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Abstract

The paper considers the efficient estimation of opinion pools with regularization in the Bayesian paradigm
and extends their application to cases where the number of competing models exceeds the number of obser-
vations. A Bayesian-inspired formulation and estimation algorithm is proposed whose 1) conditional density
accommodates any proper scoring rule and 2) different priors allow weight shrinkage towards equality, extreme
weights or any combinations under the Lasso, Ridge and Entropy penalty. Specifically, the Dirichlet prior al-
lows shrinkage towards extreme weights which is useful for model selection applications. The simulation study
explores and identifies situations where average log score is highest for opinion pools under shrinkage towards
equality or extreme weights. An application involving the Survey of Professional Forecasters demonstrates that
the Bayesian opinion pool’s inflation forecast competes well with the equal-weight aggregated inflation forecast
post 2013.
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JEL: C11, C15, C53, E17, E37

1 Introduction and Motivation

Forecasters’ outlook toward any predictive exercise is reflected in how they formulate, specify, and estimate their
model. The model dynamics depend on how the forecaster perceives and incorporates uncertainty (Steel (2020)).
As a result, several competing forecasts emerge for a given random variable. For a researcher, a forecast combi-
nation is an intuitive way to utilize all this information (See Hoeting et al. (1999) for Bayesian Model averaging,
Wang et al. (2009) for frequentist model averaging, Moral-Benito (2015) for model averaging in economics, Gneit-
ing and Ranjan (2013) for predictive model aggregation and Clyde and George (2004) for model uncertainty). This
paper focuses on regularized forecast combinations for density forecasts aggregated under the linear opinion pool
(Stone (1961), Bacharach (1974)).

Let yt be a random variable and fkt be the forecast density for yt by forecaster k at time t = 1, . . . , T . The
combined forecast, ft, under the linear opinion pool framework is obtained as

ft =
K∑
k=1

wkfkt, (1.1)

*I am grateful to Ivan Jeliazkov, Fabio Milani and Yingying Lee for their invaluable guidance and encouragement. All errors are my
own.

†Department of Economics, Ashoka University.
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where wk is the weight allotted to fkt. For simplicity, the paper submerged w notation from ft. The weights are
updated recursively once yt is realized. The weights are estimated with respect to the unit simplex constraint:∑K

k=1wk = 1 and wk ≥ 0 ∀ k, ensuring that Eq. 1.1 is an appropriate probability density function.
Eq. 1.1 has been estimated in the past using proper scoring rules (Gneiting and Raftery (2007)). Key contri-

butions include Bates and Granger (1969), Degroot and Mortera (1991) Geweke and Amisano (2011), Opschoor
et al. (2017) and Garratt et al. (2023). Estimation becomes challenging when the number of forecasters is large
relative to the number of past observations of yt (micronumerosity). This becomes a binding constraint, especially
in time-series forecasting, where the frequency of observations limits the data length. Researchers have used pe-
nalized forecast combinations to deal with the small sample problem (Capistrán and Timmermann (2009), Elliott
(2011), Conflitti et al. (2015), and Samuels and Sekkel (2017) among many others). Diebold et al. (2023) extends
regularization to the mixture of density forecasts allowing for shrinkage toward equal weights.

This paper proposes to estimate linear opinion pools using the Bayesian inspired formulation and hence calls
it the Bayesian Opinion Pool (BOP). The framework 1) is general to accommodate all scoring rules, 2) different
penalties and 3) allows the opinion pool to be estimated when the number of forecasting densities exceeds the
number of observations. The Normal prior truncated over simplex introduce ridge penalty, the Laplace prior
truncated over simplex introduce Lasso penalty and the Dirichlet prior introduce entropy penalty. Though Normal
and Laplace only allow shrinkage towards equality (or any pre-given combination), the Dirichlet prior also allows
classical shrinkage where coefficients are pushed towards 0 making it attractive for model selection applications.
The researcher under Dirichlet prior can choose to shrink the weights on the spectrum with one extreme of allotting
equal weights to all the models to another where all the weights are allotted to the best model. The proposed
algorithm is effective even when dealing with a high number of forecasters since the whole vector of weights is
sampled in a single block, leading to computational efficiency. This makes BOP useful for applications related to
model averaging and model selection.

Unlike the usual regularization of selecting few variables out of many, the weight’s shrinkage towards equality
is more useful for density aggregation given the simplex constraint. The idea behind regularization is to avoid
overfitting and improve out of sample prediction which translates into equal weights for density combination. Equal
weights provide insurance against bad forecasts and their performance is been found competitive with optimized
weights (Hendry and Clements (2004) and Wallis (2005)). The aim of BOP in such settings is to find the right
balance between exploiting past information through optimization and regularizing forecasts through shrinkage
towards equality.

One strand of literature deviated from opinion pools when combining forecast densities. Billio et al. (2013)
used state space modelling to aggregate predictive densities and used Bayesian formulation to estimate time-
varying weights. Busetti (2017) discussed quantile aggregation of predictive densities. Bassetti et al. (2018) used
the Bayesian method to estimate the beta transformation of the opinion pool. McAlinn and West (2019) develop a
novel class of dynamic latent factor models for time series forecast synthesis called Bayesian predictive synthesis
which encompasses several existing forecast pooling methods.

