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Abstract

We consider a social choice model where voters have single-peaked pref-
erences over the alternatives that are aggregated to produce ‘intervals’ of
fixed cardinality, 𝐿. This is applicable in situations where the alternatives
can be arranged in a line (e.g. plots of land) and a contiguous set of these
are required (e.g. a hospital or a school). We define interval-social choice
correspondences (I-SCCs) on profiles of single-peaked preferences which
select intervals. We extend single-peaked preferences to intervals using re-
sponsiveness. We show that generalized median-interval rules are the only
strategy-proof, anonymous and interval efficient I-SCCs. An I-SCC is in-
terval efficient if no other interval can make every voter strictly better-off.
We show that replacing interval efficiency with a stronger notion, Pareto
efficiency, characterizes a sub-class of these rules called the 𝑡-th interval
rules.
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1 Introduction
There are many voting situations over a one-dimensional policy space where
a continguous set of alternatives needs to be chosen. Consider the following
examples:

• Choosing plots of land: A facility like a hospital or school needs to be
constructed which requires a set of ‘connected’ or contiguous plots. Here
the individual plots can be seen as ‘alternatives’.

• Choosing a committee: A committee needs to be selected from the set of
‘citizen-candidates’ on the basis of location where the candidates need to be
neighbours (to minimize costs, for example).

In many cases, voters may have an incentive to lie about their preferences if they
can obtain a better outcome. Therefore, it is imperative to design an aggregation
rule which is immune to such manipulation. In this paper, we study strategy-
proof social choice correspondences (SCC) which pick ‘contiguous’ subsets (or
intervals) of fixed cardinality (which we call interval-SCCs or I-SCCs) in the
domain of ‘extended’ single-peaked preferences.

The classic works on strategy-proof social choice functions, Gibbard (1973) and
Satterthwaite (1975), show that the only rules which are strategy-proof on the
unrestricted domain with more than three alternatives are dictatorial rules.1 When
preferences are single-peaked, Moulin (1980) showed that generalized median
voter rules are the only strategy-proof, anonymous and Pareto optimal social
choice functions.

In our model, voters have single-peaked preferences over the set of alternatives (as
defined in Black (1948), Arrow (2012) and Moulin (1980)) but the final outcome
may be a contiguous subset of those alternatives.2 This framework is applicable
to settings where the voter preferences over alternatives are required to make
decisions on public goods over intervals whose cardinality may not be known a
priori. It is natural to assume that preferences are single-peaked when the policy
space is ordered or one-dimensional as shown in Hotelling (1929) and Downs
(1957).3

1Similar results have been shown for SCCs by Pattanaik (1973), Gärdenfors (1976), Barberà
et al. (1977), Kelly (1977), Feldman (1979a), Feldman (1979b), Feldman (1980), Sato (2008), and
more generally in Özyurt and Sanver (2009). Barberà et al. (2001) and Ching and Zhou (2002)
provide similar results for strategy-proof mechanisms in a cardinal setting, Schummer and Vohra
(2002) for trees, and Border and Jordan (1983) for 𝑛-dimensional Euclidean space.

2Ballester and Haeringer (2011) provides a characterization of the single-peaked domain.
3See Thomson (1997) and Amorós (2002) for applications of single-peaked preferences to

public goods model.
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To define strategy-proofness for an I-SCC requires extending preferences over
alternatives to preferences over 𝐿-intervals. We extend these preferences to all
intervals of cardinality 𝐿 by assuming that they are responsive. This requires that
if an alternative 𝑎 has been removed from an 𝐿-interval 𝐴 and another alternative
𝑏 has been added to create a new 𝐿-interval 𝐵, then interval 𝐴 is preferred
to interval 𝐵 if and only if alternative 𝑎 is preferred to alternative 𝑏. Various
preference extensions used in the literature on social choice theory (Sato (2008))
and matching theory (Konishi and Ünver (2006)) satisfy this property (see Barberà
et al. (2004) for a survey on various preference extensions).4

We characterize generalized median interval rules which assign 𝑛−1 fixed intervals
of cardinality 𝐿 (where 𝑛 is the number of voters) and outputs an L-interval. The
top-𝐿 intervals of 𝑛 voters and the 𝑛 − 1 fixed intervals of are listed from left to
right with respect to their lower-end points. These rules then pick the median
interval which may not be the top-L interval of the median voter. These rules are
the interval-versions of rules characterized in Moulin (1980) and coincide when
𝐿 = 1.

We show that generalized median interval rules are the only strategy-proof, anony-
mous and interval efficient I-SCCs. The first two axioms are standard in the litera-
ture, however, the version of strategy-proofness we use is not a direct extension of
the condition to intervals. This axiom is defined on I-SCCs which choose intervals
but the manipulations made by voters are over alternatives. Therefore, the voters
have more deviations than they would if they could only manipulate ‘intervals’.
Due to this, the proof of the main theorem does not follow directly from the result
in Moulin (1980). Additional properties of the domain need to be proved in order
to rule out these deviations.

The last axiom is a weaker, interval-variant of Pareto efficiency and can be stated as
follows. Interval efficiency of the I-SCC requires that there should not exist any 𝐿-
interval that makes all the voters strictly better-off compared to the outcome of the I-
SCC. When we require outcomes to be Pareto efficient in addition to being interval
efficient, we characterize 𝑡-interval rules which pick the 𝑡-th position interval from
the set of top-L intervals when they are arranged from left to right.

Our rules can also be seen as interval-based SCC versions of the rules characterised
in Moulin (1980) for social choice functions. The proof of the main theorem
proceeds in two steps. We first show that if voters have single-peaked preferences
which are responsive over intervals then these preferences are single-peaked over
intervals as well. In the second step, we show that a strategy-proof and interval
efficient I-SCC must be top-𝐿 only, i.e., it is invariant to changes in the preference

4All the extensions mentioned in Sato (2008) are responsive on intervals. We show this in the
appendix.
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profile made outside the top-𝐿 intervals of voters. Finally, we use Moulin (1980)’s
result to characterize generalized median-interval rules.

The paper is organized as follows. Section 2 will describe the model and defi-
nitions. Section 3 and 4 presents the set of axioms and results respectively. We
conclude in Section 5. Some additional results and proofs are provided in the
Appendix.

