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Abstract

We consider affirmative action in large population Tullock contests. The standard Tullock

contest is an equal treatment contest in which agents who exert equal effort have an equal

probability of success. In contrast, under affirmative action, agents with equal cost of effort have

equal probability of success. We analyze such contests as generalized aggregative potential games

and characterize their Nash equilibria. We show that affirmative action equalizes equilibrium

payoffs without causing any loss of aggregate welfare. It enhances the welfare and effort levels

of agents facing high effort cost. Thus, affirmative action engenders equality without having

any detrimental effects on efficiency, at least when the number of agents involved are large. It

does, however, reduce aggregate effort in society.
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1 Introduction

Affirmative action policies are usually applied in competitive situations, like college and university

admissions, or filling job vacancies, where the credentials of applicants from historically discrimi-

nated groups are weighed differently in order to ameliorate the effects of such discrimination. It

is well recognized that affirmative action contributes towards greater equality by creating a level

playing field for historically disadvantaged groups (Holzer and Neumark [24]). There are, however,

debates about the effect of such policies on efficiency. Both efficient and inefficient outcomes are

considered as possibilities under affirmative action, depending on how such policies affect effort

incentives (Coate and Loury [6], Sultana [45]). Opponents of affirmative action point at possible

distortion in effort incentives under such policies (Sowell [43]). Proponents, on the contrary, cite

the possible greater incentives for effort created by a level playing field (Bowen and Bok [3]). The

vigorousness of this debate notwithstanding, there isn’t much unanimity among economists about

such efficiency implications. For example, as Fryer and Loury [18] note, “Confident a priori as-

sertions about how affirmative action affects incentives are unfounded. Indeed, economic theory

provides little guidance”.

Our paper is a contribution in this direction. Due to the competitive nature of situations

in which affirmative action policies are usually applied, contests provide a convenient theoretical

tool to model the effects of such policies.1 Several papers, therefore, have analyzed affirmative

action using the three different forms of contests—Tullock contests (Franke [15], Dahm and Esteve-

González [11], Franke et al. [16]), all–pay auctions (Fu [21], Franke et al. [17]) and rank–order

tournaments (Schotter and Weigelt [42], Fryer and Loury [19], Fain [14]). Following this literature,

we model affirmative action in the environment of a Tullock contest (Tullock [49]), which is probably

the most well known model of a contest. Within this environment, we assess affirmative action on

the basis of two important criteria, namely the welfare of agents in society and the incentives faced

by agents to exert effort.

Affirmative actions models in Tullock contests introduce heterogeneity among agents through

asymmetries in the cost of effort function of different agents (Franke [15], Dahm and Esteve-

González [11], Franke et al. [16]). Such heterogeneity is then interpreted as the effect of historical

discrimination. Thus, agents who have faced higher levels of discrimination have a higher cost of

effort function. An important feature of such models is that effort is taken to be inherently valuable.

This is unlike usual applications of Tullock contests to understand rent–seeking in environments

where effort is wasteful. With this premise, these models introduce affirmative action in different

ways with the primary objective of assessing the implications of such a policy on the total equi-

1Contests are used to model situations where a resource is sought to be allocated among agents who expend
effort to increase their share or chance of obtaining the resource. The literature on contests started with the seminal
contributions of Tullock [48, 49] who applied them to study rent seeking. Apart from Tullock contests, two other
canonical forms of contests are all–pay auctions (Hillman and Riley [23]) and rank–order tournaments (Lazear and
Rosen [30]). Such contests have been applied to analyze a variety of areas like litigation, lobbying, labor market
tournaments, awarding a contract etc. See Corchón [8], Konrad [25] or Corchón and Serena [9] for a review of this
literature.
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librium effort by agents. For example, Franke [15] modifies the standard equal treatment Tullock

contest by introducing an affirmative action policy that biases the success function of agents in the

Tullock contest so that equal cost or disutility of effort generates equal chances of success.2 The

primary conclusion of that paper then is that affirmative action can increase total effort if the num-

ber of agents is low but unlikely to do so when that number is large (Proposition 3, Franke [15]).

Dahm and Esteve–Gonzáles [11] model affirmative action differently by introducing an extra prize

over which only disadvantaged agents can compete. Their conclusion is different from Franke’s [15];

affirmative action increases total effort. Franke et al. [16] seek to find the optimal way to bias the

success function of disadvantaged agents so as to maximize total effort.

