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Abstract

In this paper, we consider auctions with resale when bidders are
symmetric and draw correlated signals. We show that the all-pay
second-price auction with resale generates the highest expected rev-
enue for the seller among the family of first-price auction, second-
price auction, all-pay first-price auction, all-pay second-price auc-
tion, first-price auction with resale, second-price auction with re-
sale, first-price all-pay auction with resale, and second-price all-pay
auction with resale.

JEL classification: D44, D82
Keywords: all-pay auction, war-of-attrition, resale, time delay,

affiliation, correlated signals, revenue

1 Introduction

In this paper, we consider resale possibilities in auctions with symmetric
bidders and correlated signals. The symmetric assumption ensures that
the allocation of the object is efficient under standard sealed-bid auctions,
i.e., the object is allocated to the highest value bidder. Despite efficiency,
the bidders benefit from existence of a resale market because of a time
delay between auction and resale. The time delay disproportionately
reduces bidders’ values. The winner’s value declines because he consumes
the object before resale occurs while the loser’s value declines because the
object is depleted. To the best of my knowledge, this is the first paper
to consider correlated values in auctions with resale, where the set of
bidders is same during the auction and resale.

Consider two risk neutral bidders who draw their valuations from
correlated probability distributions for one indivisible object. The game
is played for two dates. At Date 0, a sealed bid auction occurs. The
winner of the auction utilizes the object for a fixed amount of time and
induces utility from it. However, in the process, he depletes the object
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which reduces the loser’s valuation. At Date 1, a resale trade occurs
which succeeds with a positive probability. The valuations of the bidders
become common knowledge before date 1. Date 0 is called bid date,
Date 1 is called resale date and the time between the two dates is called
interim date.

By considering a family of trade rules during the resale date where
the market power is divided between the two bidders, the equilibrium has
been characterized with analytical solutions for first-price auction with
resale, second-price auction with resale, all-pay first-price auction with
resale and all-pay second-price auction with resale.

Next, we pairwise compare the seller’s expected revenue between first-
price auction with resale, second-price auction with resale, all-pay first-
price auction with resale and all-pay second-price auction with resale.
We show that (a) the seller generates more expected revenue from the
second-price auction with resale than the first-price auction with resale,
(b) the seller generates more expected revenue from the all-pay second-
price auction with resale than the all-pay first-price auction with resale,
(c) the seller generates more expected revenue from the all-pay first-
price auction with resale than the first-price auction with resale, and (d)
the seller generates more expected revenue from the all-pay second-price
auction with resale than the second-price auction with resale.

Consequently, the all-pay second-price auction with resale generates
the highest revenue, the second-price auction with resale generates the
second highest revenue, the all-pay first-price auction with resale gen-
erates the third highest revenue and the all-pay first-price auction with
resale generates the fourth highest revenue.

We have also compared the seller’s expected revenue between our
model and other standard models in the literature. In particular, we
consider two standard models: Milgrom and Weber [14] and Krishna and
Morgan [13]. Milgrom and Weber [14] study first- and second-price auc-
tion without resale while Krishna and Morgan [13] study all-pay first- and
all-pay second-price auction without resale. We show that, if the market
power with the winner is sufficiently high, then (a) the seller generates
more expected revenue from the first-price auction with resale than the
first-price auction without resale, (b) the seller generates more expected
revenue from the second-price auction with resale than the second-price
auction without resale, (c) the seller generates more expected revenue
from the all-pay first-price auction with resale than the all-pay first-price
auction without resale, and (d) the seller generates more expected rev-
enue from the all-pay second-price auction with resale than the all-pay
second-price auction without resale.

Consequently, the all-pay second-price auction with resale generates
the highest expected revenue for the seller among the family of first-
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price auction without resale, second-price auction without resale, all-pay
first-price auction without resale, all-pay second-price auction without
resale, first-price auction with resale, second-price auction with resale,
all-pay first-price auction with resale and all-pay second-price auction
with resale.

1.1 The literature

Auctions with resale and independent private valuations have been stud-
ied in Gupta and Lebrun [9], Hafalir and Krishna [10], Virág [16, 17],
and Khurana [11, 12] among others. Hafalir and Krishna [10] show that
the first-price auction is revenue superior to the second-price auction.
Khurana [12] is the first paper to consider time delays in asymmetric
auctions with resale. The paper shows that the first-price auction is rev-
enue superior to the second-price auction for the special case of uniform
distributions. Khurana [11] considers time delays in symmetric auctions
with resale and studies the impact of information, that concerns about
revealing values and bids after the auction, on the bid behavior and the
seller’s expected revenue. The paper also establishes revenue equivalence
principle under complete information where all the bids and values are
revealed after the auction.

All-pay auctions under complete information have been examined in
Baye et al. [2, 3], Che and Gale [5], Gelder et al. [7], and Georgiadis et al.
[8] among others. All-pay auctions under incomplete information have
been examined in Amann and Leininger [1], Krishna and Morgan [13],
Fibich et al. [6], Seel [15], and Betto and Thomas [4] among others.

Amann and Leininger [1] characterize and prove existence of an equi-
librium by considering two asymmetric bidders. Betto and Thomas [4]
consider that the actions of bidders impact not only the winning proba-
bility of other bidders but also the value of the prize for other bidders.
They show existence of a unique equilibrium in mixed strategies. Fibich
et al. [6] consider risk averse bidders and study numerous comparative
results. Krishna and Morgan [13] show that the second-price all-pay
auction is revenue superior to all other standard sealed-bid auctions by
considering correlated valuations among the bidders.