2 The Model
The set of voters is𝑁 = {1, 2, . . . , 𝑛}, and the set of alternatives is 𝑋 = {𝑎1, 𝑎2, . . . , 𝑎𝑚}.
The alternatives are arranged according to an ordering < on 𝑋 such that 𝑎1 < 𝑎2 <
· · · < 𝑎𝑚. We will denote by 𝑎 𝑗 and 𝑎 𝑗+1 as two consecutive alternatives according
to <.

Voter preferences over alternatives: Each voter 𝑖’s preference, 𝑃𝑖, is a linear
order which is single-peaked on 𝑋 , i.e., there exists a ‘peak’, 𝜏(𝑃𝑖), such that for
any 𝑥, 𝑦 ∈ 𝑋 , [

𝑦 < 𝑥 ≤ 𝜏(𝑃𝑖) or 𝜏(𝑃𝑖) ≤ 𝑥 < 𝑦
]
⇒ 𝑥𝑃𝑖𝑦,

where the peak, 𝜏(𝑃𝑖), is the top-ranked alternative in 𝑋 for any voter 𝑖 ∈ 𝑁 .5
Let S(𝑋) be the set of all single-peaked preferences over 𝑋 according to < and
let 𝑃 = (𝑃1, . . . , 𝑃𝑛) denote a profile of preferences. Let S𝑛 (𝑋) be the set of all
single-peaked profiles on 𝑋 according to <.

Interval of cardinality 𝐿: For any 𝐿 ∈ {1, 2, 3, . . . , 𝑚}, 𝑙 ∈ {1, . . . , 𝑚 − 𝐿 + 1} and
𝑎𝑙 ∈ 𝑋 , define an interval of cardinality 𝐿 or 𝐿-interval as [𝑎𝑙] = {𝑎 ∈ 𝑋 | 𝑎𝑙 ≤
𝑎 < 𝑎𝑙+𝐿}. Therefore [𝑎𝑙] includes all 𝑙 alternatives from 𝑎𝑙 to 𝑎𝑙+𝐿−1 according
to the order <.

Ordering,<𝐿 , over 𝐿-intervals: For any two intervals [𝑎𝑙] and [𝑎𝑟] of cardinality 𝐿,
define an ordering <𝐿 over 𝐿-intervals as follows: [𝑎𝑙] <𝐿 [𝑎𝑟] if and only if
𝑎𝑙 < 𝑎𝑟 .

We say that two intervals [𝑎𝑙] and [𝑎𝑟] are adjacent if (i) [𝑎𝑙] ≠ [𝑎𝑟] and (ii) there
is no alternative 𝑥 such that min{𝑎𝑙 , 𝑎𝑟} < 𝑥 < max{𝑎𝑙 , 𝑎𝑟}.

5A binary relation 𝑃 defined on 𝑋 is a linear order if it is (i) complete: either 𝑥𝑃𝑦 or
𝑦𝑃𝑥 ∀𝑥, 𝑦 ∈ 𝑋 , (ii) transitive: [𝑥𝑃𝑦 and 𝑦𝑃𝑧] ⇒ [𝑥𝑃𝑧] ∀𝑥, 𝑦, 𝑧 ∈ 𝑋 and (iii) antisymmetric:
[𝑥𝑃𝑦&𝑦𝑃𝑥] ⇒ [𝑥 = 𝑦], ∀𝑥, 𝑦 ∈ 𝑋 .
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Example 1 Consider the following example for 𝐿 = 3. Three intervals are shown
from left to right: [𝑎1], [𝑎2] and so on till [𝑎𝑚−2]. Interval [𝑎1] is adjacent to
[𝑎2], [𝑎2] is adjacent to [𝑎3] and so on.

𝑎1 𝑎2 𝑎3 𝑎4 𝑎𝑚−2 𝑎𝑚−1 𝑎𝑚

[𝑎1]

[𝑎2] [𝑎𝑚−2]

Figure 1: Alternatives, and intervals of cardinality 3

Claim 1 (Top-𝐿 interval:) Take any 𝐿 ∈ {1, ..., 𝑚}. The set of top-𝐿 ranked
alternatives of any single-peaked preference 𝑃𝑖 (denoted by 𝑃𝐿

𝑖 ) for any 𝑖 ∈ 𝑁 is
an interval of cardinality 𝐿 (henceforth, top-𝐿 interval).

We prove Claim 1 by contradiction. It is trivially satisfied for 𝐿 ∈ {1, 𝑚}. Suppose
the set of top-𝐿 ranked alternatives 𝑃𝐿

𝑖 is not an interval, for some 𝐿 ∈ {2, ..., 𝑚−1}.
There exists distinct alternatives 𝑥, 𝑦 ∈ 𝑋 \ {𝜏(𝑃𝑖)} such that (i) 𝑥 ∈ 𝑃𝐿

𝑖 and (ii)
𝑦 ∉ 𝑃𝐿

𝑖 , and either: (iii) 𝑥 < 𝑦 < 𝜏(𝑃𝑖) or (iv) 𝑥 > 𝑦 > 𝜏(𝑃𝑖). Since 𝑦 ∉ 𝑃𝐿
𝑖 and

𝑥 ∈ 𝑃𝐿
𝑖 , by definition of the top-𝐿 ranked set, 𝑥𝑃𝑖𝑦. This along with the fact that

either (iii) or (iv) holds, is a contradiction to single-peakedness of 𝑃𝑖. Henceforth,
we will use the term top-𝐿 interval to denote the set of top-𝐿 ranked alternatives
in a preference.

We will denote the set of all non-empty subsets of cardinality 𝐿 as X𝐿 and the set
of intervals of cardinality 𝐿 as I𝐿 for any 𝐿 ∈ {1, . . . , 𝑚}. Therefore, I𝐿 ⊂ X𝐿 .
We fix the cardinality of intervals to be 𝐿 throughout the length of this paper.

