116* (28.0843)	-3.299584 (5.9743)	-2.00685 (6.2293)	-27.95074** (14.0198)	-38.68967** (18.4018)
34°C and above × Perennially Hot	-115.33288*** (19.8456)	-39.26898*** (10.4246)	27.94988 (27.2458)	24.94407 (30.4048)	-51.88936*** (11.2354)	-46.9789*** (8.9990)	122.2586*** (38.3895)	69.60795 (42.6076)	78.58978*** (22.6735)	60.55388*** (5.3311)	-16.63786*** (5.4641)	-13.42277*** (13.9342)	-44.03655*** (17.5045)	-55.43517*** (17.5045)
Observations	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892
Mean of Dep.	313.27979	54.63182	123.8128	270.8049	72.5826	52.48871	680.3068	766.0845	131.6254	166.1613	19.83812	13.38839	98.55452	116.4404
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22-25°C. Occasionally hot, Seasonally hot, and Perennially hot are indicators equal to 1 for districts historically experiencing 20-60, 61-100, and 100+ hot days per year, respectively; the reference group comprises districts with 0-20 hot days. Controls include individual demographics (age and education) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A8: Gender Segregated: Last Bin Changed to 37 and Above

	Work & Travel		Unpaid HH Work		Learning		Self-Care		Indoor Ent.		Outdoor Sports		Soc. & Com.	
	(1) Male	(2) Female	(3) Male	(4) Female	(5) Male	(6) Female	(7) Male	(8) Female	(9) Male	(10) Female	(11) Male	(12) Female	(13) Male	(14) Female
Less than 22°C	9.182992** (3.5995)	1.336603 (2.5352)	-1.627707 (5.4214)	-.0567483 (7.4543)	-.7264636 (2.8049)	.2617091 (2.0530)	-10.5688 (10.7176)	-.7249374 (13.0772)	3.799637 (5.5239)	3.313469 (6.8106)	-.5920577 (1.7980)	-.1786425 (1.8446)	.5324008 (4.4366)	2.572984 (5.3026)
25-28°C	-12.46829*** (2.7550)	-3.914554** (1.8729)	-9.451866* (5.5491)	-7.431064 (5.5287)	-3.807661 (3.0645)	-4.59026** (2.0839)	24.86249*** (7.1537)	18.43693** (8.0318)	7.624951** (3.5626)	6.436983 (4.3399)	-.9644022 (1.4959)	-.8591258 (1.5153)	-5.795217** (2.6512)	-8.078908** (3.5167)
28-31°C	-24.22014*** (3.6032)	-8.570512*** (2.3422)	-4.975895 (6.5437)	-10.20563 (6.6509)	-11.59659*** (3.6619)	-9.579749*** (2.4811)	40.41471*** (8.7943)	35.68035*** (9.6791)	15.71908*** (5.1196)	15.3073** (6.2056)	-3.485596** (1.6955)	-2.927972* (1.5981)	-11.85556*** (3.8709)	-19.7038*** (4.8708)
31-34°C	-29.96219*** (4.7051)	-8.087362*** (2.9506)	-1.430612 (8.0331)	-5.934564 (8.2090)	-15.17411*** (4.2337)	-14.00195*** (2.9312)	43.62753*** (11.0876)	35.92732*** (12.1236)	22.32297*** (6.8415)	20.27516** (8.1963)	-3.967791** (2.0045)	-2.722263 (1.8049)	-15.41581*** (5.0901)	-25.45634*** (6.2816)
34-37°C	-29.44886*** (5.7636)	-9.181355*** (3.4788)	1.429502 (9.2872)	-3.793625 (10.1468)	-16.9958*** (4.9718)	-15.85513*** (3.3933)	40.92823*** (13.6388)	33.63228** (15.6737)	18.21518** (7.5752)	17.19402* (9.1914)	-.3265151 (2.4269)	.4097464 (2.1986)	-13.80173** (6.3679)	-22.40594*** (7.7524)
37 and above	-21.10122** (8.1675)	-6.174992 (4.3321)	-31.53356 (11.4838)	-4.297038 (13.1122)	-15.89548** (6.1710)	-15.23521*** (4.1748)	31.74862* (17.6599)	28.55107 (20.2205)	15.79253** (9.0584)	12.97948 (10.6924)	1.778813 (3.0895)	2.671209 (2.7000)	-12.00793 (8.3030)	-18.49451* (9.8601)
Observations	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892
Mean of Dep.	313.2798	54.63182	123.8128	270.8049	72.5826	52.48871	680.3068	766.0845	131.0254	166.1613	19.83812	13.38839	98.55452	116.4404
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22-25°C. Controls include individual demographics (age and education) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A9: Difference Results: Last Bin Changed to 37 and Above

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Work & Travel	Unpaid HH Work	Learning	Self-Care	Indoor Ent.	Outdoor Sports	Soc. & Com.
Less than 22°C × Female	-3.532119* (1.9086)	5.602675* (3.2751)	-.2604855 (0.7518)	-2.506384 (2.8227)	-.5941165 (1.5027)	-.0727439 (0.4801)	1.363174 (1.3084)
25-28°C × Female	1.593819 (1.5690)	.7600189 (2.7377)	-.724075 (0.8192)	-2.777971 (2.7759)	.7427094 (1.3914)	-.4711902 (0.4478)	.8766891 (1.2353)
28-31°C × Female	4.384047*** (1.4345)	-4.505444* (2.6045)	.7845816 (0.7012)	1.777408 (2.5209)	.309302 (1.2390)	-.3516577 (0.4094)	-2.398236** (1.1650)
31-34°C × Female	9.456007*** (1.4726)	-4.808701* (2.5623)	.972861 (0.6487)	.0366544 (2.3461)	-1.915997 (1.1696)	.2558871 (0.3706)	-3.996711*** (1.0748)
34-37°C × Female	16.556*** (1.7724)	-8.056385*** (2.7713)	2.497266*** (0.7246)	-2.293537 (2.6211)	-3.918443*** (1.2506)	.4801003 (0.4204)	-5.265001*** (1.0730)
37 and above × Female	20.27821*** (1.9226)	-9.645981*** (2.7734)	3.728154*** (0.7774)	-3.401753 (2.8984)	-6.491224*** (1.3513)	1.381682*** (0.4553)	-5.849089*** (1.1187)
Observations	5885327	5885327	5885327	5885327	5885327	5885327	5885327
Mean of Dep.	189.9226	193.9179	62.99909	721.2167	148.0967	16.76205	107.0849
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22-25°C. Controls include individual demographics (age and education) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A10: Gender Segregated: Omitted Bin Changed to 22 to 24