In this paper, we focus closely on the model of affirmative action by Franke [15]. The importance

of this paper is that it is perhaps the first model of affirmative action in a general n−player Tullock

contest environment. Given the seminal importance of Tullock contests as a model of competitive

behavior, exploring the implications of affirmative action in such a framework is an worthwhile

exercise. Hence, the present paper also assumes that effort is valuable and considers the two

policies of equal treatment and affirmative action in a Tullock contest environment. The crucial

difference is that while Franke [15] analyzes Tullock contests with a finite number of players, our

paper is in the context of large population Tullock contests, i.e. contests where the set of agents is a

continuum. Thus, the society in our model is divided into a finite number of types (or populations),

each with a common effort cost function. Each such type, therefore, represents a group which has

faced similar levels of historical discrimination. The large population model is an approximation

for a situation when the number of agents are finite but large, a condition that is nearly always

satisfied in real world applications of affirmative action.

The motivation behind this change is not just technical. The more important reason is that us-

ing a large population framework opens up the possibility of generalizing results obtained in a finite

player framework. It is well–known that it is not feasible to derive closed form solutions in asym-

metric Tullock contests in the presence of non–linearities in the success and cost functions. Hence,

for example, Franke’s [15] result on total effort under affirmative action in the general n−player case

is only for the case where these functions are linear. On the other hand, as we show, our large popu-

lation framework is general enough that it can accommodate such asymmetries and non–linearities.

We are, therefore, able to show under both linear and non–linear conditions, affirmative action

reduces total effort as compared to equal treatment in a Tullock contest environment.3 But even as

total effort declines, we also show that the effort of agents belonging to highly disadvantaged groups

increase under affirmative action. This finding is intuitive but of interest because one reason why

policy makers may favour affirmative action is to diversify certain sectors of the economy or the

government (for example, the civil service) by enhancing representation of socially disadvantaged

2The standard Tullock contest is interpreted as an equal treatment contest because agents who exert equal effort
have equal chances of success in that contest. Other papers which have also compared equal treatment with affirmative
action include Schotter and Weigelt [42] and Sultana [46].

3In fact, showing this result under non–linear conditions is simpler in our framework as we are then assured of a
unique Nash equilibrium in our Tullock contest models. This is not the case under linear conditions.
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groups (Fryer and Loury [20]).

The existing literature on affirmative action in contests focus almost exclusively on the effort

implications of affirmative action (for example, the papers cited in the second paragraph of this

section). The tractability of our large population approach, in contrast, also allows us to arrive

at certain strong results on welfare. We find that aggregate welfare in equilibrium under both

equal treatment and affirmative action are equal. This result is of significance because a common

criticism of affirmative action policies, starting with Becker [1], is that such policies reduce total

welfare. Our model shows that this is not necessarily the case.4. Of course, the caveat remains

that ours is large population result whereas real world populations are finite. Therefore, in real

world situations, this result will be relevant (even if approximately) only when the number of agents

involved are sufficiently many. In that case, even if affirmative action does have any deleterious effect

of aggregate welfare, it will not be significant. Instead, by increasing effort by disadvantaged agents,

it also enhances their welfare thereby contributing to a more equal society. In fact, affirmative action

in our model leads to perfect equality.

Further, much of this existing literature on affirmative action in contests takes an instrumental

approach to this policy. In this approach, the policy maker seeks to design a contest that maximizes

some prior objective such as aggregate effort. In contrast, we, like Franke [15] and Dahm and

Esteve–Gonzáles [11], take a normative approach to affirmative action. Thus, the policy maker is

inspired not by any prior policy objective but by the norm of levelling the playing field.

In addition to the literature on affirmative action, this paper also contributes to the theory

of contests and, in particular, large population contests. As far as we know, this is the first

paper that models large population Tullock contests. Our formal analysis of these contests rely

on the machinery of potential games (Monderer and Shapley [32], Sandholm [40], Cheung and

Lahkar [5]) and aggregative games (Corchón [7]), which together define the class of generalized

aggregative potential games. The tractability of the large population approach suggests that if

interest is in characterizing equilibrium with a large number of contestants, then it is a more feasible

methodology than directly analyzing the finite player contest.5,6 Through the use of potential

games, we also contribute to the literature on applications of evolutionary game theory (Newton

[34]). It is well known that a variety of evolutionary dynamics converge to Nash equilibria in large

population potential games (Sandholm [40], Cheung and Lahkar [5]). Therefore, Tullock contests

and applications of such contests emerge as a new area of application of evolutionary game theory

through this paper.