Interval-based Social Choice Correspondence (I-SCC)
In this paper, we only consider contiguous sets of cardinality 𝐿, i.e. 𝐿-intervals.
An interval-social choice correspondence (I-SCC), 𝑓𝐼 : S𝑛 (𝑋) → I𝐿 produces an
interval 𝑓𝐼 (𝑃) ∈ I𝐿 of cardinality 𝐿 for every profile 𝑃 ∈ S𝑛 (𝑋).
In order to compare the outcomes of I-SCCs with other outcomes, which are sets of
cardinality 𝐿 but not necessarily intervals, we need to extend voters’ preferences
over alternatives to subsets of fixed cardinality 𝐿. We define such extensions
below.
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Extension of preferences to X𝐿

Extension of 𝑃𝑖: A weak order ≿𝑖 for 𝑖 ∈ 𝑁 defined over X𝐿 is an extension of
any 𝑃𝑖 ∈ S(𝑋). We refer to the top-ranked 𝐿-cardinality subset according to ≿𝑖 as
𝜏(≿𝑖). We impose a property responsiveness on intervals which is only applicable
to the set I𝐿 ⊂ X𝐿 .

Responsiveness on intervals: Consider any two adjacent intervals [𝑎𝑙], [𝑎𝑟] ∈ I𝐿
such that 𝑎 ∈ [𝑎𝑙] \ [𝑎𝑟] and 𝑏 ∈ [𝑎𝑟] \ [𝑎𝑙]. Any extension ≿𝑖 of 𝑃𝑖 is responsive
on intervals if,

(i) 𝑎𝑃𝑖𝑏 ⇔ [𝑎𝑙] ≻𝑖 [𝑎𝑟] and (ii) 𝑏𝑃𝑖𝑎 ⇔ [𝑎𝑟] ≻𝑖 [𝑎𝑙]

where ≻𝑖 is the asymmetric part of ≿𝑖. Responsiveness over intervals can also be
interpreted as follows: if an alternative 𝑎 is removed from an interval of cardinality
𝐿 and another alternative 𝑏 is replaced with it to create a new interval (thus making
the two intervals adjacent) then the new interval is preferred over the old one if
and only if 𝑏 is strictly preferred over 𝑎 and vice versa if 𝑎 is strictly preferred over
𝑏. This version of responsiveness is similar to the one used in Bossert (1995) and
is also used widely in the matching literature (Konishi and Ünver (2006)).

Imposing responsiveness over intervals is a weaker requirement than imposing it
over all sets of cardinality 𝐿. However, we only require the weaker version since
I-SCCs only produce intervals. We show that single-peaked preferences over 𝑋
according to < are responsive over intervals if and only if they are single-peaked
over I𝐿 according to <𝐿 . We provide a formal proof of this below.

Single-peakedness over I𝐿: A single-peaked preference ≿𝑖 for voter 𝑖 ∈ 𝑁 over
I𝐿 can be defined by replacing 𝑋 with I𝐿 , 𝜏(𝑃𝑖) with 𝜏(≿𝑖), and < with <𝐿 .

Proposition 1 An extension, ≿𝑖 over X𝐿 of 𝑃𝑖 ∈ S(𝑋) is single-peaked over I𝐿
(i.e. ≿𝑖∈ S(I𝐿)) with order <𝐿 and 𝜏(≿𝑖) as the ‘peak’ if and only if it is responsive
on intervals.

Proof: We first show that responsiveness of ≿𝑖 implies that it is single-peaked over
I𝐿 . Consider an linear extension ≿𝑖 of 𝑃𝑖 that is responsive on intervals.

Denote the top-𝐿 interval of 𝑃𝑖 by [𝑎𝑡]. We will first show that for all [𝑎𝑙−1] <𝐿

[𝑎𝑙] ≤𝐿 [𝑎𝑡], we have [𝑎𝑙] ≻𝑖 [𝑎𝑙−1]. Transitivity of ≻𝑖 will imply that [𝑎𝑡] is
preferred to all the intervals on the ‘left’ according to <𝐿 and similar arguments
for the intervals on the ‘right’ will then imply that [𝑎𝑡] = 𝜏(≿𝑖).
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Case 1: Suppose [𝑎𝑙] and [𝑎𝑙−1] are two intervals such that 𝜏(𝑃𝑖) ∈ [𝑎𝑙]. Let
[𝑎𝑡] = {𝑎𝑡 , . . . , 𝜏(𝑃𝑖), 𝑎𝑟1, 𝑎𝑟2, . . . , 𝑎𝑟𝑘 } where 𝑎𝑟1, . . . , 𝑎𝑟𝑘 are listed in the de-
creasing order of preference to the right of 𝜏(𝑃𝑖). Note that [𝑎𝑡−1] = ([𝑎𝑡] \
{𝑎𝑟𝑘 }) ∪ {𝑎𝑡−1}. By responsiveness over [𝑎𝑡] and [𝑎𝑡−1], and due to the fact that
𝑎𝑟𝑘 belongs to top-L interval of 𝑃𝑖 we have 𝑎𝑟𝑘𝑃𝑖𝑎𝑡−1 ⇒ [𝑎𝑡] ≻𝑖 [𝑎𝑡−1]. Sim-
ilarly by responsiveness on intervals, [𝑎𝑡−1] and [𝑎𝑡−2], we have 𝑎𝑟𝑘−1𝑃𝑖𝑎𝑡−2 ⇒
[𝑎𝑡−1] ≻𝑖 [𝑎𝑡−2].
Case 2: Consider [𝑎𝑙], [𝑎𝑙−1] such that 𝜏(𝑃𝑖) ∉ [𝑎𝑙]. By single-peakedness of 𝑃𝑖,
𝑎𝑙−1 < 𝑎𝑙+𝐿−1 < 𝜏(𝑃𝑖) implies 𝑎𝑙+𝐿−1𝑃𝑖𝑎𝑙−1. By responsiveness [𝑎𝑙] ≻𝑖 [𝑎𝑙−1]
since [𝑎𝑙−1] = ( [𝑎𝑙] \{𝑎𝑙+𝐿−1})∪{𝑎𝑙−1}. By transitivity of ≻𝑖, for all [𝑎𝑙] ≤𝐿 [𝑎𝑡],
[[𝑎𝑙] ≻𝑖 [𝑎𝑙−1] and [𝑎𝑙−1] ≻𝑖 [𝑎𝑙−2]] ⇒ [[𝑎𝑙] ≻𝑖 [𝑎𝑙−2]]. Repeated application
of transitivity implies that [𝑎𝑙] ≻𝑖 [𝑎𝑙−𝑘 ] for all [𝑎𝑙] ≤𝐿 [𝑎𝑡] and for all 𝑘 ≤
𝑙 − 1.