The paper uses BOP in an application involving the survey of professional forecasters (SPF) to improve infla-
tion density forecast. The aggregated predictive density for the inflation rate is estimated and compared with the
equal weights strategy (simple opinion pools or SOP) published by the Federal Bank of Philadelphia. The issue of
ignoring past predictive accuracy information could have been tackled through scoring rules optimization, but due
to low data frequency, it is infeasible to use optimized-based methods for any length of the training window. The
inflation forecast obtained through the BOP at various levels of shrinkage competes well with the Federal Reserve
Bank of Philadelphia’s published SOP.

Section 2 gives a brief overview of traditional opinion pools. Section 3 covers the explanation, derivation
and estimation algorithm of the Bayesian opinion pool. Section 4 presents the simulation study where the choice
related to penalty through Dirichlet prior is explored along with BOP’s predictive performance. Section 5 covers
an empirical exercise involving the Survey of Professional Forecasters (SPF) where inflation forecast densities
are combined using BOP and compared with the equal weights combination as published by the Federal Bank of
Philadelphia. Section 6 concludes the paper.
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2 Proper Scoring Rules for Opinion Pools

This section summarizes the asymptotic properties of opinion pools optimized using proper scoring rules. Let θ0
be the true vector of parameters. The researcher aims to fit a parametric model pθ based on a sample y1, . . . , yT .
Let any proper scoring rule be presented as S(·, ·). Gneiting and Raftery (2007) showed that asymptotically

arg max
θ

1

T

T∑
t=1

S(pθ, yt) −→ θ0 as T −→ ∞. (2.1)

If the constraints on weights in Eq. 1.1 are satisfied the opinion pool satisfies the conditions of an appropriate
probability distribution. Then asymptotically,

arg max
w

1

T

T∑
t=1

S(ft, yt) −→ w0 as T −→ ∞. (2.2)

where w = {w1, . . . , wK} is the parameter of interest. Bernardo and Smith (2000) considered three possible
scenarios in the context of model averaging. First is the M-closed case where M0, the true model, is identified and
available in the model list. In this case, opinion pools will converge to M0 asymptotically and w0 = {1, 0, . . . , 0}′
where the weightage of 1 is allotted to M0 and 0 to other models. The second case is when M0 is available, but the
researcher decides to intentionally leave it out of the model set (M-complete case). The third one is the M-open
case, the most applicable and is considered in this paper, is when M0 is not part of the model list. In this case,
w will converge to some weight vector w0 = w∗, which is related to the properties of the metric implied by the
scoring function. For example, the log score minimizes the Kullback–Leibler divergence from M0 to the opinion
pool (Gneiting and Raftery (2007)).

Elliott et al. (2016) argued that there is no natural choice for choosing the scoring rule under the M-open case.
The current paper considers log (l), quadratic (q), spherical (s), CRPS (c), and FTMS (m) rules (Brier (1950); Good
(1952); Roby (1965); Shuford et al. (1966); Winkler and Murphy (1968); Epstein (1969); Selten (1998); Dawid
and Sebastiani (1999)). The scores to opinion pool are provided as follows

l(ft, yt) = log(ft)

q(ft, yt) = 2p(ft)−
∫ ∞

−∞
f2
t dyt

s(ft, yt) =
ft

(
∫∞
−∞ f2

t dyt)
0.5

(2.3)

c(ft, yt) = −
∫ yrt

−∞
F 2
t dyt −

∫ ∞

yrt

(Ft − 1)2dyt

m(ft, yt) = −
(yt − µ

σ

)2
− log(σ2),

where µ is the mean, σ is the standard deviation and Ft is the cumulative predictive density of opinion pool. The
scoring rules are altered to have higher scores implying improved forecast performance. Gneiting and Raftery
(2007) discusses in detail the divergence or distance, different scoring rules are minimizing. For example, The
log and quadratic (or Brier) scores minimize the Kullback–Leibler divergence and squared Euclidean distance
between true DGP and predictive model, respectively. Dawid and Sebastiani (1999) suggested four proper scoring
rules based on the first two moments of the predictive distribution, and m(ft, yt) is among the popular ones. Given
the decision maker has access to {f1t, . . . , fKt}, and {y1, . . . , yT }, the opinion pool is estimated as

w∗ = arg max
w

T∑
t=1

S
( K∑

k=1

wk fkt

)
, (2.4)
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where w∗ = {w∗
1, . . . , w

∗
K}. The opinion pool for the prediction of yT+1 will take the form

fT+1 =

K∑
k=1

w∗
k fk,T+1. (2.5)

3 Bayesian Opinion Pool

This section lays out the estimation procedure for opinion pools under the Bayesian-inspired formulation. To
obtain the posterior density of weights given data, the Bayes theorem is utilized and is given as

π(w|y) ∝ π(y|w)π(w)

where π(w|y) is the posterior distribution of weights, π(y|w) is the likelihood function and π(w) is the prior
distribution of weights. The paper considers the following representation of the likelihood function

π(y|w) = 1

C1

T∏
t=1

eS(ft,yt)

where C1 is the normalizing constant for π(y|w). The paper will call π(y|w) as conditional density since it does
not represent the researcher’s imposed data-generating process, which is the intuition for the likelihood function.
This Bayesian-inspired methodology treats weights as a K-dimensional, simplex bound, random variable and thus,
the paper considers truncated Laplace (l), truncated Normal (n) and Dirichlet (d) priors to complete the formula-
tion. These priors induce different regularizations on weights leading to the posterior modes overlapping with the
optimized weights derived by Diebold et al. (2023).