There is a literature on large population contests (Olszewski and Siegel [38], Bodoh–Creed and

4Of course, ours is not the only model of affirmative action in which this result arises. For example, Fryer and
Loury [20] and Harel and Segal [22] also establish conditions under which diversity enhancing policies need not reduce
social welfare. Details of these models differ from ours. In particular, they are not in a contest environment.

5We note that the strategy set in our large population contests is continuous. This greatly simplifies equilibrium
characterization even though it introduces certain measure theoretic complications.

6Ewerhart [13] analyzes a finite player Tullock contest with symmetric and linear impact and cost functions
using the best response potential, which is an extension of Monderer and Shapley’s [32] original notion of a potential
function.
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Hickman [2]). These papers also explore the idea that large population contests provide a more

tractable way of approximating equilibria of more realistic contests with a finite but large number

of players. But their details vary considerably from ours. Olszewski and Siegel [38] study large

contests in quasi–linear settings while we focus on Tullock contests. Bodoh–Creed and Hickman

[2] use large contests to compare two types of affirmative action in college admission—admission

preference and quotas. They do not use Tullock contests so that their definitions of affirmative

action differ from ours. The analytical methods of these papers also vary from ours. They consider

finite player contests and show that the equilibrium of such games is approximated by the large

population limit as the number of agents increase. In contrast, we analyze the large population

model directly using the theory of large population potential games.

The rest of the paper is as follows. In Section 2, we introduce large population Tullock contests

with equal treatment and affirmative action. In Section 3, we define the category of generalized

aggregative potential games and interpret Tullock contests as such games. Section 4 characterizes

Nash equilibrium of such games and applies them to Tullock contests. In Section 5, we do a

comparative static analysis of Nash equilibria under equal treatment and affirmative action and

establish our main conclusions about the implications of affirmative action on welfare and effort

incentives. In all these sections, we assume certain non–linearities in our Tullock contests which

ensure a unique Nash equilibrium. Section 6 considers the fully linear case. Section 7 concludes.

2 Tullock Contests and Affirmative Action

We consider a continuum of agents of mass 1, which we call a society. We divide the society into

a finite set of populations or types P = {1, 2, · · · , n}. We denote the mass of population p as

mp ∈ (0, 1) and call the distribution (m1, · · · ,mn) the type distribution. Since the total mass of

agents is 1, it must be that
∑

p∈P mp = 1.

Every agent in the society has a common strategy set S = [x, x̄] ⊂ R+, with x > 0.7 We

interpret x ∈ S as the effort exerted by an agent in the contest. We denote by µp ∈ M+
mp(S)

the distribution of strategies in population p, where M+
ν (S) is the set of finite positive measures

that impose a mass ν on S. Equivalently, µp is the state of population p with µp(A) ∈ [0,mp]

denoting the mass of type−p agents playing strategies in A ⊆ S.8 If all agents in a population p

play the same strategy x, then that is a monomorphic population state which we denote as mpδx.

If a population state is not monomorphic, then we call it polymorphic.

We denote the set of states in the entire society as ∆ =
∏n
p=1M+

mp(S). A social state is,

therefore, µ = (µ1, · · · , µn) ∈ ∆, where µp ∈ M+
mp(S). We then define a population game as a

mapping

F : S × P ×∆→ R (1)

7In certain applications, it may be possible for x to be zero. However, in our main application to contests in this
paper, we require x > 0 for payoffs to be well defined. This is not a very serious restriction as we can take x to be
arbitrarily close to zero.

8Note that µp(S) = mp for all p ∈ P.
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such that Fx,p(µ) is the payoff of an agent in population p who uses strategy x ∈ S at the social

state µ. We assume that such a payoff function is bounded and weakly continuous with respect to

µ. We define a Nash equilibrium of such a population game as follows.

Definition 2.1 A Nash equilibrium of a multipopulation game F as defined in (1) is a social state

µ∗ = (µ∗1, · · · , µ∗n) ∈ ∆ such that for all x ∈ S, all p ∈ P, if x lies in the support of µ∗p, then

Fx,p(µ
∗) ≥ Fy,p(µ∗), for all y ∈ S.