Similar arguments can be made for intervals to the ‘right’ of [𝑎𝑡] according to <𝐿 .
Therefore ≻𝑖 is single-peaked on I𝐿 with respect to <𝐿 and 𝜏(≿𝑖) = [𝑎𝑡].
We now show the converse. Consider an extension of 𝑃𝑖, ≿𝑖 that is a linear order
and single-peaked on I𝐿 with respect to <𝐿 and 𝜏(≿𝑖) = [𝑎𝑡] where [𝑎𝑡] is the
top-𝐿 interval of 𝑃𝑖.

To show responsiveness on intervals we need to show that for any two adjacent
intervals [𝑎𝑙], [𝑎𝑙−1], we have [[𝑎𝑙] ≻𝑖 [𝑎𝑙−1]] ⇔ [𝑎𝑙+𝐿−1𝑃𝑖𝑎𝑙−1] and [[𝑎𝑙−1] ≻𝑖

[𝑎𝑙]] ⇔ [𝑎𝑙−1𝑃𝑖𝑎𝑙−𝐿+1]. Consider intervals [𝑎𝑙−1] and [𝑎𝑙] on the ‘left’ of [𝑎𝑡]
according to <𝐿 i.e. [𝑎𝑙−1] <𝐿 [𝑎𝑙] ≤𝐿 [𝑎𝑡].
Case I: Suppose 𝜏(𝑃𝑖) ∉ [𝑎𝑙]. By single-peakedness of ≿𝑖, we have [𝑎𝑙] ≻𝑖 [𝑎𝑙−1].
Since [𝑎𝑙−1] = ([𝑎𝑙] \ {𝑎𝑙+𝐿−1}) ∪ {𝑎𝑙−1}], by single-peakedness of 𝑃𝑖, 𝑎𝑙−1 <
𝑎𝑙+𝐿−1 < 𝜏(𝑃𝑖) implies 𝑎𝑙+𝐿−1𝑃𝑎𝑙−1.

Case II: 𝜏(𝑃𝑖) ∈ [𝑎𝑙]. For [𝑎𝑙] = [𝑎𝑡], single-peakedness of ≿𝑖 implies [𝑎𝑡] ≻𝑖

[𝑎𝑡−1] since [𝑎𝑡−1] = ([𝑎𝑡] \ {𝑎𝑡+𝐿−1}) ∪ {𝑎𝑡−1}. Similar arguments can be made
for intervals on the right of [𝑎𝑡].
To define generalized median interval rules, we introduce some definitions:

(i) Median: Consider any integer 𝑝 > 0 and a sequence of alternatives 𝐵 =
(𝑥1, 𝑥2, . . . , 𝑥2𝑝−1). Repetitions are allowed and alternatives are arranged accord-
ing to <. An alternative 𝑥 ∈ 𝐵 is the median of this sequence, denoted by
𝑚𝑒𝑑 (𝑥1, 𝑥2, ..., 𝑥2𝑝−1), if

|{𝑥′ ∈ 𝐵 : 𝑥′ ≤ 𝑥}| ≥ 𝑝 and |{𝑥′ ∈ 𝐵 : 𝑥 ≤ 𝑥′}| ≥ 𝑝.

Note that the median of a sequence with 2𝑝 − 1 alternatives is the 𝑝-th alternative.
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Similarly we can define the median of a sequence of intervals, ([𝑎1], . . . , [𝑎2𝑘−1]),
as 𝑚𝑒𝑑 ([𝑎1], ..., [𝑎2𝑘−1]) = [𝑎𝑘 ] for any integer 𝑘 > 0.

(ii) Fixed Intervals: For the rule, a sequence of 𝑛 − 1 fixed intervals are added
to every profile of voters, 𝑃 ∈ S𝑛 (𝑋). We denote the set of fixed intervals by
(𝜏(≿̂1), . . . , 𝜏(≿̂𝑛−1)).

Generalized median interval (GMI) rules

An I-SCC, 𝑓𝐼 : S𝑛 (𝑋) → I𝐿 , is a GMI rule if there exist 𝑛− 1 fixed intervals such
that for any 𝑃 ∈ S𝑛 (𝑋),

𝑓𝐼 (𝑃) = 𝑚𝑒𝑑 (𝜏(≿1), . . . , 𝜏(≿𝑛), 𝜏(≿̂1), . . . , 𝜏(≿̂𝑛−1))

where 𝜏(≿𝑖) is the top-𝐿 interval of voter 𝑖 ∈ 𝑁 and 𝜏(≿̂𝑖) for all 𝑖 ∈ {1, ..., 𝑛 − 1}
are fixed intervals. Note that for a given generalized median interval rule the
fixed intervals are defined independently of the profiles and remain fixed for all
𝑃 ∈ S𝑛 (𝑋). Therefore, different sets of fixed intervals define different GMI
rules.

The 𝑡-th interval rule: If the fixed intervals are allowed to take only the two
extreme locations, i.e., 𝜏(≿̂𝑖) ∈ {[𝑎1], [𝑎𝑚+𝐿−1]} for all 𝑖 ∈ {1, . . . , 𝑛 − 1}, then
these GMI rules are called 𝑡-th interval rule. These rules select the 𝑡-th voter’s
top-𝐿 interval from the sequence ((𝜏(≿1), . . . , 𝜏(≿𝑛))). For example, if half of the
fixed intervals are assigned to [𝑎1] and the other half to [𝑎𝑚+𝐿−1] (when the total
number of intervals is odd) then the corresponding rule picks the median interval,
i.e., 𝑚𝑒𝑑 (𝜏(≿1), 𝜏(≿2), ..., 𝜏(≿𝑛)).
Note that the median interval is according to the left most alternative in top-𝐿
intervals and may be the top-𝐿 interval of the median voter to 𝜏(𝑃𝑖) (except when
𝐿 = 1 as in Moulin (1980)). We provide an example to illustrate.

Example 1: Suppose the set of voters is 𝑁 = {1, 2, 3}, there are five alternatives
which are arranged as follows: 𝑎1 < · · · < 𝑎5 and 𝐿 = 3. Consider the following
preferences:

Voter 1: 𝑎2𝑃1𝑎3𝑃1𝑎4𝑃1𝑎5𝑃1𝑎1,
Voter 2: 𝑎3𝑃2𝑎4𝑃2𝑎5𝑃2𝑎2𝑃2𝑎1,
Voter 3: 𝑎4𝑃3𝑎3𝑃3𝑎2𝑃3𝑎1𝑃3𝑎5.