3.1 Laplace Prior truncated on a Simplex

The Laplace prior truncated on a simplex is given as

πl(w) = 1(w ∈ B)
1

C2

K∏
k=1

λl

2
e−λl|wk−wlk0|

where C2 is normalizing constant, wlk0 is the location hyperparameter, λl > 0 is the scale hyperparameter and

B =
{
w|

K∑
k=1

wk = 1, wk ≥ 0 ∀ k
}
.

The posterior distribution will take the form

πd(w|y) ∝
1

C1

T∏
t=1

eS(ft,yt)1(w ∈ B)
1

C2

K∏
k=1

λl

2
e−λl|wk−wlk0|.

Dropping terms which do not depend on w, the posterior mode is

wl = arg max
w

(
T∑
t=1

S(ft, yt)− λl

K∑
k=1

|wk − wlk0|︸ ︷︷ ︸
L1 lasso penalty

)
s.t w ∈ B
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Park and Casella (2008) used Laplace prior to estimate Lasso regression under the Bayesian framework. Thus, this
paper uses Laplace prior truncated over simplex for opinion pools which imposes L1 lasso penalty on weights while
satisfying the simplex constraints. The magnitude of λl will detrmine the strength of penalty. If wlk0 = 1

K ∀ k,
the weights will be shrunk towards equality.

3.2 Normal Prior truncated on a Simplex

The Normal prior truncated on a simplex is given as

πn(w) = 1(w ∈ B)
1

C3
fN (w|wn0, IK

λ−1
n

2
)

where fN is multivariate normal distribution, C3 is normalizing constant and wn0 = {wn10, . . . , wnK0} and λ−1
n
2

are mean and variance of fN respectively. The posterior distribution will take the form

πd(w|y) ∝
1

C1

T∏
t=1

eS(ft,yt)1(w ∈ B)
1

C3
fN (w|wn0, IK

λ−1
n

2
)

Dropping terms which do not depend on w, the posterior mode is

wn = arg max
w

(
T∑
t=1

S(ft, yt)− λn

K∑
k=1

(wk − wnk0)
2

︸ ︷︷ ︸
L2 ridge penalty

)
s.t w ∈ B

The well-known Bayesian ridge regression uses Normal prior over coefficients to induce L2 penalty. A Normal
prior truncated on a simplex for weights induces the same penalty for opinion pools. As was the case with Laplace
prior, the magnitude of λn determines the strength of penalty and keeping wnk0 = 1

K ∀ k leads to the weights
being shrunk towards equality.

3.3 Dirichlet Prior

The Dirichlet prior is given as

πd(w) =
1

B(α)

K∏
k=1

wαk−1
k

where αk is a hyperparameter of Dirichlet prior. The paper assumes no prior information about forecasters and
thus αk = α ∀ k. The posterior distribution will take the form

πd(w|y) ∝
1

C1

T∏
t=1

eS(ft,yt)
1

B(α)

K∏
k=1

wα−1
k

Dropping terms which do not depend on w, the posterior mode is

wd = arg max
w

(
T∑
t=1

S(ft, yt)− λd

K∑
k=1

log(w)︸ ︷︷ ︸
entropy penalty

)
s.t w ∈ B

where, λd = 1−α and −∞ < λd ≤ 1 since 0 ≤ α < ∞. Diebold et al. (2023) showed that their simplex+entropy
regularized estimator coincides with posterior mode under Bayesian analysis when Dirichlet prior and log score
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conditional density is considered. If λd < 0 ( or α > 1), the prior shrinks the weights towards equality. As
λd → −∞, the tendency of weights towards equality grows stronger. If λd = 0 ( or α = 1), the prior is uniform
but still imposes mild shrinkage towards equality since the prior’s mean is 1

K . The unique property about Dirichlet
prior is the allowance for standard shrinkage of weights towards 0 which the L1 or L2 penalty does not allow. This
adaptability is not been explored in the density combination literature. If 0 < λd ≤ 1 ( or 0 ≤ α < 1), the prior
incentivizes extreme weights for some models. As λd → 1, the tendency of weights towards choosing the best
model increases. This is useful in case the application requires model selection.

3.4 Estimation

Since the final form of the posterior is non-standard, the paper uses the Metropolis-Hasting (MH) algorithm to
draw from the posterior density. When K is small, a uniform proposal density like the Dirichlet distribution with
λd = 0 will be able to cover the whole parameter space. Although, When K is large, the acceptance rate associated
with any uniform proposal may be too low due to high dimensionality. Alternatively, the paper explores a tailored
proposal density where the vector of weights are transformed to be defined on an unbounded domain using a
multivariate logit transformation. Given θ = {θ1, . . . , θK−1}, the transformation will look like

θk = ln(
wk

wK
) (3.1)

for all k = 1, . . . ,K − 1. The draws are sampled from a tailored proposal normal density as θ ∼ N(θ̄, Ω̄). The
mean of the Gaussian proposal, θ̄ is the mode of the p(y|w). In case of micronumerosity, where numerical opti-
mization fails, the mode is calculated using a back-fitting MCMC algorithm (details can be found in the Appendix).
The covariance matrix, Ω̄ can be kept equal to either σIK−1 where σ is decided based on the rejection rate or Ω̄
is proportional to the inverse Hessian of the conditional density at θ̄. Let θ(g) be θ drawn in the gth iteration. The
MCMC estimation of the BOP for the transformed proposal is summarized in the following steps. Let w(g) be w
drawn in the gth iteration.