	Work & Travel		Unpaid HH Work		Learning		Self-Care		Indoor Ent.		Outdoor Sports		Soc. & Com.	
	(1) Male	(2) Female	(3) Male	(4) Female	(5) Male	(6) Female	(7) Male	(8) Female	(9) Male	(10) Female	(11) Male	(12) Female	(13) Male	(14) Female
Less than 22°C	10.43825*** (3.6425)	1.990442 (2.5438)	-.7088475 (5.2851)	1.124778 (7.4015)	.0256233 (2.8461)	.7706445 (2.1037)	-.12.87608 (10.6525)	-.9.137936 (12.8752)	2.564417 (5.6121)	1.729247 (6.9711)	-.382811 (1.8449)	-.1076778 (1.9357)	.9394391 (4.4085)	3.630502 (5.2730)
24-26°C	-3.918396 (2.9396)	.3624163 (2.1620)	4.560953 (5.9559)	-1.52762 (7.1388)	-.1475751 (3.0788)	-.6123799 (2.1881)	2.946414 (8.4349)	-.0485426 (10.9557)	-.1.527423 (3.6811)	-.1.44727 (4.4152)	-.6029284 (1.6672)	-.1.419476 (1.8944)	-.1.311045 (3.1589)	4.692872 (3.8638)
26-28°C	-19.34321*** (3.9812)	-5.047578* (2.6342)	-6.461664 (6.9121)	-14.25385* (8.2959)	-7.122466** (3.4126)	-6.580378** (2.5704)	36.09271*** (10.0207)	27.8881** (12.6890)	6.093161 (4.6841)	6.056708 (6.0028)	-1.864278 (2.2279)	-3.016381 (2.4486)	-7.394252* (3.9237)	-5.046626 (4.6524)
28-30°C	-30.57694*** (4.6061)	-9.542952*** (2.8429)	-.0370387 (7.3447)	-15.80535* (8.8637)	-14.12916*** (4.0271)	-10.89149*** (2.9272)	49.21534*** (10.9853)	43.26026*** (13.4740)	13.19916** (5.3993)	14.34178** (6.9289)	-4.48368* (2.3359)	-5.195562** (2.4469)	-13.18768*** (4.5489)	-16.16669*** (5.4460)
30-32°C	-34.74472*** (5.3982)	-10.0047*** (3.1826)	-2.383948 (8.3667)	-20.2035** (10.0360)	-18.88474*** (4.8791)	-15.35778*** (3.4094)	53.75898*** (13.0244)	41.93642*** (15.4638)	21.69675*** (6.2869)	23.20515*** (7.9644)	-5.428279* (2.7049)	-5.558253** (2.6526)	-14.01404*** (5.2742)	-14.01733*** (6.1572)
32-34°C	-39.53594*** (6.2748)	-9.932103*** (3.4377)	3.98692 (9.2241)	-19.04615* (11.1692)	-21.25825*** (5.2638)	-18.08801*** (3.7184)	55.3692*** (14.4901)	44.01471** (17.3012)	24.84573*** (7.1094)	26.45009*** (9.0931)	-5.587591* (3.0178)	-5.073519* (2.9217)	-17.82007*** (5.9319)	-18.32502*** (6.9359)
34°C and above	-40.34177*** (7.3004)	-11.54673*** (3.8324)	6.530729 (10.1205)	-18.22559 (12.9444)	-23.68462*** (6.0827)	-20.25043*** (4.2489)	54.68978*** (17.2467)	42.74275** (20.6980)	21.3829** (8.3503)	24.45404*** (10.4639)	-2.303304 (3.4625)	-2.356515 (3.2161)	-16.27371** (6.9590)	-14.81754* (8.2393)
Observations	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892
Mean of Dep.	313.2798	54.63182	123.8128	270.8049	72.5826	52.48871	680.3068	766.0845	131.6254	166.1613	19.83812	13.38839	98.55452	116.4404
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22-24°C. Controls include individual demographics (age and education) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A11: Difference Results: Omitted Bin Changed to 22 to 24

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Work & Travel	Unpaid HH Work	Learning	Self-Care	Indoor Ent.	Outdoor Sports	Soc. & Com.
Less than 22°C × Female	-2.795978 (2.0164)	2.464938 (3.5391)	.0419171 (0.8160)	-2.641315 (3.1930)	-.5351273 (1.7438)	-.3619282 (0.5745)	3.827494*** (1.3932)
24-26°C × Female	.4698976 (1.7264)	-2.790809 (3.7273)	-.3197042 (0.9581)	-3.709823 (3.7606)	1.017263 (1.5349)	-.6795916 (0.5973)	6.012767*** (1.5280)
26-28°C × Female	3.049128* (1.7456)	-3.231045 (3.2982)	-.1579994 (0.8219)	-2.550211 (3.4878)	.5563727 (1.7356)	-.9736479* (0.5536)	3.307402** (1.3801)
28-30°C × Female	5.552001*** (1.5468)	-7.119738** (3.2002)	1.191285 (0.7834)	2.061158 (3.2104)	-.0169626 (1.4687)	-.7909257 (0.5122)	-.8768173 (1.2705)
30-32°C × Female	6.357955*** (1.5407)	-5.585008* (3.1951)	.9465275 (0.7914)	-1.62869 (3.1485)	-.3272709 (1.4551)	-.5202421 (0.5040)	.756729 (1.2244)
32-34°C × Female	11.442424*** (1.7208)	-10.0188*** (3.0643)	1.528379** (0.7635)	.9575845 (2.9385)	-2.25777 (1.5154)	.1434938 (0.4945)	-1.795313 (1.2096)
34°C and above × Female	18.7566*** (1.5853)	-11.59294*** (2.9288)	3.280202*** (0.7613)	-3.1442 (2.9050)	-4.90151*** (1.3709)	.4964361 (0.4923)	-2.894589*** (1.0623)
Observations	5885327	5885327	5885327	5885327	5885327	5885327	5885327
Mean of Dep.	189.9226	193.9179	62.99909	721.2167	148.0967	16.76205	107.0849
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22-24°C. Controls include individual demographics (age and education) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A12: Gender Segregated: Omitted Bin Changed to 22 to 26

	Work & Travel		Unpaid HH Work		Learning		Self-Care		Indoor Ent.		Outdoor Sports		Soc. & Com.	
	(1)		(2)		(3)		(4)		(5)		(6)		(7)	
	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female
Less than 22°C	9.701205*** (3.5416)	1.669216 (2.5014)	-.1706645 (5.3104)	1.387392 (7.3005)	-.6805623 (2.8430)	.2526108 (0.0802)	-12.27138 (10.5433)	-.792059 (12.9107)	3.605305 (5.5674)	2.848637 (6.8795)	-.4817485 (1.8069)	.0176482 (1.8714)	.2978463 (4.4062)	1.745086 (5.2731)
26-30°C	-17.41882*** (2.8186)	-6.108515*** (1.7752)	-9.975009** (3.9221)	-13.3725** (5.5093)	-7.931407*** (2.3325)	-6.442359*** (1.7760)	35.7233*** (6.2841)	30.22561*** (8.4997)	8.229408** (3.2097)	8.245785** (4.0077)	-1.798722 (1.2996)	-2.24643* (1.2695)	-6.828747*** (2.4152)	-10.3016*** (2.8869)
30-34°C	-21.90209*** (3.6459)	-6.742455*** (2.2168)	-12.2154** (5.5090)	-17.79273* (7.3457)	-12.94774*** (3.3451)	-11.03837*** (2.3640)	40.69185*** (9.3376)	29.45122*** (11.2912)	17.03451*** (4.4534)	17.43283*** (5.3941)	-2.828238* (1.6484)	-2.653994* (1.4898)	-7.832885** (3.3223)	-8.656498** (3.9766)
34°C and above	-21.30643*** (4.9661)	-7.910998*** (2.7380)	-10.58849 (6.7429)	-16.77752* (9.1441)	-14.58174*** (4.2753)	-12.71902*** (2.9144)	38.47199*** (12.4930)	26.59697* (15.1881)	12.81484** (5.9270)	14.60886*** (7.0350)	.7622555 (2.1538)	.3241675 (1.8965)	-5.572433 (4.5079)	-4.122468 (5.4079)
Observations	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892
Mean of Dep.	313.2798	54.63182	123.8128	270.8049	72.5826	52.48871	680.3068	766.0845	131.6254	166.1613	19.83812	13.38839	98.55452	116.4404
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22-26°C. Controls include individual demographics (age and education) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A13: Difference Results: Omitted Bin Changed to 22 to 26

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Work & Travel	Unpaid HH Work	Learning	Self-Care	Indoor Ent.	Outdoor Sports	Soc. & Com.
Less than 22°C × Female	-3.535133*	4.352896	.1190606	-1.131569	-.8566217	-.0792018	1.130571
	(1.8030)	(2.9553)	(0.6447)	(2.5546)	(1.3381)	(0.4266)	(1.2412)
26-30°C × Female	4.64936***	-4.336711*	.8858805*	2.451419	-.4836573	-.437147	-2.729143***
	(1.2377)	(2.2366)	(0.5171)	(2.1662)	(0.9937)	(0.3154)	(0.9677)
30-34°C × Female	8.702532***	-6.248451***	1.37828***	1.520508	-1.881195**	.2006942	-3.672368***
	(1.2082)	(2.0509)	(0.4553)	(1.8729)	(0.9342)	(0.2852)	(0.8854)
34°C and above × Female	18.51915***	-10.02585***	3.435072***	-1.370349	-5.485506***	.8747025***	-5.947217***
	(1.3613)	(2.0869)	(0.5216)	(1.9342)	(0.9594)	(0.3128)	(0.8471)
Observations	5885327	5885327	5885327	5885327	5885327	5885327	5885327
Mean of Dep.	189.9226	193.9179	62.99909	721.2167	148.0967	16.76205	107.0849
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22–26°C. Controls include individual demographics (age and education) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A14: Gender Segregated: Included Industry Month FE