Let 𝑓𝐼 be the GMI rule with fixed intervals 𝜏(≿̂1) = [𝑎1] and 𝜏(≿̂2) = [𝑎3]. By
definition of GMI rule, 𝑓𝐼 (𝑃) = 𝑚𝑒𝑑 ( [𝑎1], [𝑎2], [𝑎2], [𝑎3], [𝑎3]) = [𝑎2] which is
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not the top-𝐿 interval of the median voter, i.e., [𝑎3].

3 Axioms
We impose the following axioms on I-SCCs.

Anonymity: An I-SCC, 𝑓𝐼 , satisfies anonymity if for every preference profile
𝑃 ∈ S𝑛 (𝑋), and for each permutation 𝜎 of 𝑁 , 𝑓𝐼 (𝑃) = 𝑓𝐼 (𝑃𝜎 (𝑋)), where
𝑃𝜎
𝑖 = 𝑃𝜎(𝑖) for each 𝑖 ∈ 𝑁 .

Anonymity implies that the outcome of an I-SCC is independent of the identities
of voters.

Strategy-proofness: An I-SCC, 𝑓𝐼 , is said to be strategy-proof if for every
(𝑃𝑖, 𝑃−𝑖) ∈ S𝑛 (𝑋),

𝑓𝐼 (𝑃𝑖, 𝑃−𝑖) ≿𝑖 𝑓𝐼 (𝑃′
𝑖 , 𝑃−𝑖) ∀𝑃′

𝑖 ∈ S(𝑋).

In other words, strategy-proofness states that unilateral deviations do not make a
voter strictly better-off.

Since the outcome of I-SCCs are intervals, a natural extension of efficiency would
be to compare intervals in I𝐿 which we define below.

Interval efficiency: An I-SCC, 𝑓𝐼 , is said to be interval efficient if for any 𝑃 ∈
S𝑛 (𝑋) and any [𝑎𝑙] ∈ I𝐿 ,

[∃ 𝑗 ∈ 𝑁 s.t. [𝑎𝑙] ≻ 𝑗 𝑓𝐼 (𝑃)] ⇒ [∃ 𝑘 ∈ 𝑁 s.t. 𝑓𝐼 (𝑃) ≻𝑘 [𝑎𝑙]] .

An I-SCC satisfies interval efficiency if for any voter who can be made strictly
better-off by any interval other than 𝑓𝐼 (𝑃) there will be another voter who is
made strictly worse-off by that interval. Interval efficiency can be interpreted
as the interval version of Pareto efficiency. We can show that an I-SCC which
is strategy-proof and interval efficient assigns the same interval to two profiles
which have the same top-𝐿 intervals for all voters. We call this property top-𝐿
only which we defined below.

Top-𝐿 only: An I-SCC, 𝑓𝐼 , is said to be top-𝐿 only if for all 𝑃, 𝑃′ ∈ S𝑛 (𝑋) such
that 𝜏(≿𝑖) = 𝜏(≿′𝑖) for all 𝑖 ∈ 𝑁 , then 𝑓𝐼 (𝑃) = 𝑓𝐼 (𝑃).
Proposition 2 Suppose 𝑓𝐼 : S𝑛 (𝑋) → I𝐿 is strategy proof and interval efficient.
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Then it is top-𝐿 only.

Proof: Suppose 𝑓𝐼 is a strategy-proof and interval efficient I-SCC. Since the top-𝐿
interval of every voter is an interval, we can denote it as 𝜏(≿𝑖) = [𝑃𝑙

𝑖 ] where 𝑃𝑙
𝑖

is the left-most alternative in the top-𝐿 interval of the top-𝐿 interval of voter 𝑖 for
any 𝑖 ∈ 𝑁.

We define [𝑎, 𝑎] as the smallest interval such that
∪

𝑖∈𝑁 [𝑃𝑙
𝑖 ] ⊆ [𝑎, 𝑎]. We show

that any interval [𝑎𝑙] is interval efficient if and only if [𝑎𝑙] ⊆ ([𝑎, 𝑎] ∩ I𝐿).
(⇒) All voters prefer [𝑎, 𝑎 + 𝐿 − 1] to any other interval [𝑎𝑙] <𝐿 ([𝑎, 𝑎 + 𝐿 − 1],
since their top-𝐿 alternatives are on the right of [𝑎𝑙]. Similarly, all voters prefer
[𝑎 − 𝐿 + 1, 𝑎] to any other interval [𝑎 − 𝐿 + 1, 𝑎] <𝐿 [𝑎𝑙].
(⇐) Suppose an 𝐿-interval [𝑎𝑙] ⊂ [𝑎, 𝑎] is the outcome. Any distinct interval
on the right of [𝑎𝑙] makes all voters 𝑖 such that [𝑃𝑙

𝑖 ] ≤𝐿 [𝑎𝑙] worse-off and any
distinct interval on the left makes all voters 𝑖 such that [𝑎𝑙] ≤𝐿 [𝑃𝑙

𝑖 ] worse-off.
Therefore, 𝑓𝐼 (𝑃) ∈ [𝑎, 𝑎] for all 𝑃 ∈ S𝑛 (𝑋).
Pick any two profiles 𝑃, 𝑃′ ∈ S𝑛 (𝑋) such that [𝑃𝑙

𝑖 ] = [𝑃′𝑙
𝑖 ] for all 𝑖 ∈ 𝑁 . Consider

the following sequence of profiles,

𝑃0 = (𝑃1, 𝑃2, 𝑃3, . . . , 𝑃𝑛),
𝑃1 = (𝑃′

1, 𝑃2, 𝑃3, . . . , 𝑃𝑛),
𝑃2 = (𝑃′

1, 𝑃
′
2, 𝑃3, . . . , 𝑃𝑛),

𝑃3 = (𝑃′
1, 𝑃

′
2, 𝑃

′
3, . . . , 𝑃𝑛),

...
𝑃𝑛 = (𝑃′

1, 𝑃
′
2, 𝑃

′
3, . . . , 𝑃

′
𝑛).