The structure of the paper is as follows. In Section 2, we setup the
model. In Section 3, we characterize an equilibrium for different auction
formats. In Section 4, we provide revenue ranking results. Section 5
concludes. The proofs are relegated to the appendix.
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2 Economic environment

Consider a seller wishes to allocate an indivisible object via a sealed bid
auction. Two bidders with risk neutral preferences and private values
participate in the auction. The valuation space for both the bidders is
T = [0, 1]. Let the set of bidders be N = {1, 2}. Nature draws a valuation
profile t = (t1, t2) ∈ T 2 from a joint probability distribution and informs
them privately. Let random variables be denoted by T1 and T2. The
joint probability distribution is F : T 2 → ℜ+ and the associated density
function is f : T 2 → ℜ+.

The probability distribution is symmetric, i.e., F (t1, t2) = F (t2, t1)
for every (t1, t2), (t2, t1) ∈ T 2. We assume that F is twice continuously
differentiable and f is bounded away from zero. Since a bidder chooses
an action after observing his own value, he operates on the conditional
probability distribution which is denoted by G : T 2 → ℜ+. Given a
bidder with value t, G(., t) gives the probability distribution about his
opponent’s value. Let the associated conditional density function be
g : T 2 → ℜ+.

Given t, v ∈ T 2, let t ∨ v := (sup{t1, v1}, sup{t2, v2}) and t ∧ v :=
(inf{t1, v1}, inf{t2, v2}). The expression t ∨ v is called the join of t and
v while t ∧ v is called the meet of t and v.

Definition 1. We say that the random variables T1 and T2 are affiliated
if for every t, v ∈ T 2, we have1

f(t ∨ v)f(t ∧ v) > f(t)f(v)

In words, if bidder 1 (resp., bidder 2) draws a higher value, then his
belief about bidder 2 (resp., bidder 1) drawing a higher value rises.

The following is a standard result in the literature.

Lemma 1. If the random variables T1 and T2 are affiliated, then the
following holds:

1. For every t, v ∈ T 2 such that t ≫ v, we have

g(v2, t1)
g(v2, v1) <

g(t2, t1)
g(t2, v1)

2. For every t1, v1 ∈ T such that t1 > v1, we have g(., t1)/g(., v1) is
strictly increasing.

3. For every t1, v1 ∈ T such that t1 > v1, we have

g(t2, t1)
1 − G(t2, t1) <

g(t2, v1)
1 − G(t2, v1)

1We say f is supermodular if for every t, v ∈ T 2, we have f(t ∨ v) + f(t ∧ v) >
f(t) + f(v). Therefore, T1 and T2 are affiliated if and only if ln f is supermodular.
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4. For every t1, v1 ∈ T such that t1 > v1, we have

g(t2, t1)
G(t2, t1) >

g(t2, v1)
G(t2, v1)

5. For every t1, v1 ∈ T such that t1 > v1, we have G(t2, t1) < G(t2, v1).

Property 2 is called the monotone likelihood ratio property, Property
3 is called the hazard rate dominance, Property 4 is called the reverse
hazard rate, and Property 5 is called the first-order stochastic dominance.

Assumption 1. The random variables T1 and T2 are affiliated.

The game is designed as follows. Consider a two-date game whereat
Date 0, a sealed-bid auction is being held by the owner of the object.
After Date 0 and before Date 1, (a) the winner of Date 0 consumes the
object for a fixed period of time and derives value from it, while the
loser loses some value as the winner depletes the object in the process of
consumption, and (b) the owner of the object reveals all the values. The
game proceeds to Date 1 where both the bidders may engage in a resale
via a “trade rule”.

Date 0 is called the bid date, Date 1 is called the resale date, and
the period between the two dates is called the interim date. The interim
date and the trade rule are exogenous.

During the interim date, the winner incurs value according to a frac-
tion αR while the loser loses according to a fraction αB. To elaborate,
if the winner draws a value w, then he derives a value of αRw during
the interim date and if the loser draws a value of l, then he loses αBl
during the interim date. To ease up the exposition, αR will be called the
consumption rate and αB will be called the depletion rate.

At Date 1, bidders act according to their ex-post values – the values
at the time of resale. Given a value w of the winner, his ex-post value is
(1 − αR)w, as he has already exhausted αRw worth of object. Given a
value l of the loser, his ex-post value is (1 − αB)l, as he has already lost
αBl worth of object due to its depletion by the winner. Consequently,
the winner accepts a resale offer as long as the resale price exceeds his
ex-post value while the loser accepts a resale offer as long as the resale
price is lower than his ex-post value. Therefore, a trade is successful if
and only if the ex-post value of the winner is lower that the ex-post value
of the loser.

In this paper, we consider four different sealed bid auctions: (a) first-
price auction, (b) second-price auction, (c) all-pay first-price auction,
and (d) all-pay second-price auction (war-of-attrition). The first-price
auction has been characterized in Subsection 3.1, second-price auction
has been characterized in Subsection 3.2, all-pay first-price auction has
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been characterized in Subsection 3.3, and all-pay second-price auction
has been characterized in Subsection 3.4.

Denote the bid symmetric function in the first-price auction by σ1,
second-price auction by σ2, first-price all-pay auction by σ1

∗, and second-
price all-pay auction by σ2

∗. Let’s restrict to the family of bid functions
that are strictly monotone, continuous, and onto. Therefore, the inverse
bid functions exist which are denoted by π1, π2, π1

∗ and π2
∗ for their

counterparts.
The family of trade rule is defined as

p(w, l) = λww + λll (1)

where w is the winner’s value, l is the loser’s value, and λw and λl are
exogenous parameters specific to the winner and loser respectively.
Assumption 2. The following is true:

1. αR > αB,
2. max{αR + λw, αB + λl} < 1,
3. k < 1, where

k := max
{

λw

1 − αB − λl
,
1 − αR − λw

λl

}
4. λw + λl + αR + αB > 1,
5. λw, λl > 0.
The first assumption ensures that there are always expected potential

profits from resale, i.e., the winner’s value declines faster than the loser’s
value. The rest of the assumptions ensure tractability of the model.