	Work & Travel		Unpaid HH Work		Learning		Self-Care		Indoor Ent.		Outdoor Sports		Soc. & Com.	
	(1) Male	(2) Female	(3) Male	(4) Female	(5) Male	(6) Female	(7) Male	(8) Female	(9) Male	(10) Female	(11) Male	(12) Female	(13) Male	(14) Female
Less than 22°C	6.483135** (3.2088)	1.49938 (2.3137)	-1.521898 (5.4146)	-.100324 (7.3408)	3.408604 (2.9839)	.3165663 (2.0750)	-9.836478 (10.5348)	-7.643571 (12.9824)	3.728495 (5.4830)	2.952179 (6.8661)	-.1632224 (1.8322)	.0345122 (1.8815)	.9691077 (4.2958)	2.941258 (5.2471)
25-28°C	-11.39053*** (2.4075)	-3.64590** (1.7972)	-9.572703* (5.4839)	-7.68384 (5.3954)	-4.584517 (3.0595)	-4.733049** (2.0585)	25.23083*** (7.0945)	18.89006** (7.9323)	8.007693** (3.5703)	6.890842 (4.3979)	-1.352388 (1.5110)	-1.149871 (1.5544)	-6.338391* (2.5642)	-8.568179** (3.4499)
28-31°C	-21.6941*** (3.1044)	-6.87682*** (2.0021)	-5.182061 (6.3542)	-10.85868* (6.3288)	-13.3596*** (3.6400)	-9.925943*** (2.4151)	41.27884*** (8.6455)	36.02518*** (9.5845)	16.30263*** (5.1003)	16.05213** (6.2790)	-4.350290** (1.7033)	-3.540289** (1.6493)	-12.98649*** (3.6612)	-20.87558*** (4.6547)
31-34°C	-27.13446*** (4.0987)	-7.048658*** (2.3736)	-1.338362 (7.6662)	-6.490999 (7.6424)	-17.44426*** (4.2100)	-14.46567*** (2.8215)	44.88434*** (10.6334)	37.06185*** (11.7485)	23.18077*** (6.7334)	21.65064*** (8.1811)	-5.184991** (2.0061)	-3.613896* (1.8494)	-16.96304*** (4.7588)	-27.09326*** (5.9189)
34°C and above	-25.46675*** (5.0737)	-8.273073*** (2.7465)	1.586734 (8.7428)	-4.245378 (9.4557)	-19.83973*** (4.9191)	-16.46905*** (3.2646)	42.25423*** (12.7945)	35.15943** (14.9390)	19.12091** (7.4871)	19.04013** (9.1759)	-1.953394 (2.4038)	-.7837273 (2.2155)	-15.70202*** (5.8324)	-24.42833*** (7.1772)
Observations	3025699	2794396	3025699	2794396	3025699	2794396	3025699	2794396	3025699	2794396	3025699	2794396	3025699	2794396
Mean of Dep.	310.0603	53.14366	123.8485	271.0572	73.76071	52.7168	681.5091	766.6703	132.0814	166.4091	20.0522	13.43457	98.68782	116.5684
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22–26°C. Controls include individual demographics (age and education) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, year fixed effects, and industry-month fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A15: Difference Results: Included Industry Month FE

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Work & Travel	Unpaid HH Work	Learning	Self-Care	Indoor Ent.	Outdoor Sports	Soc. & Com.
Less than 22°C × Female	-.5732455 (1.5811)	4.589572 (3.2452)	-1.029089 (0.9092)	-3.05116 (2.8532)	-.9746303 (1.5577)	-.120147 (0.4986)	1.1587 (1.3083)
25-28°C × Female	.5878472 (1.4238)	.9362621 (2.7226)	1.602309 (0.9771)	-5.168686* (2.8968)	.5772798 (1.4081)	-.0367183 (0.4696)	1.501706 (1.2378)
28-31°C × Female	1.646124 (1.1770)	-4.202526 (2.5960)	5.524575*** (0.9742)	-2.919554 (2.6225)	.4342254 (1.2694)	.6205281 (0.4523)	-1.103373 (1.1896)
31-34°C × Female	3.997104*** (1.2233)	-4.333308* (2.6236)	7.905952*** (1.0029)	-6.552022** (2.5379)	-.8957564 (1.2053)	1.748224*** (0.4329)	-1.870194* (1.0898)
34°C and above × Female	.6603154 (1.1201)	-7.340123*** (2.5128)	14.56935*** (1.1246)	-7.630086*** (2.5617)	-1.876351 (1.1860)	3.262043*** (0.4764)	-1.645151* (0.9657)
Observations	5820106	5820106	5820106	5820106	5820106	5820106	5820106
Mean of Dep.	186.7074	194.5276	63.65681	722.3973	148.5632	16.87489	107.2728
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22–26°C. Controls include individual demographics (age and education) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, year fixed effects, and industry-month fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A16: Gender Segregated: Included Occupation-Month FE

	Work & Travel		Unpaid HH Work		Learning		Self-Care		Indoor Ent.		Outdoor Sports		Soc. & Com.	
	(1) Male	(2) Female	(3) Male	(4) Female	(5) Male	(6) Female	(7) Male	(8) Female	(9) Male	(10) Female	(11) Male	(12) Female	(13) Male	(14) Female
Less than 22°C	6.76325** (3.2646)	1.524726 (2.3195)	-1.850238 (5.3556)	-.6271454 (7.3396)	1.062691 (2.8950)	1.028617 (1.9996)	-10.24628 (10.5228)	-.7774386 (12.9705)	3.658002 (5.5144)	2.797855 (6.8405)	-.1644364 (1.8108)	.0926356 (1.8784)	.7769345 (4.3677)	2.957698 (5.2453)
25-28°C	-11.44458*** (2.3854)	-3.547152** (1.7925)	-9.261979* (5.5133)	-7.506368 (5.4522)	-4.980168* (2.9941)	-5.093257*** (2.0870)	25.29886*** (6.9607)	18.94125** (7.9121)	7.847376** (3.5633)	6.92858 (4.3859)	-1.373307 (1.5120)	-1.174938 (1.5520)	-6.086202** (2.5841)	-8.348112** (3.4458)
28-31°C	-22.07303*** (3.1281)	-6.774803*** (1.9976)	-4.732248 (6.3677)	-10.63864* (6.3635)	-13.82832*** (3.5479)	-10.35134*** (2.4279)	41.27329*** (8.4949)	36.06672*** (9.5680)	16.10841*** (5.0626)	16.05369** (6.2611)	-4.305008** (1.7045)	-3.536748** (1.6454)	-12.44222*** (3.6807)	-20.81888*** (4.6482)
31-34°C	-27.66798*** (4.1214)	-6.855348*** (2.3585)	-.9927797 (7.6552)	-6.240371 (7.6577)	-18.30474*** (4.1258)	-14.85804*** (2.8777)	45.30093*** (10.5276)	37.03959*** (11.7414)	22.99828*** (6.6770)	21.54504*** (8.1567)	-5.141041** (2.0011)	-3.582406* (1.8433)	-16.19294*** (4.7848)	-27.04847*** (5.9035)
34°C and above	-26.14034*** (5.0916)	-8.069705*** (2.7298)	2.006183 (8.7053)	-3.840813 (9.4338)	-21.20053*** (4.7789)	-17.27881*** (3.2640)	42.95984*** (12.6804)	35.38146** (14.8605)	19.10858** (7.4276)	19.0592** (9.1453)	-1.881579 (2.3368)	-.7756882 (2.2036)	-14.85216** (5.8602)	-24.47565*** (7.1604)
Observations	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892
Mean of Dep.	313.2798	54.63182	123.8128	270.8049	72.5826	52.48871	680.3068	766.0845	131.6254	166.1613	19.83812	13.38839	98.55452	116.4404
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22–26°C. Controls include individual demographics (age and education) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, year fixed effects, and occupation-month fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A17: Difference Results: Included Occupation-Month FE