STEP 1. Choose a value of θ = θ(0)

STEP 2. At the gth iteration, sample θ(g) ∼ N(θ̄, Ω̄).

STEP 3. Transform θ(g) to obtain w(g).

STEP 4. Generate u ∼ U(0, 1).

STEP 5. If

u ≤ min

(
π(w(g)|y)q(w(g−1))

π(w(g−1)|y)q(w(g))
, 1

)
,

return w(g), else return w(g−1). Go to step 1 and continue until the desired number of iterations is obtained.

The density q(·) is the transformed density for wT obtained after incorporating the Jacobian of the transformation.
The framework is not restrictive to one-step-ahead forecast and can be extended for long horizons forecasting
densities like fk,t+h.

4 Monte Carlo

The current simulation study tests logarithmic, quadratic and CRPS score conditional density with Dirichlet, Nor-
mal and Laplace priors.
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Figure 1: Average Log Score as a function of Penalty for Bayesian Opinion Pools for T = 3

4.1 Data-generating process and forecasts

The DGP and individual models are considered under the linear setting to preserve useful insights that might get
lost in a complicated analysis. Let the variable of interest be zt whose DGP is given as

DGP : zt = 0.5 + 0.5zt−1 + ϵt , where ϵt
iid∼ N(0, 5). (4.1)

Three individual forecasters submit their predictive densities for zt as N(zkt, 4) where

Case 1: zkt ∼ N(zt, 4) ∀ k = 1, 2 and 3.

Case 2: z1t ∼ N(zt, 2), z2t ∼ N(zt, 4) and z3t ∼ N(zt, 6).

The forecasters under the case 1 predict with equal accuracy whereas Case 2 has a clear ordering where forecaster
1 is the most accurate and forecaster 3 is the least. The opinion pool is trained using the sample size (T ) of 3, 5 and
10 which tests the cases of near-micronumerosity and small sample. The forecasts are calculated one step ahead
and the exercise is repeated 500 times. The predictive exercise uses the rolling window approach.

4.2 Shrinkage Towards Equality

Figure 1 shows the sensitivity of the average log score to penalty for T = 3 for different scoring rule likelihood
functions and priors (check Fig. 9 for T = 10 in the appendix). Sub-figures in the first, second and third column
represent logarithmic, quadratic, and CRPS scoring rules, respectively. Sub-figures in the first and second row
represent Case 1 and Case 2 of DGP, respectively. Each figure presents the average log score for Bayesian opin-
ion pools under Dirichlet, Normal, and Laplace priors along with equal weights and respective score optimized
weights. Uniform or no penalty is imposed when λd = 1, λn = 0 and λl = 0. The uniform penalty for Dirichlet
is rescaled to start at 0 rather than 1 to align with Normal and Laplace.

For Case 1, the log score for equal weights is higher since all forecasters are equally competitive. On the
contrary, the log score for score optimized weights is higher for Case 2 since forecasters vary in terms of their
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Figure 2: Weights as a function of Penalty for Bayesian Opinion Pools under Case 2 and T = 3

predictive accuracy. The opinion pools start from the score optimized value as we normalized 0 to represent
uniform prior. As the penalty increases, the average log score converge towards equal weights due to stronger
shrinkage toward equality. As the sample size increase, one can expect the log scores for equal and score optimized
opinion pools to converge.

The convergence from score optimized to equal weights is fastest in quadratic score, followed by log and
CRPS. Within each figure, Laplace shows the faster convergence followed by Dirichlet and Laplace. To see how
sensitive the weights are to penalty, it will be interesting to test them under case 2 since they are expected to be
unequal. Figure 2 shows the mean of the posterior modes of weights in 500 samples for Case 2 and T = 3. Sub-
figures in the first, second and third column represent logarithmic, quadratic, and CRPS scoring rules, respectively.
Sub-figures in the first, second and third column represent Dirichlet, Normal and Laplace prior, respectively. The
opinion pools are able to correctly rank the forecasters, but the distance between weights for uniform prior depends
on the combination of score function and prior. The weights for logarithmic and quadratic scores converge within
1 unit penalty increment irrespective of the prior. The convergence is relatively slow for CRPS, which was also
observed in Fig. 1. Also, the Bayesian opinion pool does not weigh forecaster 1 heavily, since the sample does not
have enough information due to its small size. As the sample size increases, it can be expected that the likelihood
function will dominate, leading to forecaster 1 being assigned a higher weight (Figure 10 for T = 10 in the
appendix shows a greater weight allotted to forecaster 1 at a uniform prior).

The shrinkage is strong when T is small as the prior dominates due to the insufficiency of information in the
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conditional density. As T increases, the conditional density starts to dominate and the weights deviate from the
equal weights. This property allows BOP to be used in applications related to model averaging. As αk tends to
infinity, BOP tends to the simple opinion pool (opinion pool with equal weights).