3 Characterization results

In this section, we characterize an equilibrium of the first-price auction
with resale, second-price auction with resale, all-pay first-price auction
with resale and all-pay second-price auction with resale.

3.1 First-price auction with resale

Consider the first-price auction. Let the expected utility function be
U1 : T × ℜ+ → ℜ. The underneath proposition records the expected
utility function.
Proposition 1. Let Assumptions 1 and 2 be satisfied. Given a value
t ∈ T and a bid b ∈ ℜ+, the expected utility function of a bidder is

U1(t, b) = G(kt, t)(t − b) +
∫ π1(b)

kt
(αRt + λwt + λlx − b)g(x, t)dx

+
∫ t/k

π1(b)
[(1 − αB − λl) − λwx]g(x, t)dx

(2)

6



To ease up the notation, denote α = (αR, αB), λ = (λw, λl), and

Γ(α, λ) = 2λw + 2λl + αR + αB − 1

The parameter Γ(α, λ) is interpreted as an indicator of reseller’s market
power, i.e., a higher value of Γ indicates that a higher market power lies
with the reseller.

In the following result, we characterize an equilibrium of the first-
price auction with resale.

Proposition 2. Let Assumptions 1 and 2 be satisfied. The function σ1

is a symmetric perfect Bayesian equilibrium of the first-price auction if
and only if

σ1(t) = Γ(α, λ)
∫ t

0
exp

{
−

∫ t

y

g(x, x)
G(x, x)dx

}
y

g(y, y)
G(y, y)dy (3)

for every t ∈ T .

The above proposition provides a formula for bid function in a first-
price auction for a generalized family of probability distributions. If the
market power with the winner (resp., loser) is sufficiently high, bidders
raise (resp., lower) their bids.

If Γ(α, λ) approaches 1, the gains from trade disappear and the bid
function approaches first-price auction without resale that is given in
Milgrom and Weber [14].

3.2 Second-price auction with resale

Consider the second-price auction. Let the expected utility function be
U2 : T × ℜ+ → ℜ. The underneath proposition records the expected
utility function.

Proposition 3. Let Assumptions 1 and 2 be satisfied. Given a value t
and a bid b of a bidder, the expected utility function is

U2(t, b) =
∫ kt

0
[t − σ2(x)]g(x, t)dx +

∫ π2(b)

kt
[αRt + λwt + λlx

− σ2(x)]g(x, t)dx +
∫ t/k

π2(b)
[(1 − αB − λl)t − λwx]g(x, t)dx

(4)

In the following result, we characterize an equilibrium of the second-
price auction with resale.
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Proposition 4. Let Assumptions 1 and 2 be satisfied. The function σ2

is a perfect Bayesian equilibrium of the second-price auction if and only
if

σ2(t) = Γ(α, λ)t (5)
for every t ∈ T .

It turns out that if Γ(α, λ) > 1, bidders outbid their values; if
Γ(α, λ) < 1, bidders shade their values; and if Γ(α, λ) approaches 1, all
the gains from trade disappear and bidders bid their values. Importantly,
the bid function does not rely on the choice of probability distributions,
i.e., it is robust to a bidder’s belief about his opponent.

Intuitively, if market power with the winner is sufficiently high, bid-
ders have an incentive to raise the probability of winning and thus they
bid higher.

In the next result, we compare bid functions between the first- and
second-price auction with resale.
Proposition 5. Let Assumptions 1 and 2 be satisfied. Let g(t, t) >
G(t, t) for every t ∈ (0, 1). Then, for every t ∈ (0, 1), we have

σ1(t) > σ2(t)

The above result says that bidders bid higher under the first-price
auction than under the second-price auction.

3.3 All-pay first-price auction with resale

Consider the first-price all-pay auction. Let the expected utility function
be U1

∗ : T × ℜ+ → ℜ. In the underneath proposition, we record the
expected utility function.
Proposition 6. Let Assumptions 1 and 2 be satisfied. Given a value t
and a bid b of a bidder, the expected utility function is

U1
∗ (t, b) = G(kt, t)t +

∫ π1
∗(b)

kt
(αRt + λwt + λlx)g(x, t)dx

+
∫ t/k

π1
∗(b)

[(1 − αB − λl)t − λwx]g(x, t)dx − b

(6)

In the following result, we characterize an equilibrium of the first-
price all-pay auction with resale.
Proposition 7. Let Assumptions 1 and 2 be satisfied. Let g(y, .) be
strictly increasing for every y ∈ ℜ+. Then, σ1

∗ is a perfect Bayesian
equilibrium of the first-price all-pay auction if and only if

σ1
∗(t) = Γ(α, λ)

∫ t

0
xg(x, x)dx (7)

for every t ∈ T .
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If Γ(α, λ) approaches 1, the gains from trade disappear and the bid
function approaches all-pay first-price auction without resale that is given
in Krishna and Morgan [13].

3.4 All-pay second-price auction with resale

Consider the all-pay auction second-price which is also called a war-of-
attrition. Let the expected utility function be U2

∗ : T × ℜ+ → ℜ. In the
underneath proposition, we record the expected utility function.