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Work & Travel	Unpaid HH Work	Learning	Self-Care	Indoor Ent.	Outdoor Sports	Soc. & Com.
Less than 22°C × Female	-.723462 (1.6504)	4.204181 (3.2015)	-.4329413 (0.7521)	-2.848111 (2.8343)	-1.122835 (1.5467)	-.1176898 (0.4820)	1.040858 (1.3332)
25-28°C × Female	-.0657583 (1.4438)	2.069744 (2.7332)	-1.462985* (0.7741)	-3.67864 (2.8772)	1.629563 (1.4285)	-.5151847 (0.4630)	2.023262 (1.2408)
28-31°C × Female	.7435714 (1.2074)	-1.851015 (2.5906)	-.4411929 (0.6962)	-1.1077813 (2.6314)	2.266732* (1.2929)	-.3290213 (0.4253)	-.2812928 (1.1835)
31-34°C × Female	2.830589** (1.2381)	-.7126904 (2.6193)	-.469123 (0.6658)	-2.894394 (2.5473)	1.634501 (1.2391)	.3720441 (0.3969)	-.7609269 (1.0765)
34°C and above × Female	-1.769196 (1.1885)	-.7376839 (2.4425)	-.3034697 (0.7133)	-4.106911 (2.4886)	2.165838* (1.2485)	.6797009 (0.4163)	.3755023 (1.0067)
Observations	5885327	5885327	5885327	5885327	5885327	5885327	5885327
Mean of Dep.	189.9226	193.9179	62.99909	721.2167	148.0967	16.76205	107.0849
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22–26°C. Controls include individual demographics (age and education) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, year fixed effects, and occupation-month fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A18: Gender Segregated: Included Industry-Month and Occupation-Month FE

	Work & Travel		Unpaid HH Work		Learning		Self-Care		Indoor Ent.		Outdoor Sports		Soc. & Com.	
	(1) Male	(2) Female	(3) Male	(4) Female	(5) Male	(6) Female	(7) Male	(8) Female	(9) Male	(10) Female	(11) Male	(12) Female	(13) Male	(14) Female
Less than 22°C	6.697345** (3.2113)	1.517936 (2.3101)	-.030228 (5.4041)	-.6739924 (7.3472)	1.160069 (2.9564)	1.008795 (2.0013)	-.10.08982 (10.4896)	-.7698982 (12.9742)	3.498632 (5.4328)	2.804414 (6.8444)	-.0969013 (18.2228)	.0912112 (1.8792)	.860901 (4.2934)	2.950619 (5.2461)
25-28°C	-.11.40749*** (2.3849)	-.3.675781** (1.7982)	-.9.338293* (5.5111)	-.7.602885 (5.4418)	-.5.051676* (3.0468)	-.5.100479** (2.0968)	25.33906*** (7.0226)	19.07071** (7.9322)	8.108643** (3.5544)	6.972306 (4.3904)	-.1.373054 (1.5113)	-.1.173808 (1.5562)	-.6.277187** (2.5626)	-.8.490050** (3.4513)
28-31°C	-.21.72044*** (3.0785)	-.6.886914*** (1.9998)	-.4.873661 (6.3795)	-.10.72453* (6.3580)	-.14.9105*** (3.6115)	-.10.38282*** (2.4376)	41.6128*** (8.5646)	36.24777*** (9.5896)	16.44052*** (5.0838)	16.11677** (6.2736)	-.4.398248** (1.7051)	-.3.551203** (1.6494)	-.12.86992*** (3.6585)	-.20.80367*** (4.6555)
31-34°C	-.27.10706*** (4.0708)	-.6.961458*** (2.3660)	-.9.190048 (7.6839)	-.6.363298 (7.6552)	-.18.75384*** (4.2055)	-.14.93635*** (2.8882)	45.40865*** (10.5818)	37.23778*** (11.7700)	23.39788*** (6.7159)	21.69712*** (8.1773)	-.5.275416*** (2.0087)	-.3.609988* (1.8484)	-.16.75113*** (4.7494)	-.27.06381*** (5.9144)
34°C and above	-.25.5522*** (5.0395)	-.8.142216*** (2.7341)	2.207885 (8.7497)	-.3.876768 (9.4459)	-.21.64468*** (4.8655)	-.17.40796*** (3.2752)	43.03071*** (12.7505)	35.4145** (14.9051)	19.43657*** (7.4693)	19.17906** (9.1752)	-.2.06578 (2.4039)	-.8.104121 (2.2118)	-.15.4125*** (5.8244)	-.24.3562*** (7.1746)
Observations	3025699	2794396	3025699	2794396	3025699	2794396	3025699	2794396	3025699	2794396	3025699	2794396	3025699	2794396
Mean of Dep.	310.0603	53.14366	123.8485	271.0572	73.76071	52.7168	681.5091	766.6703	132.0814	166.4091	20.0522	13.43457	98.68782	116.5684
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22–26°C. Controls include individual demographics (age and education) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, year fixed effects, industry-month, and occupation-month fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A19: Difference Results: Included Industry-Month and Occupation-Month FE

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Work & Travel	Unpaid HH Work	Learning	Self-Care	Indoor Ent.	Outdoor Sports	Soc. & Com.
Less than 22°C × Female	-.8338365 (1.6077)	4.249644 (3.2039)	-.4811079 (0.7917)	-2.91116 (2.8456)	-.9977653 (1.5719)	-.113983 (0.4891)	1.088209 (1.3216)
25-28°C × Female	.1751856 (1.4386)	2.01886 (2.7234)	-1.584035** (0.8038)	-3.650668 (2.8920)	1.436674 (1.4275)	-.538638 (0.4735)	2.142621* (1.2380)
28-31°C × Female	.8564537 (1.1919)	-1.863468 (2.5916)	-.4427635 (0.7276)	-.2521741 (2.6402)	2.085351 (1.2975)	-.3228844 (0.4316)	-.0605144 (1.1831)
31-34°C × Female	2.802567** (1.2345)	-.7846341 (2.6254)	-.4187414 (0.6919)	-2.882265 (2.5666)	1.490811 (1.2440)	.3655812 (0.4050)	-.5733184 (1.0762)
34°C and above × Female	-1.583988 (1.1735)	-.7402897 (2.4453)	-.3159488 (0.7393)	-.6823348 (2.5140)	2.014538 (1.2547)	.6695919 (0.4217)	.6384313 (0.9987)
Observations	5820106	5820106	5820106	5820106	5820106	5820106	5820106
Mean of Dep.	186.7074	194.5276	63.65681	722.3973	148.5632	16.87489	107.2728
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22–26°C. Controls include individual demographics (age and education) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, year fixed effects, industry-month, and occupation-month fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A20: Gender Segregated: Replaced Individual FE with Household FE