4.3 Standard Shrinkage towards 0

Forecaster selection in density combination is a challenging task, as the simplex constraint introduces natural
shrinkage toward equal weights. Diebold et al. (2023) discussed the difficulty of introducing standard regulariza-
tion in the density aggregation problem, since equal weights are as close to 0 as one can get while maintaining
the sum-to-one restriction. The Dirichlet prior enables shrinkage towards extreme weights, and thus can be useful
in application related to model selection. Figure 3 shows the mean of the posterior modes of weight in the 500
samples for Case 2 with 0 < λd < 1. The subfigures in the first, second and third columns represent logarithmic,
quadratic, and CRPS scoring rules, respectively. The subfigures in the first, second and third columns represent
T = 3, 5 and 10, respectively. The weights under logarithmic and quadratic likelihood are sensitive to penalty
value and immediately shrink towards choosing forecaster 1 whereas CRPS shows slower convergence. A similar
pattern is observed for all T = 3, 5 and 10.

Figure 4 presents the average log score as a function of the penalty for Dirichlet prior for case 2. The subfigures
in the first, second and third columns represent logarithmic, quadratic, and CRPS scoring rules, respectively. The
subfigures in the first, second and third columns represent T = 3, 5 and 10, respectively. As the forecasters have a
clear ordering based on predictive accuracy, standard shrinkage leads to increase in average log score. The opinion
pool degenerates into the predictive density of forecaster 1. This setup highlights the usefulness of density selection
when the gap between the predictive accuracy of the forecasters is significant.

5 Application: Inflation Prediction using the Survey of Professional Forecaster

The Survey of Professional Forecasters is a useful source of data for economists and policymakers. Croushore and
Stark (2019) in ”The Fifty Years of the Survey of Professional Forecasters” stated, ”In 2018, the survey generated
more than 45,000 unique hits to the Philadelphia Fed’s external webpages...The audience consists of academic
researchers... policymakers...and business people” (P.3).

The Federal Reserve Bank of Philadelphia publishes individual and aggregate density projections (and point
estimates) for macroeconomic variables every quarter. They survey individual professional forecasters immediately
after the U.S. Bureau of Economic Analysis (BEA) releases data. A unique ID is assigned to each forecaster,
making it possible to track them. Anonymity is maintained to prevent strategic misreporting. The details of the
data set and its significance can be found in Croushore et al. (2019), Clements et al. (2023) or on the Federal
Reserve Bank of Philadelphia website. This paper focuses on inflation density forecasts. Diebold et al. (1997)
argued that point forecasts from SPF are extensively used in macroeconomic literature, but density forecasts are
relatively less explored.

The experts submit their forecast densities by allotting probabilities to bins (range of inflation rates) which are
predetermined by the Fed so that the final densities are standardized and take the form of a histogram. Engelberg
et al. (2009) fit continuous densities to the individual surveyed histograms to undo discretization. However, this
interprets the survey replies as some subjective continuous distribution that is present in the minds of individ-
ual forecasters (Kenny et al. (2015)). Moreover, it imposes distributional assumptions which may pose practical
challenges given that individual histograms are often restricted to very few bins. Thus, this paper uses linear inter-
polation and assumes uniform probability mass within the bins which is implicit in the assumption of a histogram
(Clements (2002)).

SPF is used practically for two purposes. First, it is used to estimate inflation expectations. Inflation forecasts
are integral to many macroeconomic models as they are used to estimate inflation expectations. For example, the
augmented Phillips curve under aggregate price formation captures the relation where the expectations of future
inflation partly drive the current inflation (Phelps (1967), Friedman (1968)). Keane and Runkle (1990) argue
that a model with rational agents can be better represented using the predictive data from SPF. Coibion et al.
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(2018) referred to SPF extensively and argued for improved models that rely on variables with expectations. In
business cycle analysis, the efficacy of a real shock depends on how much future inflation is anticipated (Kydland
and Prescott (1982), Long Jr and Plosser (1983)). Under the rational expectations hypothesis, only unexpected
changes in inflation lead to a change in real macro variables (Muth (1961)). The new Keynesian theory of price
dynamics is based on inflation driven by its own expectations (Ball et al. (1988)). Carroll (2003) evaluated the
influence of SPF data on private-sector expectations.

Second, SPF is used to forecast inflation accurately or test forecasting models. This facilitates decisions requir-
ing accurate inflation predictions (for example, setting wage contracts). Smets et al. (2014) incorporated SPF data
to measure the forecasting accuracy of New Keynesian DSGE models. Forecasts based on the neural networks and
several linear econometric models were compared to SPF data (Croushore (1993)). Swanson and White (1997)
used model selection on multiple non-linear models and found that no one model was able to consistently beat
SPF forecasts. Croushore et al. (2019) mentioned in their paper that ”The SPF has become the gold standard for
evaluating forecasts or comparing forecasting models” (P.5).