Proposition 8. Let Assumptions 1 and 2 be satisfied. Given a value t
and a bid b of a bidder, the expected utility function is

U2
∗ (t, b) =

∫ kt

0
[t − σ2

∗(x)]g(x, t)dx +
∫ π2

∗(t)

kt
[αRt + λwt + λlx

− σ2
∗(x)]g(x, t)dx +

∫ t/k

π2
∗(b)

[(1 − αB − λl)t − λwx − b]g(x, t)dx

− b[1 − G(t/k, t)]
(8)

Proposition 9. Let Assumptions 1 and 2 be satisfied. Let σ2
∗ be a perfect

Bayesian equilibrium of the second-price all-pay auction. Then,

σ2
∗(t) = Γ(α, λ)

∫ t

0
x

g(x, x)
1 − G(x, x)dx (9)

for every t ∈ T .

If Γ(α, λ) approaches 1, the gains from trade disappear and the bid
function approaches all-pay second-price auction without resale that is
given in Krishna and Morgan [13].

In the next result, we compare bid functions between the all-pay first-
and all-pay second-price auction with resale.

Proposition 10. Let Assumptions 1 and 2 be satisfied. For every t ∈
(0, 1), we have

σ2
∗(t) > σ1

∗(t)

The above result says that bidders bid higher under all-pay second-
price auction than under all-pay first-price auction.

4 Comparative results

In this section, we present two main results of the paper.
In the following result, we pairwise compare the seller’s expected

revenue between the first-price auction with resale, second-price auction
with resale, all-pay first-price auction with resale, and all-pay second-
price auction with resale.
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Theorem 1. Let Assumptions 1 and 2 be satisfied. Let R1(σ1) be the
seller’s ex-ante expected revenue in the first-price auction with resale.
Let R2(σ2) be the seller’s ex-ante expected revenue in the second-price
auction with resale. Let R1(σ1

∗) be the seller’s ex-ante expected revenue
in the all-pay first-price auction with resale. Let R2(σ2

∗) be the seller’s
ex-ante expected revenue in the all-pay second-price auction with resale.
Then,

1. R2(σ2
∗) > R1(σ1

∗)
2. R1(σ1

∗) > R1(σ1)
3. R2(σ2

∗) > R2(σ2)
If g(y, .) be strictly increasing for every y ∈ ℜ+,

4. R2(σ2) > R1(σ1)
5. R2(σ2) > R1(σ1

∗)

Part 1 shows that the all-pay second-price auction with resale revenue
dominates the all-pay first-price auction with resale. Part 2 shows that
the all-pay first-price auction with resale revenue dominates the first-price
auction with resale. Part 3 shows that the all-pay second-price auction
with resale revenue dominates the second-price auction with resale. Part
4 shows that the second-price auction with resale revenue dominates the
first-price auction with resale. Part 5 shows that the second-price auction
with resale revenue dominates the all-pay first-price auction with resale.

A revenue ranking principle among the first-price auction with resale,
second-price auction with resale, first-price all-pay auction with resale
and second-price all-pay auction with resale is recorded in the following
remark.

Remark 1. Let Assumptions 1 and 2 be satisfied. Let g(y, .) be strictly
increasing for every y ∈ ℜ+. Then,

R2(σ2
∗) > R2(σ2) > R1(σ1

∗) > R1(σ1)

It says that all-pay second-price auction with resale revenue domi-
nates all-pay first-price auction with resale, first-price auction with resale
and second-price auction with resale.

We now compare the seller’s expected revenue of the present paper
with two standard models in the literature: Milgrom and Weber [14]
(henceforth, M-W) and Krishna and Morgan [13] (henceforth, K-M).
These two papers consider correlated signals without the possibility of
resale. The M-W paper considers the first- and second-price auction
and the K-P paper considers the all-pay first- and all-pay second-price
auction.

M-W show that the second-price auction without resale revenue dom-
inates the first-price auction without resale. K-P show that the ranking
provided in Remark 1 holds for auctions without resale. They also show
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that the all-pay second-price auction without resale performs better than
all-pay first-price auction without resale, first-price auction without re-
sale and second-price auction without resale in terms of expected revenue.

The next result captures the impact of resale on the M-W and K-P
models from the seller’s point of view. Denote the bid function in the
first-price auction without resale by β1, the second-price auction without
resale by β2, the all-pay first-price auction without resale by β1

∗ and the
all-pay second-price auction without resale by β2

∗ .

Theorem 2. Let Assumptions 1 and 2 be satisfied and let Γ(α, λ) > 1.
Let R1(β1) be the seller’s ex-ante expected revenue in the first-price auc-
tion without resale. Let R2(β2) be the seller’s ex-ante expected revenue
in the second-price auction without resale. Let R1(β1

∗) be the seller’s ex-
ante expected revenue in the all-pay first-price auction without resale. Let
R2(β2

∗) be the seller’s ex-ante expected revenue in the all-pay second-price
auction without resale. Then,

1. R1(σ1) > R1(β1)
2. R2(σ2) > R2(β2)
3. R1(σ1

∗) > R1(β1
∗)

4. R2(σ2
∗) > R2(β2

∗)

Part 1 shows that the seller induces higher expected revenue under the
first-price auction with resale than the first-price auction without resale.
Part 2 shows that the seller induces higher expected revenue under the
second-price auction with resale than the second-price auction without
resale. Part 3 shows that the seller induces higher expected revenue
under the all-pay first-price auction with resale than the all-pay first-
price auction without resale. Part 4 shows that the seller induces higher
expected revenue under the all-pay second-price auction with resale than
the all-pay second-price auction without resale.

From K-M, we know that the all-pay second-price auction revenue
dominates the all-pay first-price auction, first-price auction and second-
price auction. From Theorem 2 and Remark 1, we infer that:

Remark 2. The all-pay second-price auction with resale revenue domi-
nates the first-price auction without resale, second-price auction without
resale, all-pay first-price auction without resale, all-pay second-price auc-
tion without resale, first-price auction with resale, second-price auction
with resale and all-pay first-price auction with resale.