	Work & Travel		Unpaid HH Work		Learning		Self-Care		Indoor Ent.		Outdoor Sports		Soc. & Com.	
	(1)		(2)		(3)		(4)		(5)		(6)		(7)	
	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female
Less than 22°C	9.724545*** (3.7565)	1.029918 (2.5463)	-1.812444 (5.4614)	.5138928 (7.3907)	.2379605 (3.0522)	.2356936 (2.2253)	-.11.78448 (10.7542)	-.7455632 (13.2405)	3.873939 (5.6876)	3.281596 (7.0391)	-.3232999 (1.8585)	.0341488 (1.9070)	.0837721 (4.5015)	2.360384 (5.3688)
25-28°C	-13.24732*** (2.6766)	-3.839787** (1.8503)	-9.084685 (5.5345)	-.7659371 (5.5074)	-4.543231 (3.0967)	-5.534931** (2.2088)	25.83347*** (7.1619)	19.81509** (8.0569)	8.193081** (3.6237)	7.429133* (4.4366)	-.135994 (1.5104)	-1.154103 (1.5455)	-5.791373** (2.6031)	-8.426039** (3.4581)
28-31°C	-26.52545*** (3.5075)	-8.710363*** (2.2856)	-4.169623 (6.4041)	-10.32369 (6.4289)	-13.08629*** (3.6487)	-11.15242*** (2.5740)	43.50366*** (8.7962)	37.608*** (9.7818)	16.60867*** (5.1227)	16.77707*** (6.2710)	-4.292084** (1.7087)	-3.595385** (1.6547)	-12.03889*** (3.6907)	-20.60322*** (4.6647)
31-34°C	-33.58107*** (4.6442)	-8.253497*** (2.8325)	-3.368993 (7.7137)	-5.94166 (7.8023)	-17.02979*** (4.1920)	-16.28976*** (3.0090)	48.02839*** (10.9145)	38.58765*** (11.9747)	23.67758*** (6.7464)	22.38602*** (8.1698)	-.545639** (2.0018)	-3.725684** (1.8627)	-15.71257*** (4.7979)	-26.76307*** (5.9341)
34°C and above	-34.86335*** (5.6872)	-9.572485*** (3.2423)	3.119794 (8.8152)	-3.195759 (9.6324)	-19.55712*** (4.9039)	-19.03077*** (3.4511)	47.15161*** (13.0204)	36.71193** (15.0707)	20.00322*** (7.5052)	20.10802** (9.1865)	-1.642641 (2.3848)	-.8890478 (2.2296)	-14.21151** (5.8956)	-24.13189*** (7.2138)
Observations	3114014	2839125	3114014	2839125	3114014	2839125	3114014	2839125	3114014	2839125	3114014	2839125	3114014	2839125
Mean of Dep.	312.7518	54.66337	123.8062	270.2334	72.94731	53.09891	680.371	766.1352	131.7883	166.1183	19.87723	13.4571	98.45823	116.2937
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Household FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22–26°C. Controls include individual demographics (age and education) and district-level weather covariates (precipitation and relative humidity). All regressions include household fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A21: Difference Results: Replaced Individual FE with Household FE

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Work & Travel	Unpaid HH Work	Learning	Self-Care	Indoor Ent.	Outdoor Sports	Soc. & Com.
Less than 22°C × Female	10.09792* (5.4235)	2.488216 (6.9849)	-.3572968 (1.3048)	-6.43305 (5.2932)	-2.42013 (2.1219)	.4358515 (0.7113)	-3.811509** (1.9392)
25-28°C × Female	-8.206496** (3.9551)	5.323173 (6.4775)	-.5967007 (1.2285)	-2.181873 (4.7209)	2.890063 (2.1729)	-.1561635 (0.6392)	2.927996 (2.0396)
28-31°C × Female	-5.223301 (5.1801)	-.6943853 (6.3821)	-.3303516 (1.3119)	1.570583 (5.0793)	3.75986* (2.1137)	-.4684291 (0.6487)	1.386024 (2.1347)
31-34°C × Female	-.6659606 (4.7494)	-3.775665 (5.2584)	.4450235 (1.0553)	5.123067 (4.3634)	.9732081 (1.7638)	.5646465 (0.5348)	-2.664319* (1.5779)
34°C and above × Female	11.44066** (4.7857)	-9.893431* (5.2572)	.483737 (0.9861)	3.65437 (4.4263)	-2.579802 (1.6915)	1.109693** (0.5140)	-4.215228*** (1.5138)
Observations	5963934	5963934	5963934	5963934	5963934	5963934	5963934
Mean of Dep.	189.8341	193.6091	63.40212	721.1839	148.2237	16.80554	106.9415
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Household FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22–26°C. Controls include individual demographics (age and education) and district-level weather covariates (precipitation and relative humidity). All regressions include household fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A22: Gender Segregated: Without Individual Fixed Effects

	Work & Travel		Unpaid HH Work		Learning		Self-Care		Indoor Ent.		Outdoor Sports		Soc. & Com.	
	(1) Male	(2) Female	(3) Male	(4) Female	(5) Male	(6) Female	(7) Male	(8) Female	(9) Male	(10) Female	(11) Male	(12) Female	(13) Male	(14) Female
Less than 22°C	8.738943** (3.7495)	.3264392 (2.6514)	-1.536 (5.6212)	-.1536613 (7.5101)	.2487718 (3.0756)	-.1161829 (2.3052)	-.10.26612 (10.8897)	-.14.69119 (13.4108)	3.427258 (5.7768)	2.592782 (7.1711)	-.3605339 (1.8672)	-.0851903 (1.9258)	-.2523223 (4.6055)	1.604932 (5.5098)
25-28°C	-12.98065*** (2.7032)	-3.562304** (1.8037)	-9.63934* (5.4983)	-7.639327 (5.6017)	-4.832279 (3.1438)	-5.733892** (2.3049)	25.93591*** (7.0119)	19.8975** (8.1682)	7.881225** (3.6682)	6.507129 (4.4763)	-1.28062 (1.4552)	-1.113724 (1.4929)	-5.084254* (2.8109)	-8.355385** (3.5833)
28-31°C	-26.14443*** (3.5736)	-8.247072** (2.2768)	-4.522061 (6.3300)	-10.04166 (6.5223)	-13.29377*** (3.6616)	-11.32308*** (2.6598)	43.29878*** (8.7987)	37.98802*** (10.2511)	16.02777*** (5.1105)	15.6423** (6.3447)	-4.248542** (1.6622)	-3.564574** (1.6189)	-11.11775*** (3.9165)	-20.45393*** (4.7954)
31-34°C	-32.69557*** (4.7675)	-7.541141*** (2.8763)	-.8228158 (7.6570)	-.5781006 (7.9228)	-17.49969*** (4.2147)	-16.64111*** (3.1048)	48.25297*** (10.9665)	39.64315*** (12.5019)	22.51958*** (6.7392)	20.61272** (8.2654)	-5.006801** (1.9616)	-3.665474** (1.8376)	-14.74767*** (4.9931)	-26.62714*** (6.1121)
34°C and above	-32.9758*** (5.7990)	-8.726806*** (3.2652)	2.228673 (8.7531)	-2.5876 (9.7986)	-20.45271*** (4.9416)	-19.73622*** (3.5419)	47.71992*** (13.0795)	38.49438** (15.6593)	18.26879** (7.5325)	17.48963* (9.3734)	-1.689901 (2.3441)	-.8596097 (2.2141)	-13.09897** (6.1070)	-24.07377*** (7.3787)
Observations	3121918	2846223	3121918	2846223	3121918	2846223	3121918	2846223	3121918	2846223	3121918	2846223	3121918	2846223
Mean of Dep.	312.9621	54.68814	123.7923	270.2906	72.82115	52.99788	680.2295	706.0797	131.9062	166.2136	19.85814	13.45358	98.43063	116.2766
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22–26°C. Controls include individual demographics (age and education) and district-level weather covariates (precipitation and relative humidity). All regressions include district-month fixed effects and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A23: Gender Segregated: Included Individual Weights