To introduce Tullock contests as a large population game, we assume that the set of agents are

contesting over a resource of value V > 0. Further, we assume that if an agent of type p exerts

effort x, then that agent incurs an effort cost of cp(x) = kpx
γ , kp > 0 and γ ≥ 1. Thus, the cost

functions are asymmetric across types according to the parameter kp but within a type, the cost

of effort is identical. The common parameter γ ensures that the cost function is convex. We then

define a large population Tullock contest to be a population game F in which the payoff of a type−p
agent who exerts effort x is

Fx,p(µ) =
xr∑

q∈P
∫
S x

rµq(dx)
V − kpxγ . (2)

To interpret (2), we follow Myerson and Wärneryd [33] and refer to the mapping x 7→ xr as a

player’s strategy impact function. The fraction xr∑
q∈P

∫
S x

rµq(dx)
is then the contest success function

(CSF) in F . It measures, as a density function, the share of an agent who exerts effort x in the prize

V (if V is divisible) or the probability of success of that agent in the contest (if V is indivisible).

Thus, exerting effort x in the contest gives benefit xr∑
q∈P

∫
S x

rµq(dx)
V . Subtracting the cost of effort,

we obtain the payoff (2).9,10

We assume that r ∈ (0, 1] so that the impact function xr is concave.11 In addition, for most

of the paper, we also assume that if r = 1, then the cost function parameter γ > 1. Together,

these assumptions will allow us to establish uniqueness of Nash equilibrium in our models. We will

consider the specific case of r = γ = 1 separately in Section 6.

9The terminology used here follows from finite player Tullock contests (see, for example, Konrad [25]). Consider

such a contest with N players. Player i exerts effort xi and obtains payoff
xri∑N
j=1 x

r
j
V − ci(xi), where ci(xi) is the

player’s cost of effort xi. The fraction
xri∑N
j=1 x

r
j

is then the CSF in such a contest.
10Due to the differences in the cost functions, (2) is strategically equivalent to a model where the valuation of the

resource differs according to type but costs are symmetric. Stein [44] consider a finite–player contest model with such
asymmetric valuations among players.

11Concavity of the impact function is a usual assumption in the finite player contest literature (see, for example,
Szidarovszky and Okuguchi [47] and Yamazaki [50]) It ensures a the existence of a pure strategy Nash equilibrium.
Specifically for finite N− player Tullock contests, a weaker assumption that r ≤ N

N−1
is required for the existence of

a pure strategy equilibrium (for example, Nitzan [35]). Observe though that as N → ∞, N
N−1

→ 1. This provides
another justification for our assumption about r in our large population model.
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2.1 Affirmative Action

In the literature on affirmative action, the standard Tullock contest (2) is called a contest with

equal treatment (Franke [15]). This is because in this contest, if two participants exert equal effort

x, then the CSF for the two agents are equal. Under equal treatment, two contestants are treated

equally disregarding the underlying differences in effort costs across types.

However, as per the standard interpretation in the affirmative action literature, agents face

different costs of effort due to past discrimination. Thus, in our model where cp(x) = kpx
γ , we

assume that kp is higher for agents who have faced higher levels of historical discriminations.12 But

historical discrimination is a factor that is beyond the control of individual agents. Therefore, it

may be argued that on grounds of fairness, there is a need for policy intervention that levels the

playing field in favor of agents who have a high cost of effort. Affirmative action is premised on

such a notion of fairness. A fair policy that seeks to redress the effect of such discrimination should

ensure that agents who have equal cost of effort should have the same success level in the contest

even if the effort levels are not the same. Formally, if two agents in populations p and q exert

effort levels xp and xq respectively such that cp(xp) = cq(xq), then affirmative action would require

that the two agents have the same CSF. Kranich [26] justifies such a policy in terms of the “moral

intuition that two people incurring equal disutility deserve equal rewards”.

Recall that the impact function in the equal treatment contest (2) is xr. This function is

symmetric across populations. Following Franke [15], we now model affirmative action in terms

of an asymmetric impact function x 7→ Rpx
r, where we interpret Rp as a bias parameter. This

function, therefore, differs between populations but is the same for all agents within a population.

For a type−p agent playing strategy x, the CSF would then be
Rpxr∑

q∈P
∫
S Rqx

rµq(dx)
. The condition

cp(xp) = cq(xq) reduces to kpx
γ
p = kqx

γ
q , which implies xp =

(
kq
kp

) 1
γ
xq. We then want, by the

definition of affirmative action, that the CSFs of the two agents are also equal, which is equivalent

to Rpx
r
p = Rqx

r
q, or

Rp

k
r
γ
p

=
Rq

k
r
γ
q

. Since the CSF is homogeneous of degree zero, it suffices to make

Rp = k
r
γ
p for all p.13 We thus obtain the CSF

k
r
γ
p x

r∑
q∈P

∫
S k

r
γ
q xrµq(dx)

.