We show that for each 𝑞 ∈ {0, ..., 𝑛 − 1}, the outcomes of consecutive profiles
coincide i.e. 𝑓𝐼 (𝑃𝑞) = 𝑓𝐼 (𝑃𝑞+1) for all 𝑞 ∈ {0, ..., 𝑛 − 1}. We will show the proof
for 𝑃0 → 𝑃1. Similar arguments can be made for other values of 𝑞.

Assume for contradiction that 𝑓𝐼 (𝑃) = 𝑓𝐼 (𝑃0) = [𝑎𝑙] ≠ 𝑓𝐼 (𝑃′
1, 𝑃−1) = 𝑓𝐼 (𝑃1) =

[𝑎𝑟]. Assume w.l.o.g that [𝑃𝑙
1] = [𝑃′𝑙

1 ] ≤𝐿 [𝑎𝑙].

Case 1: [𝑃′𝑙
1 ] ≤𝐿 [𝑎𝑙] <𝐿 [𝑎𝑟]. Voter 1 can deviate at profile 𝑃1 from 𝑃′

1 to 𝑃1
and be better-off at the profile 𝑃0 by single-peakedness of ≿𝑖.

Case 2: [𝑎𝑟] <𝐿 [𝑎𝑙]. There are two sub-cases:
Case 2.1: [𝑃𝑙

1] <𝐿 [𝑎𝑟] <𝐿 [𝑎𝑙]. Then voter 1 at preference 𝑃1 can deviate to 𝑃′
1

and be better-off by single-peakedness of ≿𝑖.
Case 2.2: [𝑎𝑟] <𝐿 [𝑃𝑙

1] = [𝑃′𝑙
1 ] <𝐿 [𝑎𝑙]. Suppose 𝑃1 ∈ S(𝑋) is such that all the

alternatives to the left of 𝑃𝑙
1 are preferred over alternatives to the right of 𝑃𝑙

1+𝐿−1.
In this case, voter 1 will deviate to [𝑃′𝑙

1 ].
Since 𝑓𝐼 is strategy-proof, all the above arguments lead to a contradiction. There-
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fore [𝑎𝑟] = [𝑎𝑙] and 𝑓𝐼 (𝑃0) = 𝑓𝐼 (𝑃1). Similar arguments can be made for the case
where [𝑎𝑙] ≤𝐿 [𝑃𝑙

1] = [𝑃′𝑙
1 ]. Therefore, 𝑓𝐼 (𝑃) = 𝑓𝐼 (𝑃0) = 𝑓𝐼 (𝑃𝑛) = 𝑓𝐼 (𝑃′).

■

Therefore, the outcome of an interval efficient and strategy-proof I-SCC, 𝑓𝐼 ,
depends only on the top-L intervals irrespective of the ordering of alternatives
which belong to it. In other words, the outcome is same for two profiles which
have the same set of top-𝐿 alternatives.

4 Results
Theorem 1 Suppose the extension ≿𝑖 of preferences 𝑃𝑖 for each voter 𝑖 ∈ 𝑁 is
responsive on intervals. An I-SCC, 𝑓𝐼 : S𝑛 (𝑋) → I𝐿 , is anonymous, strategy-
proof and interval efficient if and only if it is a generalized median interval rule.

The proof of the theorem follows from Propositions 1, Proposition 2 and Moulin
(1980). We provide a sketch of the proof.

We prove necessity first. GMI rules are anonymous since the rule is invariant
to permutation of voters’ preferences. GMI rules are interval efficient since they
always pick an 𝐿-interval which lies between the left-most and right-most top-𝐿
interval of voters. This implies that any other interval which makes a voter strictly
better-off will also make a voter strictly worse-off. We show that GMI rules are
strategy-proof. Since GMI rules only take into account the top-𝐿 interval of voters,
a voter 𝑖 has to change her own top-𝐿 interval to change the outcome. Since the
GMI rule picks the median of the top-𝐿 intervals and the fixed intervals, the only
way to change the outcome is to ‘report’ the top-𝐿 interval on the other side of the
interval outcome, 𝑓𝐼 (𝑃) (the outcome under truthful reporting). As a result of the
deviation, the outcome moves further away from the ‘true’ top-𝐿 interval of voter
𝑖. Since the extension ≿𝑖 of 𝑃𝑖 is single-peaked over intervals (Proposition 1) any
such deviation will make voter 𝑖 worse-off.

We now show sufficiency of the axioms. By Proposition 1, a preference ⪰𝑖 over
𝐿-intervals is single-peaked according to <𝐿 . This implies that intervals can be
arranged from left to right and can be seen as ‘interval-alternatives’ in the relevant
interval-based single-peaked domain. We have shown that any I-SCC which is
strategy-proof and interval efficiency must be top-𝐿 only (Proposition 2). This
implies that only the top-𝐿 intervals determine the outcome of such I-SCCs.

The next part of proof follows from Moulin (1980). Step one requires identifying
the ‘fixed intervals’. The first fixed interval is obtained by considering a profile
where 𝑛− 1 voters’ top-L interval is [𝑎1] and one voter’s is [𝑎𝑚−𝐿+1]. Subsequent
fixed intervals can be obtained by considering profiles where 𝑛 − 𝑗 voters’ top-L
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interval is [𝑎1] and other 𝑗 voters’ top-L interval is [𝑎𝑚−𝐿+1]. Interval efficiency
ensures that the outcome of profiles where top-L interval of all voters is [𝑎1] (or
[𝑎𝑚−𝐿+1]) is [𝑎1] (or [𝑎𝑚−𝐿+1]). Once the fixed intervals are identified, induction
is used over the number of voters whose top-L interval is neither [𝑎1] nor [𝑎𝑚−𝐿+1].
At each step of induction, a strategy-proof I-SCC has to choose the median interval
of (𝜏(≿1), . . . , 𝜏(≿𝑛), 𝜏(≿̂1), . . . , 𝜏(≿̂𝑛−1)). Therefore any rule that satisfies the
three axioms must be a GMI rule.

A stronger notion of efficiency on intervals can be imposed which requires that the
outcome cannot be improved upon by any subset of X𝐿 which makes all the voters
strictly better-off. To define this notion of efficiency which we refer to as Pareto
efficiency, we use the following extension.