	Work & Travel		Unpaid HH Work		Learning		Self-Care		Indoor Ent.		Outdoor Sports		Soc. & Com.																
	(1)		(2)		(3)		(4)		(5)		(6)		(7)		(8)		(9)		(10)		(11)		(12)		(13)		(14)		
		Male	Female		Male	Female		Male	Female		Male	Female		Male	Female		Male	Female		Male	Female		Male	Female		Male	Female		
Less than 22°C	8.466091**	-.4034417	-3.881672	-2.715589	-1.911336	-1.308306	-2.6249	4.565463	2.247022	-.9894414	-.5032987	.3804025	-1.791907	.4709119															
	(3.8812)	(2.2124)	(4.5831)	(6.7255)	(2.8737)	(2.2396)	(11.0979)	(13.3136)	(5.4648)	(6.5368)	(1.8123)	(1.7957)	(4.0359)	(4.8597)															
25-28°C	-14.51509***	-5.189021***	-4.743605	-6.184806	-5.085324*	-5.556578***	22.8058***	15.09901**	7.321066**	9.40003**	-1.086167	-1.61413	-4.696679*	-5.954507*															
	(2.9888)	(4.2723)	(4.2285)	(2.9433)	(1.9975)	(6.5058)	(7.2922)	(3.7002)	(4.0133)	(1.3180)	(1.3534)	(2.5748)	(3.1970)																
28-31°C	-28.68617***	-8.887767***	.8138784	-7.147016	-11.16958***	-9.666713***	41.20098***	33.75203***	13.36761***	15.38413***	-3.728396***	-3.988401***	-11.79833***	-19.44626***															
	(4.2301)	(2.2066)	(5.4842)	(5.6773)	(3.4039)	(2.4663)	(8.4729)	(9.5792)	(4.9804)	(5.6771)	(1.6111)	(1.5238)	(3.7570)	(4.6155)															
31-34°C	-37.5795***	-9.272413***	3.622231	-5.837603	-15.59966***	-14.65939***	45.05437***	32.14986***	22.26853***	23.4994***	-4.095471**	-3.370492*	-13.6705***	-22.50936***															
	(5.4525)	(2.9584)	(6.7615)	(7.1300)	(3.8352)	(2.7433)	(10.6378)	(11.8338)	(6.2757)	(7.2038)	(1.8918)	(1.7276)	(4.8896)	(6.0063)															
34°C and above	-37.03334***	-10.39226***	1.675759	-8.862102	-17.55875***	-16.08105***	51.48602***	39.98303**	15.51708**	16.18879*	-.8757949	-.6981857	-13.21098**	-20.13822***															
	(6.4975)	(3.4444)	(7.5876)	(9.1051)	(4.3815)	(3.1058)	(13.3362)	(15.8123)	(7.2557)	(8.4356)	(2.2500)	(2.0325)	(5.8153)	(7.0464)															
Observations	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892			
Mean of Dep.	312.4752	55.08667	126.1493	272.3047	70.88536	51.49612	686.0196	773.1497	128.8972	162.1744	19.32883	13.04263	96.24448	112.7458															
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22-26°C. Controls include individual demographics (age and education) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A24: Difference Results: Included Individual Weights

	(1)		(2)		(3)		(4)		(5)		(6)		(7)	
	Work & Travel	Unpaid HH Work	Learning	Self-Care	Indoor Ent.	Outdoor Sports	Soc. & Com.							
Less than 22°C × Female	-5.558069**	5.541302	-.3717086	.7832596	-1.386172	.0227498	.9686383							
	(2.6581)	(3.6748)	(0.8552)	(3.2390)	(1.7162)	(0.4792)	(1.2651)							
25-28°C × Female	.2227052	-.8935202	-.3812898	-3.214447	2.668187*	-.4514227	2.049788							
	(1.9729)	(2.8338)	(0.8466)	(2.8366)	(1.4504)	(0.4598)	(1.2707)							
28-31°C × Female	4.885653***	-.4446285	.7301454	.9313183	.8198477	-.3246182	-.2.596061**							
	(1.7818)	(2.7258)	(0.6743)	(2.6511)	(1.2334)	(0.4138)	(1.0531)							
31-34°C × Female	10.26884***	-.7063564**	1.089904	.5822125	-1.152854	.2282569	-.3.952797***							
	(1.7835)	(2.7727)	(0.6660)	(2.4539)	(1.1831)	(0.3572)	(0.9673)							
34°C and above × Female	16.95654***	-10.43727***	3.266522***	-1.024658	-4.073757***	.7173701*	-.5.404754***							
	(1.7056)	(2.6864)	(0.6761)	(2.5268)	(1.1808)	(0.3773)	(0.9096)							
Observations	5885327	5885327	5885327	5885327	5885327	5885327	5885327							
Mean of Dep.	189.2698	196.1105	61.60384	727.7263	144.8263	16.31973	104.1434							
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes							
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes							
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes							
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes							

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22-26°C. Controls include individual demographics (age and education) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A25: Gender Segregated: Without Controls

	Work & Travel		Unpaid HH Work		Learning		Self-Care		Indoor Ent.		Outdoor Sports		Soc. & Com.	
	(1) Male	(2) Female	(3) Male	(4) Female	(5) Male	(6) Female	(7) Male	(8) Female	(9) Male	(10) Female	(11) Male	(12) Female	(13) Male	(14) Female
Less than 22°C	6.453493*	1.390832	-2.432806	-.5368005	-.9568133	.0980908	-6.631138	-5.786728	3.717573	2.645812	-.4920488	.102226	.3417405	2.086568
	(3.4542)	(2.4621)	(5.0761)	(7.1209)	(2.7999)	(2.0569)	(10.5171)	(12.8854)	(5.4153)	(6.5715)	(1.7936)	(1.8464)	(4.3864)	(5.2857)
25-28°C	-8.576285***	-4.179777**	-8.805361*	-7.066446	-3.905894	-4.553434**	20.68338***	17.85757**	7.389449*	6.757202	-1.185187	-1.256751	-5.6001**	-7.558366**
	(2.6424)	(1.8385)	(5.2813)	(5.2246)	(2.9130)	(1.9949)	(7.1304)	(8.1515)	(3.4858)	(4.3154)	(1.5204)	(1.5801)	(2.4724)	(3.3315)
28-31°C	-16.32403***	-8.862331***	-3.79238	-9.168567	-11.52377***	-9.445192***	31.62374***	33.5123***	15.10027***	15.82981***	-3.884812**	-3.686964**	-11.19901***	-18.17906***
	(3.1676)	(2.1773)	(5.8417)	(5.8182)	(3.1659)	(2.2220)	(8.3124)	(9.4510)	(4.7548)	(5.8643)	(1.6536)	(1.6542)	(3.2776)	(4.2091)
31-34°C	-17.51153***	-8.278258***	-.0425184	-3.916096	-14.78761***	-13.72287***	29.56152***	31.08959***	21.00099***	20.60489***	-4.430884**	-3.741671**	-13.78997***	-22.03559***
	(3.7509)	(2.5638)	(6.5759)	(6.4598)	(3.4944)	(2.5012)	(9.8163)	(11.0235)	(6.0460)	(7.3717)	(1.8856)	(1.8220)	(4.1863)	(5.2356)
34°C and above	-8.297791**	-9.929536***	2.804284	-.6335459	-17.17021***	-16.07381***	20.4787*	29.39816**	15.1412**	16.15468**	-1.278344	-1.415378	-11.67784**	-17.50057***
	(4.2051)	(2.7177)	(6.7708)	(7.3295)	(3.8247)	(2.7880)	(11.1220)	(13.1834)	(6.3600)	(7.7795)	(2.0638)	(1.9764)	(4.8362)	(5.9484)
Observations	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892
Mean of Dep.	313.2798	54.63182	123.8128	270.8049	72.5826	52.48871	680.3068	706.0845	131.6254	166.1613	19.83812	13.38389	98.55452	116.4404
Controls	No	No	No	No	No	No	No	No	No	No	No	No	No	No
Individual FE No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22-26°C. All regressions include individual fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A26: Difference Results: Without Controls

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Work & Travel	Unpaid HH Work	Learning	Self-Care	Indoor Ent.	Outdoor Sports	Soc. & Com.
Less than 22°C \times Female	-3.44427*	5.657168*	-.1536	-2.798223	-.6745023	-.049031	1.462458
	(1.9080)	(3.2896)	(0.7634)	(2.8351)	(1.5007)	(0.4786)	(1.3118)
25-28°C \times Female	1.842148	.6965869	-.6705203	-2.837319	.6034211	-.4438939	.8095773
	(1.5547)	(2.7365)	(0.8288)	(2.8078)	(1.3898)	(0.4498)	(1.2376)
28-31°C \times Female	4.721743***	-4.657619*	.8815147	1.774123	.1068557	-.2855928	-2.541026**
	(1.4232)	(2.5873)	(0.7038)	(2.5526)	(1.2311)	(0.4054)	(1.1595)
31-34°C \times Female	9.686936***	-4.965215*	1.043671	.1388529	-2.047591*	.3156144	-4.172268***
	(1.4629)	(2.5562)	(0.6565)	(2.3672)	(1.1692)	(0.3678)	(1.0751)
34°C and above \times Female	18.24473***	-8.863719***	3.08665***	-2.676205	-5.035976***	.9069177**	-5.662399***
	(1.5101)	(2.4928)	(0.6800)	(2.3975)	(1.1671)	(0.3850)	(0.9715)
Observations	5885327	5885327	5885327	5885327	5885327	5885327	5885327
Mean of Dep.	189.9226	193.9179	62.99909	721.2167	148.0967	16.76205	107.0849
Controls	No	No	No	No	No	No	No
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22-26°C. All regressions include individual fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A27: Gender-Segregated: Diversified Activity Users