We can now formally define a Tullock contest with affirmative action. In order to distinguish

it from the contest F with equal treatment as defined in (2), we denote this contest as F̂ . Thus, a

contest F̂ is a Tullock contest with affirmative action if the payoff to an agent who uses x ∈ S at

the social state µ is

F̂x,p(µ) =
k
r
γ
p xr∑

q∈P
∫
S k

r
γ
q xrµq(dx)

V − kpxγ . (3)

12Observe that we have groups (populations) with different levels of kp. Thus, agents in our society have faced
different levels of historical discrimination. Within a group, however, the level of discrimination faced is the same.
Hence, kp is the same for all agents in population p.

13Notice that, with the affirmative action mandate of equal representation from different types, agents with higher

cost parameter, kp, also obtain a higher bias parameter, k
r
γ
p . For instance, reservation policy in India allows the

different social groups based on ‘caste’, (e.g., Scheduled Castes and Scheduled Tribes) to get admission in colleges
with different cut-off marks.

6



We retain all the assumptions on kp, r and γ in (3) that we made for (2). Thus, kp > 0,

r ∈ (0, 1], γ ≥ 0 and if r = 1, then γ > 1, except in Section 6 where we will consider r = γ = 1.

Note that real–world affirmative action policies seek to alleviate discrimination through different

means like quotas and preferential treatment. Such measures bias the playing field in favor of the

disadvantaged agents. The contest (3) captures this essential aspect of affirmative action policies

without going into the details of any such policy. It is the large population analogue of the finite

player contest with affirmative action considered in Franke [15].

Before analyzing the two contests F and F̂ , we need to clarify the interpretation of effort in

these models. The usual application of a Tullock contest is to model rent–seeking behavior (Konrad

[25]). In such applications, effort is interpreted as being wasteful since exertion of effort does not

have any impact on the value of the rent V . The Pareto efficient outcome is then the one where

agents exert the lowest possible effort and simply divide up the rent amongst themselves. This

may also be seen from the fact that the aggregate payoff in the Tullock contest (2) is F̄ (µ) =∑
p∈P

∫
S Fx,p(µ)µp(dx) = V −

∑
p∈P

∫
S kpx

γµp(dx), which is maximized at the state where all

agents exert effort x.14

Such an interpretation of effort is, however not tenable is our model. Because then, the policy

maker can simply distribute the prize equally among the agents without requiring anything more

than the minimal effort. This would achieve Pareto efficiency. Hence, to justify the policy maker

designing the affirmative action contest (3), we have to assume that effort is socially valuable.15

For example, the policy maker may seek to democratize or diversify the civil service by increasing

representation of socially disadvantaged groups. In that case, a policy that enhances effort by such

agents will be desired. Or while implementing affirmative action, the policy maker may also view

employment as a labor market tournament and will be concerned with total effort.

But even though effort is valuable, the affirmative action contest is not designed for instrumental

objectives like maximizing total effort. Instead, we assume that the goal of the policy maker is

the normative one of alleviating the effects of historical discrimination according to Kranich’s [26]

principle of equal reward for equal disutility. This is the perspective we adopt in the following

analysis as we assess the implications of affirmative action on welfare and effort incentives.

3 Generalized Aggregative Potential Games

In order to solve our large population contest models, we now introduce a class of population games

called generalized aggregative potential games. As we will see, the two contests we introduced in

Section 2 belong to this class of games. These properties will be helpful in characterizing Nash

equilibria of these contests. In particular, once we establish these properties, we will be able to

14Formally, this state is µ = (m1δx,m2δx, · · · ,mnδx). Note that the aggregate payoff maximizing state in the

affirmative action contest F̂ is also µ. The CSF in both contest add up to 1.
15Interpretation of effort as being socially valuable is common in the affirmative action literature and such policies

are often evaluated on the basis of their incentive effect on effort (see, for example, Bowen and Bok [3], Fryer and
Loury [18, 19], Sowell [43]). In the Introduction, we have also cited papers in the contest literature where maximizing
effort is the main objective of the contest designer.
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characterize equilibria by maximizing the underlying potential function.