5 Conclusion

In this paper, we have considered correlated signals in auctions with
resale. Our two main results are: (a) the seller’s expected revenues
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are highest in the all-pay second-price auction with resale followed by
the second-price auction with resale followed by the all-pay first-price
auction with resale followed by the first-price auction with resale and (b)
the all-pay second-price auction with resale outperforms all first-price
auction with and without resale, second-price auction with and without
resale, all-pay first-price auction with and without resale and all-pay
second-price auction without resale.

A Appendix: Proofs

Proof of Proposition 1. Consider a bidder who draws a value t and
bids b while the other bidder bids σ1(T ). He wins if and only if b > σ1(T )
which is equivalent to T < π1(t). Upon win, a trade ensues if and only
if the ex-post value of the winner does not exceed the resale price and
the ex-post value of the loser exceeds the resale price, i.e., (1 − αR)t <
λwt + λlT < (1 − αB)T . This implies

T >
1 − αR − λw

λl
t and T >

λw

1 − αB − λl
t

which is equivalent to

T > max
{1 − αR − λw

λl
,

λw

1 − αB − λl

}
t = kt

Therefore, with probability T < kt, trade does not ensue and the bidder
incurs a utility of t− b, as he retains the object. On the other hand, with
probability T > kt, bidder realizes a utility of αRt + λwt + λlT − b.

The bidder loses if and only if T > π1(b). Upon losing, a trade ensues
if and only if (1 − αB)t > λwT + λlt > (1 − αR)T . This implies

T <
1 − αB − λl

λw
t and T <

λl

1 − αR − λw
t

which equals

T < min
{1 − αB − λl

λw
,

λl

1 − αR − λw

}
t = t

k

Therefore, with probability π1(b) < T < t/k, the bidder incurs a utility
of (1 − αB)t − λwT − λlt. On the other hand, with probability T > t/k,
trade does not ensue and the bidder realizes a utility of 0.

Thus, the expected utility function is given by (2). ■

Proof of Proposition 2. Let σ1 be a symmetric perfect Bayesian equi-
librium. Differentiating (2) w.r.t. b, we have

DbU
1(t, b) = Dπ1(b)g(π1(b), t)[(αR + αB + λw + λl − 1)t

+ (λw + λl)π1(b) − b] − G(π1(b), t)
(10)

12



In equilibrium, DbU
1(π1(b), b) = 0 which gives

Dπ1(b) = G(π1(b), π1(b))
g(π1(b), π1(b))

1
Γ(α, λ)π1(b) − b

To find an explicit expression, we apply change-of-variables. Since b =
σ1 ◦ π1(b), differentiating w.r.t. b gives 1 = Dπ1(b)Dσ1 ◦ π1(b). Applying
this in the above equation gives

Dσ1 ◦ π1(b) = g(π1(b), π1(b))
G(π1(b), π1(b))(Γ(α, λ)π1(b) − b)

Using π1(b) = t in the above equation gives

Dσ1(t) = g(t, t)
G(t, t) [Γ(α, λ)t − σ1(t)]

which can be rewritten as

Dσ1(t) + g(t, t)
G(t, t)σ1(t) = Γ(α, λ)t g(t, t)

G(t, t)
Let the integrating factor be

Z(t, t) = exp
{

−
∫ 1

t

g(x, x)
G(x, x)dx

}
Therefore,

DZ(t, t) = exp
{

−
∫ 1

t

g(x, x)
G(x, x)dx

}
g(t, t)
G(t, t) = Z(t, t) g(t, t)

G(t, t)
Now,

D[Z(t, t)σ1(t)] = DZ(t, t)σ1(t) + Dσ1(t)Z(t, t)

= Z(t, t)
[
Dσ1(t) + σ1(t) g(t, t)

G(t, t)

]
= Γ(α, λ)tDZ(t, t)

Applying the fundamental theorem of calculus with the fact that σ1(0) =
0, we have

Z(t, t)σ1(t) = Γ(α, λ)
∫ t

0
yDZ(y, y)dy

which equals

σ1(t) = Γ(α, λ) exp
{ ∫ 1

t

g(x, x)
G(x, x)dx

}
∫ t

0
y

g(y, y)
G(y, y) exp

{
−

∫ 1

y

g(x, x)
G(x, x)dx

}
dy

= Γ(α, λ)
∫ t

0
exp

{
−

∫ t

y

g(x, x)
G(x, x)dx

}
y

g(y, y)
G(y, y)dy

13



To prove the converse, let σ1 solve (3). We argue that σ1 is optimal.
To contradict, let a bidder with value t overbid to c where c > σ1(t), i.e.,
π1(c) > t. Rewriting (10), we have

DcU
1(t, c) = G(π1(c), t)

{
Dπ1(c) g(π1(c), t)

G(π1(c), t) [(αR + αB + λw + λl − 1)t

+ (λw + λl)π1(c) − c] − 1
}

From Property 4 of Lemma 1, we have

DcU
1(t, c) < G(π1(c), t)

{
Dπ1(c) g(π1(c), π1(c))

G(π1(c), π1(c)) [Γ(α, λ)π1(c) − c] − 1
}

= DcU
1(π1(c), c)

= 0

Thus, overbid is not desirable. By reversing the inequalities, we can
argue that underbid is also not desirable. So, π1 is optimal. ■

Proof of Proposition 3. Consider bidder 1 with value t and bid b and
consider bidder 2 who bids σ2(T ). Bidder 1 wins if and only if T < π2(b)
and trade succeeds if and only if T > kt. Therefore, with probability
T < kt, trade fails which gives bidder 1 a utility of t − σ2(T ) and with
probability kt < T < π2(b), trade succeeds which gives him a utility of
(αR + λw)t + λlT − π2(T ).