	Work & Travel		Unpaid HH Work		Learning		Self-Care		Indoor Ent.		Outdoor Sports		Soc. & Com.		
	(1) Male	(2) Female	(3) Male	(4) Female	(5) Male	(6) Female	(7) Male	(8) Female	(9) Male	(10) Female	(11) Male	(12) Female	(13) Male	(14) Female	
Less than 22°C	9.939413*** (3.5714)	1.603975 (2.5134)	-1.792062 (5.3707)	-.1595877 (7.3580)	-.619815 (2.8409)	.3231587 (2.0725)	-.11.38236 (10.5799)	-.7.553984 (12.9670)	3.583055 (5.5495)	2.887326 (6.8530)	-.3984423 (1.8156)	.029377 (1.8803)	.6702152 (4.3870)	2.869735 (5.2499)	
25-28°C	-13.53825*** (2.6870)	-4.290573** (1.8586)	-9.195013* (5.4953)	-7.343146 (5.4227)	-3.902172 (3.0250)	-4.635398** (2.0514)	25.87556*** (7.1089)	18.94057** (7.9426)	7.972978** (3.5659)	7.001366 (4.3558)	-1.218448 (1.5133)	-1.13259 (1.5505)	-5.994656** (2.5710)	-8.540232** (3.4485)	
28-31°C	-26.37709*** (3.4746)	-9.324872*** (2.2862)	-4.444511 (6.3538)	-9.993424 (6.3906)	-11.81175*** (3.5747)	-9.687253*** (2.4093)	42.45998*** (8.6961)	36.66357*** (9.6289)	16.44487*** (5.0698)	16.46056*** (6.1979)	-4.013713** (1.7018)	-3.487853** (1.6456)	-12.25778*** (3.6703)	-20.63073*** (4.6572)	
31-34°C	-33.12497*** (4.5311)	-9.191297*** (2.8146)	-.6604818 (7.6478)	-5.681315 (7.7127)	-15.51962*** (4.1025)	-14.18216*** (2.8167)	46.71882*** (10.7281)	37.54908*** (11.7761)	23.36420*** (6.6869)	21.91086*** (8.0086)	-4.755236** (1.9956)	-3.550744** (1.8452)	-16.02278*** (4.7815)	-26.85443*** (5.9233)	
34°C and above	-33.73892*** (5.5559)	-10.64916*** (3.2344)	2.459291 (8.7210)	-3.417168 (9.5237)	-17.47006*** (4.7935)	-16.0933*** (3.2573)	45.14706*** (12.8709)	35.63741** (14.9052)	19.61304*** (7.4501)	19.4438** (9.0733)	-1.385951 (2.3813)	-1.385951 (2.2073)	-6.8899126 (5.8602)	-14.62446** (7.1669)	-24.23166*** (7.1669)
Observations	3077130	2805478	3077130	2805478	3077130	2805478	3077130	2805478	3077130	2805478	3077130	2805478	3077130	2805478	
Mean of Dep.	313.4098	54.65858	123.8622	270.9364	72.61171	52.51401	679.9975	765.7574	131.6785	166.2419	19.84609	13.39484	98.59429	116.4969	
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22-26°C. The sample is restricted to individuals who allocate time across multiple activities rather than exclusively to a single activity. Controls include individual demographics (age and education) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A28: Difference Results: Diversified Activity Users

	(1) Work & Travel	(2) Unpaid HH Work	(3) Learning	(4) Self-Care	(5) Indoor Ent.	(6) Outdoor Sports	(7) Soc. & Com.
Less than 22°C × Female	-3.396078* (1.9176)	5.569359* (3.2743)	-.2334826 (0.7531)	-2.54278 (2.8165)	-.7056229 (1.5084)	-.043926 (0.4797)	1.35253 (1.3083)
25-28°C × Female	1.813248 (1.5640)	.6861688 (2.7279)	-.6655938 (0.8186)	-2.882813 (2.7927)	.6164622 (1.3921)	-.424893 (0.4496)	.8574204 (1.2332)
28-31°C × Female	4.684937*** (1.4304)	-4.55043* (2.5801)	.8765584 (0.6964)	1.545828 (2.5334)	.1297872 (1.2332)	-.280761 (0.4061)	-2.40592** (1.1569)
31-34°C × Female	9.686777*** (1.4715)	-4.847036* (2.5503)	1.049268 (0.6471)	-.1290122 (2.3595)	-2.071116* (1.1725)	.314572 (0.3690)	-4.003452*** (1.0705)
34°C and above × Female	18.2131*** (1.5098)	-8.737899*** (2.4843)	3.035923*** (0.6699)	-2.837332 (2.3695)	-5.059513*** (1.1673)	.8833717** (0.3850)	-5.497652*** (0.9696)
Observations	5882619	5882619	5882619	5882619	5882619	5882619	5882619
Mean of Dep.	190.0088	194.0033	63.0268	720.8972	148.1622	16.76942	107.1323
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22-26°C. The sample is restricted to individuals who allocate time across multiple activities rather than exclusively to a single activity. Controls include individual demographics (age and education) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A29: Gender Segregated: Replacing Relative Humidity with Specific Humidity

	Work & Travel		Unpaid HH Work		Learning		Self-Care		Indoor Ent.		Outdoor Sports		Soc. & Com.															
	(1)		(2)		(3)		(4)		(5)		(6)		(7)		(8)		(9)		(10)		(11)		(12)		(13)		(14)	
	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female		
Less than 22°C	7.516539** (3.4884)	2.217444 (2.4971)	-1.443363 (5.2732)	-1.1690167 (7.3267)	-11.198309 (2.8388)	.7935171 (2.0798)	-11.24624 (10.5998)	-10.64195 (12.9602)	4.430003 (5.5248)	4.035126 (6.7899)	-.1089167 (1.8047)	.4112614 (1.8621)	.9718088 (4.3219)	3.353622 (5.2192)														
25-28°C	-11.00051*** (2.6929)	-4.888692*** (1.8365)	-9.562292* (5.4160)	-7.351185 (5.3394)	-4.521777 (3.0870)	-5.205503** (2.0869)	25.97645*** (7.1780)	22.12478*** (8.1801)	7.07691** (3.5319)	5.893734 (4.3511)	-1.557815 (1.5042)	-1.563657 (1.5483)	-6.410964** (2.5270)	-9.009481*** (3.3979)														
28-31°C	-21.86099*** (3.3505)	-10.39574*** (2.2621)	-5.102255 (6.1808)	-10.06808 (6.1961)	-12.94575*** (3.6077)	-10.71752*** (2.4608)	42.797*** (8.7853)	42.43035*** (9.8699)	14.82932*** (4.9619)	14.50648** (6.1287)	-4.639817*** (1.6683)	-4.270104*** (1.6205)	-13.07751*** (3.5632)	-21.49438*** (4.5610)														
31-34°C	-26.94469*** (4.2760)	-10.67102*** (2.7482)	-1.540813 (7.3596)	-5.762765 (7.3540)	-17.08972*** (4.4715)	-15.62061*** (2.8806)	47.22727*** (10.8754)	45.4265*** (11.9484)	21.18419*** (6.4670)	19.3123*** (7.9173)	-5.627565*** (1.9533)	-4.651116** (1.8015)	-17.20867*** (4.6975)	-28.03329*** (5.8391)														
34°C and above	-26.40547*** (5.1334)	-12.42954*** (3.0996)	1.527099 (8.2379)	-3.769876 (8.9996)	-19.57893*** (4.8147)	-18.0846*** (3.3109)	46.3952*** (12.8546)	45.75352*** (14.9176)	17.14233*** (7.1373)	16.58513* (8.7695)	-2.571864 (2.2951)	-2.214908 (2.0965)	-16.50836*** (5.6875)	-25.83973*** (7.0138)														
Observations	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892	3078424	2806892				
Mean of Dep.	313.2798	54.63182	123.8128	270.8049	72.5826	52.48871	680.3068	766.0845	131.6254	166.1613	19.83812	13.38839	98.55452	116.4404														
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22-26°C. Controls include individual demographics (age and education) and district-level weather covariates (precipitation and specific humidity). All regressions include individual fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A30: Difference Results: Replacing Relative Humidity with Specific Humidity