To define such games, we retain the modeling structure introduced in Section 2, with the set

of populations P, the strategy set S and the mass distribution (m1, · · · ,mn). We introduce the

impact function φp : S → R+ and define the generalized aggregate strategy level in population p

as

a(µp) =

∫
S
φp(x)µp(dx), (4)

where µp is the state of population p as described in Section 2. Since µp ∈ M+
mp(S), a(µp) ∈

[mpφ(x),mpφ(x̄)]. The generalized aggregate strategy level in the whole society at the social state

µ = (µ1, · · · , µn) is then

A(µ) =
∑
p∈P

a(µp) =
∑
p∈P

∫
S
φp(x)µp(dx). (5)

Therefore, A(µ) ∈
[∑

p∈P mpφp(x),
∑

p∈P mpφp(x̄)
]
. If φp(x) = x, then (5) is simply aggregate

strategy. This is the special form of aggregation considered in Lahkar [28] and Cheung and Lahkar

[5]. Therefore, (5) broadens the notion of aggregate strategy by taking aggregation with respect to

a more general strategy impact function.

We first describe a generalized aggregative game. Consider a population game F in which the

payoff of an agent in population p who plays strategy x ∈ S is

Fx,p(µ) = φp(x)β(A(µ))− cp(x), (6)

where φp is the impact function, β :
[∑

p∈P mpφp(x),
∑

p∈P mpφp(x̄)
]
→ R+ is the benefit function

for the agent that depends upon the generalized aggregate strategy level A(µ) and cp : S → R+

is the cost function of the agent. This payoff function clearly depends upon only the agent’s own

strategy and the generalized aggregate strategy level A(µ). This particular form of F , therefore,

generalizes Corchón’s [7] notion of an aggregative game to the generalized notion of aggregate

strategy (5). It is also a generalization of the large population aggregative games considered in

Lahkar [28] and Cheung and Lahkar [5] who only considered a single population and aggregation

with respect to φp(x) = x.16 Due to such extensions of the notion of aggregative games, we refer

to the population game F defined by (6) as a generalized aggregative game.

Of course, (6) is not the only possible form that an aggregative game can take. This particular

form is motivated by the two contests in Section 2. In the standard Tullock contest (2), φp(x) = xr,

A(µ) =
∑

q∈P
∫
S x

rµq(dx) and β(A(µ)) = V∑
q∈P

∫
S x

rµq(dx)
. In the affirmative action contest (3),

φp(x) = k
r
γ
p xr, A(µ) =

∑
q∈P

∫
S k

r
γ
p xrµq(dx) and β(A(µ)) = V∑

q∈P
∫
S k

r
γ
p xrµq(dx)

. Thus, both contests

are generalized aggregative games. Therefore, motivated by the assumptions in these models, we

also make the following assumptions about (6).

16Lahkar [28] considers finite strategy single population aggregative games while Cheung and Lahkar [5] consider
such games with a continuous strategy set. These papers apply this particular form of aggregation to important
economic examples like Cournot competition and tragedy of the commons.
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Assumption 3.1 Consider the large population contest F defined by (6). We assume that

1. The benefit function β is strictly decreasing on
[∑

p∈P mpφp(x),
∑

p∈P mpφp(x̄)
]
.

2. The impact function φp is strictly increasing and concave on S for every p ∈ P.

3. For every p ∈ P, the cost function cp is strictly increasing and convex.

4. For every p ∈ P, if φp is linear, then cp is strictly convex.

The fact that β(A(µ)) = V
A(µ) in our contest models imply that these models satisfy part 1 of

Assumption 3.1. The conditions that r ∈ (0, 1], γ ≥ 1 and that if r = 1, then γ > 1 ensure that the

remaining parts of this assumption are also satisfied by the contest models. Assumption 3.1 will

allow us to show that (6) has a unique Nash equilibrium.

We follow Lahkar and Mukherjee [28] to define potential games in our context of multipopulation

games with a continuous strategy set.17 Certain technical details involved in this definition, namely

Fréchet differentiability and the gradient of a Fréchet differentiable function, are in Appendix A.1.1.

These more general notions of differentiability and gradient are required because of the measure

theoretic nature of our model. We also introduce the notation M to denote the extension of ∆ to

the space of all finite signed measures. Further details are in Appendix A.1.1.

Definition 3.2 A population game F as defined in (1) is a potential game if there exists a Fréchet

differentiable function f : M → R such that

∇f(µ) = F (µ) for all µ = (µ1, · · · , µn) ∈ ∆.