Bidder 1 loses if and only if T > π2(b) and trade succeeds if and only
if T < t/k. Therefore, with probability π2(b) < T < t/k, trade succeeds
which gives bidder 1 a utility of (1−αB −λl)t−λwT and with probability
T > t/k, trade fails which gives him a utility of 0.

Thus, the expected utility function can be written as (4). ■

Proof of Proposition 4. Let σ2 be an equilibrium. From (4), we have

DbU
2(t, b) = Dπ2(b)g(π2(b), t)[(λw + λl + αR + αB − 1)t

+ (λw + λl)π2(b) − b]
(11)

In equilibrium, DbU
2(π2(b), b) = 0 which gives (5).

Conversely, let σ2 solve (5). We show σ2 is optimal. Suppose a bidder
overbids to c so that c > σ2(t), i.e., π2(c) > t. Then, from (11), we have

DcU
2(t, c) = Dπ2(c)g(π2(c), t)[(λw + λl + αR + αB − 1)t

+ (λw + λl)π2(c) − c]
< Dπ2(c)g(π2(c), t)[Γ(α, λ)π2(c) − c]
= 0

Thus, overbid is not profitable. Similarly, it can be shown that underbid
is also not profitable. So, σ2 is optimal. ■
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Proof of Proposition 5. From (3) and (5), we have

σ1(t) = Γ(α, λ)
∫ t

0
exp

{
−

∫ t

y

g(x, x)
G(x, x)dx

}
y

g(y, y)
G(y, y)dy

> Γ(α, λ)t g(t, t)
G(t, t)

> Γ(α, λ)t
= σ2(t)

■

Proof of Proposition 6. Consider bidder 1 with value t and bid b and
consider bidder 2 who bids σ1

∗(T ). Bidder 1 wins if and only if T < π1
∗(b)

and trade succeeds if and only if T > kt. Therefore, with probability
T < kt, trade fails which gives bidder 1 a utility of t − b and with
probability kt < T < π1

∗(b), trade succeeds which gives him a utility of
(αR + λw)t + λlT − b.

Bidder 1 loses if and only if T > π1
∗(b) and trade succeeds if and

only if T < t/k. Therefore, with probability π1
∗(b) < T < t/k, trade

succeeds which gives bidder 1 a utility of (1 − αB − λl)t − λwT − b and
with probability T > t/k, trade fails which gives him a utility of −b.

Thus, the expected utility function can be written as (6). ■

Proof of Proposition 7. Let σ1
∗ be an equilibrium. Then, differentiat-

ing (6) w.r.t. b, we have

DbU
1
∗ (t, b) = Dπ1

∗(b)g(π1
∗(c), t)[(αR + αB + λw + λl − 1)t

+ (λw + λl)π1
∗(b)] − 1

(12)

In equilibrium, DbU
1
∗ (π1

∗(b), b) = 0 which gives

Dπ1
∗(b) = 1

Γ(α, λ)π1
∗(b)g(π1

∗(b), π1
∗(b))

As b = σ1
∗ ◦ π1

∗(b), differentiating w.r.t. b gives 1 = Dπ1
∗(b)Dσ1

∗ ◦ π1
∗(b).

Therefore, the above equation can be rewritten as

Dσ1
∗ ◦ π1

∗(b) = Γ(α, λ)π1
∗(b)g(π1

∗(b), π1
∗(b))

Implementing t = π1
∗(b), we have

Dσ1
∗(t) = Γ(α, λ)tg(t, t)

Using the fundamental theorem of calculus with σ1
∗(0) = 0, we have

σ1
∗(t) = Γ(α, λ)

∫ t

0
xg(x, x)dx

15



To show the converse, consider σ1
∗ that solves (7). Let a bidder with

value t overbid to c where c > σ1
∗(t), i.e., t < π1

∗(c). Then, from (12), we
have

DcU
1
∗ (t, c) = Dπ1

∗(c)g(π1
∗(c), t)[(αR + αB + λw + λl − 1)t

+ (λw + λl)π1
∗(c)] − 1

Since g(y, .) is strictly increasing for every y ∈ ℜ+, we have

DcU
1
∗ (t, c) < Dπ1

∗(c)g(π1
∗(c), π1

∗(c))[Γ(α, λ)π1
∗(c)] − 1

= DcU
1
∗ (π1

∗(c), π1
∗(c))

= 0

which implies that overbid is not profitable. Similarly, by reversing the
inequalities, it can be shown that underbid is also not profitable. There-
fore, π1

∗ is optimal. ■

Proof of Proposition 8. Consider bidder 1 with value t and bid b and
consider bidder 2 who bids σ2

∗(T ). Bidder 1 wins if and only if T < π2
∗(b)

and trade succeeds if and only if T > kt. Therefore, with probability
T < kt, trade fails which gives bidder 1 a utility of t − σ2

∗(T ) and with
probability kt < T < π2

∗(b), trade succeeds which gives him a utility of
(αR + λw)t + λlT − π2

∗(T ).
Bidder 1 loses if and only if T > π2

∗(b) and trade succeeds if and
only if T < t/k. Therefore, with probability π2

∗(b) < T < t/k, trade
succeeds which gives bidder 1 a utility of (1 − αB − λl)t − λwT − b and
with probability T > t/k, trade fails which gives him a utility of −b.