Lexicographic Max:. Consider two sets 𝐴, 𝐵 ∈ X𝐿 . Suppose that the alternatives
in 𝐴 and 𝐵 are 𝑎1𝑃𝑎2𝑃 · · · 𝑃𝑎𝐿−1𝑃𝑎𝐿 and 𝑏1𝑃𝑏2𝑃 · · · 𝑃𝑏𝐿−1𝑃𝑏𝐿 respectively.
The extension ≿ of 𝑃 to X𝐿 is lexicographic max if,

𝐴 ≻ 𝐵 ⇔ ∃𝑙 s.t.
[

𝑎𝑙𝑃𝑏𝑙
∀𝑚 < 𝑙, 𝑎𝑚 = 𝑏𝑚

]
.

For comparing two sets 𝐴 and 𝐵, all the alternatives in each set are arranged from
best to worst in preference. If the first best alternative in one set is strictly preferred
to the first best alternative in other then that set is strictly preferred. If the first best
alternatives in the two sets are the same then it compares second best alternatives
and ranks them accordingly and so on.6

Pareto efficiency: An I-SCC, 𝑓𝐼 , is said to be Pareto efficient if for any 𝑃 ∈ S𝑛 (𝑋)
and any 𝐴 ∈ X𝐿 ,

[∃ 𝑗 ∈ 𝑁 s.t. 𝐴 ≻ 𝑗 𝑓𝐼 (𝑃)] ⇒ [∃ 𝑘 ∈ 𝑁 s.t. 𝑓𝐼 (𝑃) ≻𝑘 𝐴] .

Pareto efficiency states that for any voter 𝑗 who can be made strictly better-off by
any set other than 𝐴 there is another voter 𝑘 who is made strictly worse-off by that
set. Interval efficiency is weaker than Pareto efficiency if imposed on the set of
intervals I𝐿 . However, this is not the case in general if imposed on X𝐿 .7

Theorem 2 Suppose the extension ≿𝑖 of preferences 𝑃𝑖 for each voter 𝑖 ∈ 𝑁 is
lexicographic max on X𝐿 . An I-SCC, 𝑓𝐼 : S𝑛 (𝑋) → I𝐿 , is anonymous, strategy-
proof and Pareto efficient if and only if it is a 𝑡-th interval rule.

6Note that the lexicographic max extension is responsive on intervals. The proof is provided in
the appendix.

7We provide an example in the Appendix to illustrate this.
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The necessity of Pareto efficiency is implied by the fact that 𝑡-th interval rules
always pick top-L interval of a voter which is a Pareto efficient outcome.

For sufficiency, note that if an I-SCC satisfies Pareto efficiency and strategy-
proofness then it is top-L only. This is due to Proposition 2 and the fact that
Pareto efficiency is stronger that interval efficiency in I𝐿 . Therefore an I-SCC that
satisfies anonymity, Pareto efficiency and strategy-proofness will be a sub-class of
GMI rules. We use the following claim to show sufficiency.

Claim 2 The outcome of a Pareto efficient I-SCC, 𝑓𝐼 , must be a top-L interval of
a voter.

Proof. Suppose 𝑓𝐼 (𝑃) is not a top-𝐿 interval of any voter. Then there exist at least
one top-𝐿 interval of a voter on the right and one on the left of 𝑓𝐼 (𝑃).8 Suppose
for contradiction that there in no top-L interval to the right (left) of 𝑓𝐼 (𝑃), then the
right-most (left-most) top-L interval of voters is a Pareto improvement.

Therefore, let 𝐼𝑙 and 𝐼𝑟 be the top-𝐿 intervals closest to 𝑓𝐼 (𝑃) according to < on
the left and right respectively. We can show that there is a Pareto improving subset
of cardinality 𝐿 (need not be an interval) over 𝑓𝐼 (𝑃) which will make all the voters
strictly better-off.

Replace the left end-point alternative of 𝑓𝐼 (𝑃) with the left-most alternative in
𝑓𝐼 (𝑃) \ 𝐼𝑟 and right end-point alternative of 𝑓𝐼 (𝑃) with the right-most alternative
in 𝑓𝐼 (𝑃) \ 𝐼𝑙 . Since the extended preferences are lexicographic max, the voter with
top-L interval 𝐼𝑟 strictly prefers the new set over 𝑓𝐼 (𝑃) and so do all the voters
with top-L interval to her right. Similarly for the voter with top-L interval 𝐼𝑙 and
others on her left are also strictly better-off.

Therefore, any I-SCC, 𝑓𝐼 , that is anonymous, strategy-proof and Pareto efficient
is a GMI rule which can only pick a top-𝐿 interval of a voter. This implies that 𝑓𝐼
is a GMI rule where {𝜏(≿̂𝑖))} is equal to either 𝑎1 or [𝑎𝑚−𝐿+1]. Hence, 𝑓𝐼 must be
a 𝑡-th interval rule.

5 Conclusion
We characterize generalized median interval rules on an extended single-peaked
domain which satisfy responsiveness on intervals. It remains to be seen what the
class of strategy-proof and Pareto efficient non-interval SCCs are. The answer
to this question will depend on the nature of assumptions made on preference

8Note that we can consistently use the term ‘left’ and ‘right’ for 𝐿-intervals as before. The
proof does not depend on the location of voters’ peaks within the top-𝐿 intervals.
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extensions to non-interval sets of cardinality 𝐿.

6 Appendix
We provide definitions of extensions in Sato (2008) when restricted to compar-
ing 𝐿-cardinality subsets in X𝐿 9. Consider two sets 𝐴 and 𝐵 with alternatives
{𝑎1, . . . , 𝑎𝐿} and {𝑏1, . . . , 𝑏𝐿} respectively.