The Federal Bank of Philadelphia publishes aggregated inflation forecasts density calculated by taking a simple
average of density estimates submitted by individual experts. Equal weights are a reasonable choice if the objective
is to track inflation expectations. Since, the aim is to capture how rational agents perceive future inflation, including
everyone’s opinion captures the idea of how the economy expects inflation to be. Also, numerical optimization is
infeasible as 160 forecasters participated during 120 quarters (Q1 1992 to Q4 2021), with an average of 35 active
forecasters per quarter. The number of forecasters is always higher than the number of data points for any window
length.

If the objective of SPF is inflation forecasting, then equal weights are a sub-optimal choice. Aastveit et al.
(2018) mentioned that ”Despite the long history of the SPF, little attention has historically been paid to how the
weights on the competing forecast densities in the finite mixture should be determined” (P.10). The issue with
the simple opinion pools (SOP) approach is that it does not exploit the information about the past predictive
performance of the experts. Figure 5 presents the predictive performance of experts who are active for at least 10
quarters in the period of Q1 1992 to Q4 2021. The vertical axis represents the probability allotted by an expert to
the bin which contained the realized value of the inflation rate. Thus, higher the probability allotted by the expert,
better the forecast. The horizontal axis represents the unique ID of experts. The size of the points represents the
number of quarters, an expert was active in the past. The figure depicts that some experts were consistently active
and allotted much higher probability to the realized inflation rate than the average and vice versa. Using equal
weights ignores this information and thus there is an opportunity to improve the predictive accuracy of aggregated
inflation forecast density.

This paper aggregates inflation density forecasts using the BOP for log score likelihood function with λk =
{0.25, 0.5, 0.75, 1, 2, 5} where k = d, n and l for Dirichlet, Normal and Laplace priors respectively. The decision
to choose penalty which shrinks weights towards equality is guided by the non-sampling information. Since the Fed
uses equal weights to aggregate densities, it can be considered a good benchmark to start from. Also, researchers
in the past have frequently found combining point forecasts with equal weights to be very competitive with the
more complicated weighting techniques. Clemen (1989) shows in his review that equal weights are difficult to
beat. Similar results were concluded by Stock and Watson (1999) and Fildes and Ord (2002). The prior shrinks
the BOP towards SOP but still allows deviations in case strong evidence for better relative predictive accuracy is
present. The paper also explores shrinkage towards extreme weights by keeping λd < 1.

Frequent entry and exit of forecasters make optimization of the opinion pool more involved. Capistrán and
Timmermann (2009) elaborated on the problem of having an unbalanced panel and recommended filling in the
missing values before aggregation. They also considered using the unbalanced panel by keeping only the frequent
forecasters. However, they had to resort to the simple average when there were fewer remaining forecasters than
parameters to be estimated. This paper does not fill in for the missing forecasting density and follows the following
method to deal with the unbalanced panel .

• Entry: Suppose a forecaster is unavailable in the training data (m quarters moving window) but submits the
prediction for the (m + 1)th quarter. Thus, there is no information on the past predictive performance. In
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Figure 5

that case, their density is allotted 1/A weight (equal weight), where A is the number of active forecasters
in the (m + 1)th quarter. Alternatively, the researcher can choose to include the expert only if they have
participated for a certain number of quarters (Conflitti et al. (2015) used 5 quarters of data).

• Exit: Suppose a forecaster was available in the training data (m-quarter moving window) but not for the
(m+ 1)th quarter. In that case, their density will be allotted 0 weight, and they will not be considered in the
optimization process.

• Partial availability: Suppose a forecaster submits the prediction for the (m + 1)th quarter but was available
in s periods out of the m training period where s < m. The weights associated with the forecaster will enter
the joint conditional density (Eq. B.6) in the periods where they were available (total of s times). Thus, the
methodology rewards consistency as the forecaster with active participation will have a greater influence on
the opinion pool density than an inactive one.

To explain it better, let us assume that 40 forecasters were active in the last 20 quarters (not necessarily for
every quarter), which is the training period for this case. Only 10 forecasters submitted their predictions for the
21st quarter, including 2 new ones. Then, the weights allotted to these 2 new ones would be 1/10 each, and the
weights for the remaining 8, whose values were estimated based on the past data (excluding the twelve inactive
forecasters), would be normalized so that the total sum of the weights for 10 active experts is 1.

The paper considers the moving windows approach with 24 quarters (6 years) of training data and the rest of
the period until 2020 Q1 (pre-Covid) as testing data (one step out of sample prediction). The paper identifies pre
2013 as the period where SOP performs better than BOP and post 2013 as the period when BOP performs better
than SOP, especially for Dirichlet and Normal priors.

Figure 6 shows the log score difference between BOP and SOP for Normal and Laplace prior for pre and
post 2013 period. The penalty term λk takes the values 0.25, 1 and 5 for k = n or l where 0.25 represents weak
shrinkage and 5 represent strong shrinkage. The difference is normalized to 0 and thus the vertical line at the
origin is represented by SOP (equal weights). The upper sub-figures shows the log score difference for Normal
prior for different values of shrinkage, which is, on average, worse than SOP for pre 2013 and better than SOP in
post 2013. This is confirmed in Tab. 1 and Tab. 2 where the average log score difference for Normal is negative for
pre 2013 and positive for post 2013. The log score for normal is not sensitive to the penalty values chosen which
hints towards increasing them. For Laplace prior, the performance ordering is not clear in the bottom sub-figures
of Fig. 6. Compared to Normal, the log score of Laplace responds to change in penalty strength though there
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Figure 6: Log Score Difference between BOP (Log) and SOP for Normal and Laplace
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Figure 8: Log Score Difference between Dirichlet BOP (Log) and SOP when λd < 1

functional relation is not obvious. In Tab. 1 and Tab. 2, the average log score difference for Laplace is negative for
pre 2013 and positive for post 2013.