Thus, the expected utility function can be written as (8). ■

Proof of Proposition 9. Let σ2
∗ be an equilibrium. Then, differentiat-

ing (8), we have

DbU
2
∗ (t, b) = Dπ2

∗(b)g(π2
∗(b), t)[(αR + αB + λw + λl − 1)t

+ (λw + λl)π2
∗(b)] − 1 + G(π2

∗(b), t)
(13)

The equilibrium condition DbU
2
∗ (π2

∗(b), b) = 0 gives

Dπ2
∗(b) = 1 − G(π2

∗(b), π2
∗(b))

g(π2
∗(b), π2

∗(b))
1

Γ(α, λ)π2
∗(b)

As b = σ2
∗ ◦ π2

∗(b) implies 1 = Dπ2
∗(b)Dσ1

∗ ◦ π2
∗(b), we have

Dσ2
∗ ◦ π2

∗(b) = g(π2
∗(b), π2

∗(b))
1 − G(π2

∗(b), π2
∗(b)) [Γ(α, λ)π2

∗(b)]
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Applying t = π2
∗(b) gives

Dσ2
∗(t) = g(t, t)

1 − G(t, t) [Γ(α, λ)t] (14)

Using the fundamental theorem of calculus with σ2
∗(0) = 0, we have

σ2
∗(t) = Γ(α, λ)

∫ t

0
x

g(x, x)
1 − G(x, x)dx

■

Proof of Proposition 10. From(7) and (9), the result follows. ■

Proof of Theorem 1. We show (1). Given t ∈ (0, 1) of a bidder, let
P 1(σ1

∗, t) be the interim expected payments of a bidder in the first-price
all-pay auction and let P 2(σ2

∗, t) be the interim expected payments of a
bidder in the second-price all-pay auction. Then,

P 1(σ1
∗, t) = σ1

∗(t)

and

P 2(σ2
∗, t) =

∫ t

0
σ2

∗(x)g(x, t)dx + [1 − G(t, t)]σ2
∗(t)

= Γ(α, λ)
∫ t

0

∫ x

0
y

g(y, y)
1 − F (y, y)g(x, t)dydx + [1 − G(t, t)]σ2

∗(t)

Using Fubini’s theorem, we have

P 2(σ2
∗, t) = Γ(α, λ)

∫ t

0

∫ 1

x
x

g(x, x)
1 − G(x, x)g(y, t)dydx + [1 − G(t, t)]σ2

∗(t)

= Γ(α, λ)
∫ t

0
x

g(x, x)
1 − G(x, x) [1 − G(x, t)]dx + [1 − G(t, t)]σ2

∗(t)

As x < t, from Property 5 of Lemma 1, we have

P 2(σ2
∗, t) > Γ(α, λ)

∫ t

0
xg(x, x)dx + [1 − G(t, t)]σ2

∗(t)

= σ1
∗(t) + [1 − G(t, t)]σ2

∗(t)
= P 1(σ1

∗, t) + [1 − G(t, t)]σ2
∗(t)

So, P 2(σ2
∗, t) > P 1(σ1

∗, t). Taking expectations, we have R2(σ2
∗) >

R1(σ1
∗).

We show (2). Given t ∈ (0, 1) of a bidder, let P 1(σ1, t) be the interim
expected payments of a bidder in the first-price auction and let P 1(σ1

∗, t)
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be the interim expected payments of a bidder in the first-price all-pay
auction. Then,

P 1(σ1, t) = G(t, t)σ1(t)

= Γ(α, λ)G(t, t)
∫ t

0
exp

{
−

∫ t

y

g(x, x)
G(x, x)dx

}
y

g(y, y)
G(y, y)dy

= Γ(α, λ)
∫ t

0
yg(y, y) G(t, t)

G(y, y) exp
{

−
∫ t

y

g(x, x)
G(x, x)dx

}
dy

Given x > y, from property 4 of Lemma 1, we have

−
∫ t

y

g(x, x)
G(x, x)dx < −

∫ t

y

g(x, y)
G(x, y)dx

which implies

−
∫ t

y

g(x, x)
G(x, x)dx < −

∫ t

y
D ln G(x, y)dx

= ln G(y, y) − ln G(t, y)

Since y < t, from Property 5 of Lemma 1, we have

−
∫ t

y

g(x, x)
G(x, x)dx < ln G(y, y) − ln G(t, t)

= ln G(y, y)
G(t, t)

Applying the exponential function on both sides, we have

exp
{

−
∫ t

y

g(x, x)
G(x, x)dx

}
<

G(y, y)
G(t, t)

Using the above inequality in the expression of P 1(σ1, t), we have

P 1(σ1, t) < Γ(α, λ)
∫ t

0
xg(x, x)dx

= σ1
∗(t)

= P 1(σ1
∗, t)

Thus, taking expectations, we have R1(σ1
∗) > R1(σ1).

We show (3). Given t ∈ (0, 1) of a bidder, let P 1(σ1, t) be the interim
expected payments of a bidder in the first-price auction and let P 2(σ2, t)
be the interim expected payments of a bidder in the second-price auction.
Then,

P 2(σ2
∗, t) =

∫ t

0
σ2

∗(x)g(x, t)dx + [1 − G(t, t)]σ2
∗(t)
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Using integration-by-parts, we have

P 2(σ2
∗, t) = σ2

∗(t)G(t, t) −
∫ t

0
Dσ2

∗(x)G(x, t)dx + [1 − G(t, t)]σ2
∗(t)

= σ2
∗(t) −

∫ t

0
Dσ2

∗(x)G(x, t)dx

Using (9) and (14), we have

P 2(σ2
∗, t) = Γ(α, λ)

∫ t

0

xg(x, x)
1 − G(x, x)dx − Γ(α, λ)

∫ t

0
G(x, t) xg(x, x)

1 − G(x, x)dx

= Γ(α, λ)
∫ t

0
[1 − G(x, t)] xg(x, x)

1 − G(x, x)dx

= Γ(α, λ)
∫ t

0

xg(x, x)
1 − G(x, x)g(x, t)1 − G(x, t)

g(x, t) dx

= Γ(α, λ)
∫ t

0
xg(x, t)g(x, x)/[1 − G(x, x)]

g(x, t)/[1 − G(x, t)] dx

Given t > x and Property 3 of Lemma 1, we have

P 2(σ2
∗, t) > Γ(α, λ)

∫ t

0
xg(x, t)dx

= P 2(σ2, t)

Thus, taking expectations, we have R2(σ2
∗) > R2(σ2).