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	Work & Travel		Unpaid HH Work		Learning		Self-Care		Indoor Ent.		Outdoor Sports		Soc. & Com.				
								Observations	Mean of Dep.	Controls	Individual FE	District Month FE	Year FE	Observations	Mean of Dep.	Controls	Individual FE	District Month FE	Year FE	Observations	Mean of Dep.	Controls	Individual FE	
Less than 22°C × Female	-3.39288* (1.9156)	5.546027* (3.2766)	-2114802 (0.7543)	-2.558826 (2.8198)	-.6963293 (1.5018)	-.0364516 (0.4795)	1.34994 (1.3075)																	
25-28°C × Female	1.776379 (1.5651)	.6754766 (2.7309)	-.6516523 (0.8196)	-2.849654 (2.7945)	.6234372 (1.3900)	-.419361 (0.4489)	.8453742 (1.2335)																	
28-31°C × Female	4.664081*** (1.4309)	-4.633744* (2.5831)	.9003603 (0.6975)	1.643461 (2.5342)	.1270677 (1.2315)	-.2660419 (0.4055)	-.2435183** (1.1572)																	
31-34°C × Female	9.685047*** (1.4724)	-4.910568* (2.5530)	1.065536 (0.6493)	-.0754113 (2.3608)	-2.068564* (1.1717)	.3254919 (0.3688)	-.4021532*** (1.0696)																	
34°C and above × Female	18.20973*** (1.5106)	-8.762272*** (2.4869)	3.046465*** (0.6706)	-2.809851 (2.3752)	-5.055159*** (1.1662)	.8864662** (0.3853)	-.51538*** (0.9697)																	
Observations	5885327	5885327	5885327	5885327	5885327	5885327	5885327	5885327	5885327	5885327	5885327	5885327	5885327	5885327	5885327	5885327	5885327	5885327	5885327	5885327	5885327	5885327		
Mean of Dep.	189.9226	193.9179	62.99909	721.2167	148.0967	16.76205	107.0849																	
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes																	
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes																	
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes																	
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes																	

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22-26°C. Controls include individual demographics (age and education) and district-level weather covariates (precipitation and specific humidity). All regressions include individual fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A31: Gender Segregated: Sample Restricted to Working Age Population

	Work & Travel		Unpaid HH Work		Learning		Self-Care		Indoor Ent.		Outdoor Sports		Soc. & Com.	
	(1) Male	(2) Female	(3) Male	(4) Female	(5) Male	(6) Female	(7) Male	(8) Female	(9) Male	(10) Female	(11) Male	(12) Female	(13) Male	(14) Female
Less than 22°C	11.72336*** (3.9087)	1.534653 (2.5822)	-1.739451 (5.0324)	.1852299 (7.4824)	-1.687447 (2.3444)	-1.110124 (1.5956)	-12.19637 (9.9335)	-7.166449 (12.7903)	3.138958 (5.4229)	2.554701 (6.9560)	-.4954627 (1.7284)	.2001504 (1.8624)	1.256413 (4.3763)	3.801839 (5.3614)
25-28°C	-14.73055*** (3.0267)	-4.035962** (1.9288)	-8.950296* (5.3624)	-7.331835 (5.5225)	-1.426941 (2.6999)	-2.556354 (1.5974)	23.7838*** (6.9151)	16.59974** (7.9338)	7.619075** (3.4571)	6.571235 (4.3284)	-.9424196 (1.4937)	-.796017 (1.6010)	-5.352664** (2.4589)	-8.450809** (3.4947)
28-31°C	-28.75782*** (3.8750)	-9.17264*** (2.3957)	-3.956222 (6.1636)	-10.72606* (6.4717)	-7.413394** (3.1869)	-5.753206*** (1.8865)	38.57535*** (8.4276)	33.06511*** (9.4647)	15.40639*** (4.6925)	15.79500*** (5.9672)	-3.230946** (1.6375)	-2.673711 (1.6671)	-10.62336*** (3.4965)	-20.53456*** (4.6634)
31-34°C	-36.5602*** (5.0585)	-8.837909*** (2.9695)	-.495162 (7.3891)	-6.965013 (7.8522)	-9.245966** (3.6089)	-8.246366*** (2.1569)	42.27929*** (10.4239)	32.60915*** (11.0675)	22.12175*** (6.1649)	20.59327*** (7.7706)	-3.825891** (1.8930)	-2.359773 (1.8393)	-14.27377*** (4.5814)	-26.79336*** (5.9422)
34°C and above	-36.71631*** (6.2012)	-10.2758*** (3.3976)	2.101511 (8.3319)	-5.092141 (9.7010)	-10.47939** (4.2196)	-9.516698*** (2.5450)	40.00417*** (12.4318)	30.16405** (14.8544)	18.08566*** (6.9254)	17.97176** (8.8411)	-.3621234 (2.2362)	.5596234 (2.1815)	-12.63352** (5.6414)	-23.8108*** (7.1929)
Observations	2678546	2473376	2678546	2473376	2678546	2473376	2678546	2473376	2678546	2473376	2678546	2473376	2678546	2473376
Mean of Dep.	353.3966	58.10242	121.0902	284.3072	61.12953	39.61194	662.4945	762.2451	127.2919	166.5567	17.30266	11.09613	97.29455	118.0805
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22-26°C. The sample is restricted to the working-age population (15-64). Controls include individual demographics (age and education) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.

Table A32: Difference Results: Sample restricted to Working Age Population

	Work & Travel	Unpaid HH Work	Learning	Self-Care	Indoor Ent.	Outdoor Sports	Soc. & Com.
Less than 22°C × Female	-3.980919* (2.2088)	5.9283 (3.6462)	-.4372307 (0.7986)	-2.506738 (3.1962)	-.5974695 (1.6985)	.2422144 (0.5060)	1.351843 (1.4660)
25-28°C × Female	1.993994 (1.7925)	.8786585 (3.0475)	-.8795528 (0.9086)	-3.315284 (3.1859)	.7863655 (1.5825)	-.3454592 (0.4878)	.8812784 (1.3774)
28-31°C × Female	5.214823*** (1.6233)	-5.096015* (2.8761)	.6631891 (0.7708)	.2206708 (2.8922)	.2392144 (1.3928)	-.1878629 (0.4338)	-3.040057** (1.2940)
31-34°C × Female	10.99469*** (1.6785)	-5.609917** (2.8507)	.9261283 (0.7216)	.2848328 (2.6821)	-2.333463* (1.3251)	.5235606 (0.3996)	-4.785834*** (1.1895)
34°C and above × Female	20.62919*** (1.7178)	-9.661786*** (2.7656)	2.717306*** (0.7393)	-2.742005 (2.6891)	-5.598165*** (1.3164)	1.142825*** (0.4163)	-6.48737*** (1.0722)
Observations	5151933	5151933	5151933	5151933	5151933	5151933	5151933
Mean of Dep.	211.6296	199.4486	50.7991	710.3834	146.1426	14.32299	107.2737
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
District Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Note: The dependent variables are measured as minutes per person per day spent in each activity. Temperature bins are constructed from the monthly mean of daily maximum temperatures at the district level, with the omitted reference category being 22-26°C. The sample is restricted to the working-age population (15-64). Controls include individual demographics (age and education) and district-level weather covariates (precipitation and relative humidity). All regressions include individual fixed effects, district-month fixed effects, and year fixed effects. Standard errors (in parentheses) are clustered at the district level. Reported means of the dependent variables are expressed in minutes per day. Statistical significance levels are denoted as follows: * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$.