Figure. 7 shows the log score difference between BOP and SOP for Dirichlet prior for pre and post 2013 period
when λd = 1, 2 and 5. This setting explores the shrinkage of weights towards equality as analysed in Fig. 6.
Similar to Normal, Dirichlet performs worst than SOP in pre 2013 and better than SOP in post 2013. The log score
for Dirichlet converges towards log score of SOP as λd increases.

Figure. 8 shows the log score difference between BOP and SOP for Dirichlet prior for pre and post 2013
period when λd = 0.5 and 0.75. This setting explores the shrinkage towards extreme weights. The pattern is
similar to what was observed for λd = 1. Dirichlet prior with λd ≤ 1 shows significant improvement in predictive
accuracy for post 2013 period compared to λd > 1. Keeping λd ≤ 1 turns out to be high risk high reward strategy
considering the two periods data is divided into. In Tab. 1 and Tab. 2, the average log score difference for Dirichlet
for any value of λd is negative for pre 2013 and positive for post 2013.
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Table 1: Pre 2013 Average Log Score Difference between BOP and SOP

λ Dirichlet Normal Laplace

0.25 -0.358 -1.309 -0.008
0.5 -0.383 -1.241 -0.001
0.75 -0.578 -1.329 -0.008
1 -1.382 -1.298 -0.009
2 -0.116 -1.352 0.006
5 -0.035 -1.361 -0.002

Table 2: Post 2013 Average Log Score Difference between BOP and SOP

λ Dirichlet Normal Laplace

0.25 0.071 0.186 0.001
0.5 0.078 0.188 0.001
0.75 0.083 0.194 0.001
1 0.206 0.200 0.002
2 0.048 0.195 0.001
5 0.012 0.184 0.002

There could be couple of potential reasons for improved performance of BOP over SOP post 2013. First, since
the training window of 6 years is used, predicting inflation in 2013 excludes the Great Recession from the training
data which could be seen as a structural break. Second, with advancement in machine learning and predictive
models, forecasters on average has become better in predicting inflation in the last decade. Further analysis is need
cement these potentila factors as causes.

6 Conclusion

This paper provides a Bayesian inspired framework which is general enough to accommodate any scoring rule and
penalty for estimation of regularized opinion pools considering low frequency nature of time series data. The appli-
cations of BOP extend to macroeconomics or finance, especially in settings which deal with aggregating predictive
densities. Gneiting and Ranjan (2013) combined predictive cumulative distributions and tested the approach on
forecasting S&P 500 returns. McAlinn et al. (2020) used the Bayesian predictive synthesis for applications related
to macroeconomic forecasting. Del Negro et al. (2016) estimated time-varying weights in linear opinion pools
(Dynamic Pools) and used them to investigate the relative forecasting performance of dynamic stochastic general
equilibrium (DSGE) models with and without financial frictions for output growth and inflation. Baştürk et al.
(2019) combined density forecasts to improve portfolio strategies. While the discussion in the paper focused on
macroeconomic time series data, the usefulness of the techniques can be extended to other applications like gam-
bling, stock market, election polls etc. The utility of the BOP in other simulation settings, improvements in the
MCMC algorithm and estimation of optimal shrinkage can be explored in future research work.
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Appendix A: Back-fitting MCMC algorithm

This subsection presents the MCMC algorithm used in the estimation of BOP. Let wo be the weight vector drawn
in the previous iteration and wn be the weight vector drawn in the current iteration. The steps are as follows.

STEP 1. Draw wn from a proposal density, be it Dirichlet, Normal distribution with logistic transformation
(discussed in Section 3) or truncated normal (defined on the interval [0, 1]), where the proposal is centred at
wo. Normalize wn so that the sum is 1 in case needed, and choose the variance so that the whole space can
be explored.

STEP 2. Generate u2 ∼ uniform(0, 1)

STEP 3. If u2 ≤ min
(
p(YT |wn)
p(YT |wo)

, 1
)

, return wn, else return wo and store the value of conditional density
evaluated at wo. Since uniform Dirichlet distribution is considered as prior, it disappears from the formula.

STEP 4. Repeat the above three steps M times (call it iteration cycle 1) and name the weights as w∗
0 with the

highest conditional density value.

STEP 5. Repeat the above 4 steps N times (call it iteration cycle 2) with w0 = w∗
0 in each iteration. Stop

once the value of conditional density has converged and use w∗
0 stored in the N th iteration as w̄T .

The value N in iteration cycle 2 can be decided based on how much the maximum conditional density value
changes after every M iteration in iteration cycle 1. Similarly, the number of iterations M in iteration cycle 1 is
decided based on the trade-off between exploring the solution space and computational time. There is a possibility
that w̄T is not a global maximum. The paper suggests using the algorithm multiple times from different initial
conditions to verify.