We show (4). Given t ∈ (0, 1) of a bidder, let P 1(σ1, t) be the interim
expected payments of a bidder in the first-price auction and let P 2(σ2, t)
be the interim expected payments of a bidder in the second-price auction.
Then, from the proof of Theorem 2, we have

P 1(σ1, t) < Γ(α, λ)
∫ t

0
xg(x, x)dx (15)

Given x < t and the fact that g(y, .) is strictly increasing for every
y ∈ ℜ+, we have

P 1(σ1, t) < Γ(α, λ)
∫ t

0
xg(x, x)dx < Γ(α, λ)

∫ t

0
xg(x, t)dx

= P 2(σ2, t)
(16)

Therefore, taking expectations, we have R2(σ2) > R1(σ1).
We show (5). Given t ∈ (0, 1), from (15) and (16), we have

P 1(σ1, t) < Γ(α, λ)
∫ t

0
xg(x, x)dx = P 1(σ1

∗, t)

< Γ(α, λ)
∫ t

0
xg(x, t)dx = P 2(σ2, t)

Therefore, taking expectations, we have R2(σ2) > R1(σ1
∗). ■
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Proof of Theorem 2. We show (1). From Milgrom and Weber [14],
we know

β1(t) =
∫ t

0
exp

{
−

∫ t

y

g(x, x)
G(x, x)dx

}
y

g(y, y)
G(y, y)dy

Comparing the above equation with (3), we have

σ1(t) > β1(t)

for every t ∈ (0, 1). The result follows immediately.
We show (2). From Milgrom and Weber [14], we know

β2(t) = t

Comparing the above equation with (5), we have

σ2(t) > β2(t)

for every t ∈ (0, 1). The result follows immediately.
We show (3). From Krishna and Morgan [13], the equilibrium of the

first-price all-pay auction without resale is characterized as

β1
∗(t) =

∫ t

0
xg(x, x)dx

Comparing the above equation with (7), we have

σ1
∗(t) > β1

∗(t)

for every t ∈ (0, 1). The result follows immediately.
We show (4). From Krishna and Morgan [13], the equilibrium of the

first-price all-pay auction without resale is characterized as

β2
∗(t) =

∫ t

0
x

g(x, x)
1 − G(x, x)dx

Comparing the above equation with (9), we have

σ2
∗(t) > β2

∗(t)

for every t ∈ (0, 1). The result follows immediately. ■

References

[1] E. Amann, W. Leininger. Asymmetric all-pay auctions with in-
complete information: the two-player case. Games and Economic
Behavior, 1-18 (1996).

20



[2] M. Baye, D. Kovenock, C. de Vries. Rigging the lobbying process: an
application of the all-pay auction. The American Economic Review,
289-294 (1993).

[3] M. Baye, D. Kovenock, C. de Vries. The all-pay auction with com-
plete information. Economic Theory, 291-305 (1996).

[4] M. Betto, M. Thomas. Asymmetric all-pay auctions with spillovers.
Theoretical Economics, 169-206 (2024).

[5] Y. Che, I. Gale. Caps on political lobbying. The American Economic
Review, 643-651 (1998).

[6] G. Fibich, A. Gavious, A. Sela. All-pay auctions with risk-averse
players. International Journal of Game Theory, 583-599 (2006).

[7] A. Gelder, D. Kovenock, B. Roberson. All-pay auctions with ties.
Economic Theory, 1-49 (2019).

[8] G. Georgiadis, Y. Kim, H. Kwon. The absence of attrition in a
war of attrition under complete information. Games and Economic
Behavior, 171-185 (2022).

[9] M. Gupta, B. Lebrun. First price auctions with resale. Economics
Letters, 181-185 (1999).

[10] I. Hafalir, V. Krishna. Asymmetric auctions with resale. The Amer-
ican Economic Review, 87-112 (2008).

[11] S. Khurana. Symmetric auctions with resale.

[12] S. Khurana. Auctions with resale at a later date. Economic Theory,
843-875 (2024).

[13] V. Krishna, J. Morgan. An analysis of the war of attrition and the
all-pay auction. Journal of Economic Theory, 343-362 (1997).

[14] P. Milgrom, R. Weber. A theory of auctions and competitive bid-
ding. Econometrica, 1089-1122 (1982).

[15] C. Seel. The value of information in asymmetric all-pay auctions.
Games and Economic Behavior, 330-338 (2014).

[16] G. Virág. First-price auctions with resale: the case of many bidders.
Economic Theory, 129-163 (2013).

[17] G. Virág. Auctions with resale: Reserve prices and revenues. Games
and Economic Behavior, 239-249 (2016).

21


	Sample-DP119_cover
	Correlated signals
	Introduction
	The literature

	Economic environment
	Characterization results
	First-price auction with resale
	Second-price auction with resale
	All-pay first-price auction with resale
	All-pay second-price auction with resale

	Comparative results
	Conclusion
	Appendix: Proofs