The function f is called the potential function of the game F .

Therefore, according to Definition 3.2, the large population contest F defined by (6) is a

potential game if there exists a real–valued function f , called the potential function, such that

∇f(µ)(x, p) = Fx,p(µ), for all x ∈ S, p ∈ P and µ ∈ ∆.18 We now show that such a potential

function does exist for (6). First, we define the aggregate cost at social state µ as

C(µ) =
∑
p∈P

∫
S
cp(x)µp(dx). (7)

The following proposition states the result. It also shows that the relevant potential function is

concave. The proof is in Appendix A.1.2.

17The original concept of potential games is due to Monderer and Shapley [32], who defined it for finite strategy
games. Sandholm [40] adapts that definition to large population games with finite strategy sets. This has been further
extended to games with continuous strategy sets by Cheung [4], Lahkar and Riedel [27] and Cheung and Lahkar [5]
for single population games, and by Lahkar and Mukherjee [29] for multipopulation games.

18Here, ∇f(µ)(x, p) is the value of the gradient of f at strategy x and type p.
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Proposition 3.3 The population game F defined by (6) is a potential game with potential function

f(µ) =

∫ A(µ)

∑
p∈P mpφp(x)

β(z)dz − C(µ), (8)

where A(µ) is the generalized aggregate strategy level as defined in (5). Further, f is concave but

not strictly concave on ∆.

The concavity of f is important because, as shown by Sandholm [40], maximizing the potential

function is sufficient in that case to characterize the set of Nash equilibrium of the underlying

potential game.19 We note that we do not need Assumption 3.1 to establish that F is a potential

game. However, showing the concavity of f does require us to use Assumption 3.1(1).

Thus, F defined by (6), in addition to being a generalized aggregative game is also a poten-

tial game. Hence, we call such games generalized aggregative potential games. The two contests

introduced in Section 2 are such games. The following corollary characterizes their potential func-

tions. The main difference between these functions lie in the definition of the generalized aggregate

strategy level A(µ).

Corollary 3.4 Consider the two contests F and F̂ defined by (2) and (3) respectively.

1. The contest with equal treatment F is a generalized aggregative potential game with potential

function

f(µ) =

∫ A(µ)

xr

V

z
dz −

∑
p∈P

∫
S
kpx

γµp(dx), (9)

for µ ∈ ∆, where A(µ) =
∑

p∈P
∫
S x

rµp(dx).

2. The contest with affirmative action F̂ is a generalized aggregative potential game with potential

function

f̂(µ) =

∫ A(µ)

∑
p∈P mpk

r
γ
p xr

V

z
dz −

∑
p∈P

∫
S
kpx

γµp(dx), (10)

for µ ∈ ∆, where A(µ) =
∑

p∈P
∫
S k

r
γ
p xrµp(dx).

Hence, both F and F̂ are generalized aggregative potential games. Further, the potential functions

(9) and (10) are concave in ∆.

Proof. Follows from Proposition 3.3. �

19Indeed, the strict concavity of f is sufficient to establish that the potential game F has a unique Nash equilibrium.
In our case, though, we only obtain f . Hence, establishing uniqueness will require additional results.
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4 Nash Equilibrium of Generalized Aggregative Potential Games

Proposition 3.3 implies that we can characterize Nash equilibria of a generalized aggregative poten-

tial game (6) by maximizing the potential function (8) on ∆. However, maximizing (8) directly is

difficult as it is defined on an abstract measure space. Cheung and Lahkar [5] resolve this problem

in their special context of aggregative games by introducing a simpler function called the quasi–

potential function, which serves as a proxy for the original potential function and which is amenable

to direct maximization. We now extend that method to our generalized aggregative games. We

denote the quasi–potential function as g :
∏n
p=1[x, x̄]→ R and define as

g(α1, α2, · · · , αn) =

∫ ∑
p∈P mpφp(αp)∑
p∈P mpφp(x)

β(z)dz −
∑
p∈P

mpcp(αp). (11)

As with the extension from aggregative games to generalized aggregative games described in Section

3, (11) generalizes the quasi–potential function in Cheung and Lahkar [5] in two ways. First, it

allows for multiple populations. Second, it allows for a more general notion of aggregate strategy

level A(µ).20

Lemma A.2 in Appendix A.2 establishes the relationship between the potential function and the

quasi–potential function. An important aspect of this relationship which highlights the proxy nature

of the quasi–potential function is that at social states consisting entirely of monomorphic population

states µp = mpδαp , the two functions have the same value. Otherwise, the quasi–potential function

always has a strictly higher value. Moreover, because the quasi–potential function is defined with

respect to the real vector (α1, · · · , αn), maximizing it is straightforward. Indeed, Lemma A.3 in

Appendix A.2 shows that this function is strictly concave and, therefore, has a unique maximizer.