Appendix B: Asymptotic Properties

Under the M-closed case, when the true model (let’s say D) is part of the set of available models, the opinion
pool degenerates to the true model since all the weight is allotted to it (Geweke and Amisano (2011)). This
situation rarely arrives in real life, and D is generally unknown to the forecaster and the decision maker. The
weights become relevant under the M-Open case when D is not part of the set of available models. In that case,
the true weights (let’s say w0 = {w0

1, w
0
2, . . . , w

0
K}) can be interpreted as the ones which give the minimum

Kullback-Leibler divergence from D to the opinion pool. Gneiting and Raftery (2007) showed that the opinion
pool optimized based on log predictive score minimizes the Kullback–Leibler directed distance from the data
generating process to the prediction model. For K prediction models, the log prediction score for an opinion pool
for wT = {w1,T , w2,T , . . . , wK,T } where wk,T ≥ 0 ∀ k = 1, 2, . . . ,K and

∑K
k=1wk,T = 1 for a given period t

will look like

l(wT |YT ) =

T∑
t=1

log
( K∑

k=1

wk,T p(yt|Yt−1,Mk)
)

=
T∑
t=1

l(wT |Yt) (B.1)

One of the advantages of the log prediction score is that it is closely related to the likelihood function, which can be
seen in the relation l(wT |YT ) = log(p(YT |wT )). Geweke and Amisano (2011) showed that the weights obtained
from optimizing l(wT |YT ) asymptotically minimizes the Kullback-Leibler distance from the true model D.

w∗
T = arg maxw l(wT |YT )

a.s.→ arg maxw l(w|Y ) = w0 (B.2)
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where, 1
T

∑T
t=1 l(wT |Yt) = l̄(wT |YT )

a.s.→ l(w|Y ). Using this result, the posterior density of weights can be
rewritten as

p(wT |YT ) ∝ p(YT |wT )p(wT )

∝ exp{log(p(YT |wT ))}p(wT )

∝ exp{
T∑
t=1

l(wT |Yt)}p(wT )

∝ exp{T l̄(wT |YT )}p(wT ) (B.3)

As T increases, the exponential term dominates, and the effect of the prior, which does not depend on T , becomes
relatively smaller. To analyse the posterior density further, let’s take a second-order Taylor series approximation
of l(wT |YT ) around w∗

T

l(wT |YT ) ≈ l(w∗
T |YT )−

T

2
(wT − w∗

T )
2(−l̄′′(w∗

T |YT ))

≈ l(w∗
T |YT )−

T

2v
(wT − w∗

T )
2 (B.4)

where l̄′′(w∗
T |YT ) =

1
T

∑T
t=1 l

′′(w∗
T |Yt) and v = [l̄′′(w∗

T |YT )]−1. The term with first-order derivative disappears
as l(wT |YT ) is maximized at wT = w∗

T . The posterior density can be approximated as

p(wT |YT ) ∝ exp{− T

2v
(wT − w∗

T )
2}p(wT ) (B.5)

The first term is in the form of a normal distribution with mean w∗
T and variance v

T . In summary, the role of the
prior density becomes relatively small in determining the posterior density when T is large. The posterior density
converges to a degenerate density at w0 as T −→ ∞ then v

T −→ 0 and w∗
T −→ w0, and the posterior density is

approximately normally distributed with mean w∗
T .

Appendix C: Natural interpretation of Log Score under Bayesian framework

Given that the opinion pool itself is an appropriate probability distribution function, it makes sense to treat it as the
joint conditional density (equivalent to the joint likelihood function) given as

p(YT |wT ) =

T∏
t=1

p(yt|Yt−1)

=

T∏
t=1

( K∑
k=1

wk,T p(yt|Yt−1,Mk)
)
. (B.6)

The conditional density incorporates the past predictive performance of experts as it is defined as a sequence of
one-step-ahead conditional densities from time 1 to T . Since each conditional density is a mixture generated by
the weights which are not varying with respect to time, the weights are tied with past conditional densities.

Given the prior and the conditional densities, the posterior density of the weights takes the form

p(wT |YT ) ∝ p(YT |wT )p(wT )

∝
T∏
t=1

( K∑
k=1

wk,T p(yt|Yt−1,Mk)
) K∏

k=1

wαk−1
k,T . (B.7)

It is easy to see that the log score rule (optimal prediction pools by Geweke and Amisano (2011)) is a monotonic
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transformation of the conditional density.

log
( T∏

t=1

( K∑
k=1

wk,T p(πt|π1:t−1)
))

=

T∑
t=1

log
( K∑

k=1

wk,T p(πt|π1:t−1)
)
.

Therefore, the mode of the posterior density of weights will coincide with the weights under the optimal prediction
pool asymptotically. The weights minimize the Kullback–Leibler divergence from DGP to the opinion pool since
the prior disappears in a large sample. In small sample settings, the estimates of BOP will differ from the optimal
prediction pool as the BOP weights will shrink towards the prior. Since it is not feasible to optimize the function
under micronumerosity, the BOP with a uniform prior can be seen as an extension of the optimal prediction pool,
broadening its applicability.

Appendix D: Extra Figures from Simulation Study
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Figure 9: Average Log Score as a function of Penalty for Bayesian Opinion Pools for T = 10
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Figure 10: Weights as a function of Penalty for Bayesian Opinion Pools under Case 2 and T = 3
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