(i) Lexicographic Max extension: Assume 𝑎1𝑃𝑎2𝑃 · · · 𝑃𝑎𝐿−1𝑃𝑎𝐿 and 𝑏1𝑃𝑏2𝑃 · · · 𝑃𝑏𝐿−1𝑃𝑏𝐿 ,
then

𝐴 ≻𝑡𝑜𝑝 𝐵 ⇐ ∃𝑙s.t.
[

𝑎𝑙𝑃𝑏𝑙
∀𝑚 < 𝑙, 𝑎𝑚 = 𝑏𝑚

]
(ii) Lexicographic min extension: Assume 𝑎𝐿𝑃𝑎𝐿−1𝑃 · · · 𝑃𝑎2𝑃𝑎1 and 𝑏𝐿𝑃𝑏𝐿−1 · · · 𝑃𝑏2𝑃𝑏1,

then
𝐴 ≻𝑏𝑜𝑡 𝐵 ⇔ same as ≻𝑡𝑜𝑝

(iii) Max extension: Assume 𝑎1𝑃𝑎2𝑃 · · · 𝑃𝑎𝐿−1𝑃𝑎𝐿 and 𝑏1𝑃𝑏2𝑃 · · · 𝑃𝑏𝐿−1𝑃𝑏𝐿 ,
then

𝐴 ≻𝑚𝑎𝑥 𝐵 ⇔ ∃𝑙s.t.
 𝑎𝑙𝑃𝑏𝑙 or

[
𝑎𝑙 = 𝑏𝑙

𝑎𝐿−𝑙+1𝑃𝑏𝐿−𝑙+1

]
𝑎𝑚 = 𝑏𝑚 ∀𝑚 < 𝑙, ∀𝑚 > 𝐿 − 𝑙 + 1

(iv) Min extension: assume 𝑎𝐿𝑃𝑎𝐿−1𝑃 · · · 𝑃𝑎2𝑃𝑎1 and 𝑏𝐿𝑃𝑏𝐿−1 · · · 𝑃𝑏2𝑃𝑏1,
then

𝐴 ≻𝑚𝑖𝑛 𝐵 ⇔ same as ≻𝑚𝑎𝑥

Proposition 3 All preference extensions defined above are responsive on intervals
with same cardinality.

Proof. Consider, any [𝑎𝑘 ] ∈ I𝐿 . To show responsiveness on intervals we have
to compare either right adjacent: [𝑎𝑘 ] to [𝑎𝑘+1] i.e. [𝑎𝑘 ] \ [𝑎𝑘+1] = 𝑎𝑘 and
[𝑎𝑘+1] \ [𝑎𝑘 ] = 𝑎𝑘+𝐿 or left adjacent: [𝑎𝑘 ] to [𝑎𝑘−1] i.e. [𝑎𝑘 ] \ [𝑎𝑘−1] = 𝑎𝑘+𝐿−1
and [𝑎𝑘−1] \ [𝑎𝑘 ] = 𝑎𝑘−1.

9These definitions are defined in Sato (2008) for X. Here we restrict them to X𝐿 .
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[𝑎𝑘 ]

[𝑎𝑘+1]

or

[𝑎𝑘 ]

[𝑎𝑘−1]

Figure 2: Adjacent intervals to [𝑎𝑘 ]

Let’s do for ≿𝑡𝑜𝑝 and ≿𝑚𝑎𝑥 , similar arguments work for ≿𝑏𝑜𝑡 and ≿𝑚𝑖𝑛. Let
[𝑎𝑘 ′] ∈ {[𝑎𝑘−1], [𝑎𝑘+1]}, arrange the elements according to 𝑃. Call the deleted
alternative as 𝑎𝑠 and added alternative as 𝑎𝑠′, where 𝑠 ∈ {1, . . . , 𝐿}
[𝑎𝑘 ] = 𝑎1𝑃𝑎2𝑃 . . . 𝑎𝑠 . . . 𝑎𝐿
[𝑎𝑘 ′] = 𝑎1𝑃𝑎2 . . . 𝑎𝑠′ . . . 𝑎𝐿 Note that ≻𝑡𝑜𝑝 will start comparing from 𝑎1 using
𝑃, if the 𝑎𝑠𝑃𝑎𝑠′, we will have [𝑎𝑘 ] ≻𝑡𝑜𝑝 [𝑎𝑘 ′] and if 𝑎𝑠′𝑃𝑎𝑠, we will have
[𝑎𝑘 ′] ≻𝑡𝑜𝑝 [𝑎𝑘 ]. Similarly for ≻𝑚𝑎𝑥 , if 𝑎𝑠𝑃𝑎𝑠′ either it occurs in max comparison
or min comparison [𝑎𝑘 ] ≻𝑡𝑜𝑝 [𝑎𝑘 ′] and vice versa.

Example 2: Consider 𝑁 = {1, 2}, 𝑋 = {𝑎1, 𝑎2, 𝑎3, 𝑎4} and 𝐿 = 2. The preferences
of voters are 𝑎1𝑃1𝑎2𝑃1𝑎3𝑃1𝑎4 and 𝑎4𝑃2𝑎3𝑃2𝑎2𝑃2𝑎1 which are single-peaked
according to 𝑎1 < 𝑎2 < 𝑎3 < 𝑎4. We consider the following lexicographic max
extension ≿𝑡𝑜𝑝𝑖 as defined above in Proposition 3.

[𝐴 ≻𝑡𝑜𝑝
𝑖 𝐵] ⇔ [∃ 𝑠 such that 𝑥𝑠𝑃𝑖𝑦𝑠 and 𝑥𝑡 = 𝑦𝑡 for all 𝑡 < 𝑠] .

Figure 3: Efficient outcomes in X2 for Example 2

We show that [𝑎1, 𝑎2], [𝑎3, 𝑎4] ∈ I2 are interval efficient and Pareto efficient. As
compared to [𝑎1, 𝑎2], the interval [𝑎2, 𝑎3] makes voter 2 strictly better-off but
voter 1 strictly worse-off. Similar argument holds for [𝑎3, 𝑎4]. Hence [𝑎1, 𝑎2] is
interval efficient. It is easy to verify that [𝑎3, 𝑎4] is also interval efficient. There
is no Pareto improvement over [𝑎1, 𝑎2] ([𝑎3, 𝑎4]) as it the top-2 interval for voter
1 (voter 2). This is due to the fact that any other set in X2 will make voter 1 (voter
2) worse-off.
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It is easy to verify that [𝑎2, 𝑎3] is interval efficient but not Pareto efficient as
{𝑎1, 𝑎4} ∈ X2 is strictly better for both the voters.

Therefore, there are Pareto efficient sets which are non-intervals but can Pareto
dominate interval efficient intervals. Also notice that if an interval is Pareto
efficient then it is interval efficient because the set of possible interval improvements
is a subset of possible Pareto improvements.
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