These two lemmas follow from Assumption 3.1 and the aggregative nature of the game. Moreover,

the two lemmas imply the following result on the Nash equilibrium of generalized aggregative

potential games. The proof of this theorem, along with the proofs of Lemmas A.2 and A.3, are in

Appendix A.2.

Theorem 4.1 Let Assumption 3.1 hold. Then, the generalized aggregative potential game F defined

by (6) has a unique Nash equilibrium µ∗ =
(
m1δα∗1 ,m2δα∗2 , · · · ,mnδα∗n

)
, where (α∗1, · · · , α∗n) ∈∏

p∈P [x, x̄] is the unique maximizer of the quasi–potential function (11), as established in Lemma

A.3.

Thus, at the unique Nash equilibrium of F , every agent in population p plays α∗p, where α∗p is

obtained from the maximizer of the quasi–potential function (11). In this sense, maximizing the

quasi–potential function provides a complete characterization of the Nash equilibrium of F . In

order to prove this theorem, we use Lemma A.2 to show that f(µ∗) > f(µ) for all µ ∈ ∆ \ {µ∗},
20Lahkar [28] introduces quasi–potential functions in the context of single population aggregative potential games

with a finite strategy set. Recall from footnote 16 that an aggregative game is a special case of a generalized
aggregative game with φp(x) = x. Cheung and Lahkar [5] extend that technique to single population aggregative
potential games with a continuous strategy set..
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where f is the potential function (8). Therefore, µ∗ is the unique maximizer of f in ∆. Since, by

Proposition 3.3, f is concave on ∆, we conclude that µ∗ is the unique Nash equilibrium of F .21

How important is it to use the potential game method to obtain Theorem 4.1? In large popu-

lation games, direct methods of computing Nash equilibria using best responses are typically not

available when payoffs are non–linear. Having certain additional structure then helps find equilib-

ria. The feature of being a potential game grants that additional structure to F . It allows us to

characterize equilibria and, in fact, establish uniqueness of equilibrium by maximizing the concave

potential function. In addition, of course, as discussed in the Introduction, the potential game

approach makes our equilibrium prediction more robust as such games have attractive convergence

properties under evolutionary dynamics (Sandholm [40]).22 The aggregative game characteristic,

in turn, allows us to replace the task of maximizing the potential game with the much simpler task

of maximizing the quasi–potential function.

4.1 Nash Equilibrium in Tullock Contests

Recall from Corollary 3.4 that the two contests introduced in Section 2 are generalized aggregative

potential games. We can, therefore, apply Theorem 4.1 to characterize their Nash equilibria. First,

we consider the Tullock contest F with equal treatment as defined in (2), where φp(x) = xr,

β(z) = V
z and cp(x) = kpx

γ . Hence, using (11), we write the quasi–potential function for F as

g(α1, α2, · · · , αn) =

∫ ∑
p∈P mpα

r
p

xr

V

z
dz −

∑
p∈P

mpkpα
γ
p

= V log

∑
p∈P

mpα
r
p

− V log(xr)−
∑
p∈P

mpkpα
γ
p . (12)

We now maximize g to obtain the unique Nash equilibrium of F . In establishing this result, we

assume that (12) has an interior maximizer in
∏n
p=1[x, x̄]. The proof of the proposition is in

Appendix A.2.1.

Proposition 4.2 Consider the Tullock contest with equal treatment F as defined in (2). Assume

that r ∈ (0, 1] and γ ≥ 1, with the further restriction that if r = 1, then γ > 1. Further assume that

x is sufficiently small and x̄ is sufficiently large that (12) has an interior maximizer in
∏n
p=1[x, x̄].

Then, F has a unique Nash equilibrium µ∗ =
(
m1δα∗1 ,m2δα∗2 , · · · ,mnδα∗n

)
such that for every p ∈ P,

α∗p =

 rV k
γ
r−γ
p

γ
∑

q∈P mqk
r

r−γ
q

 1
γ

. (13)

21Theorem 4.1 is a generalization of Proposition 4.2 in Lahkar [28] and Proposition 3 in Cheung and Lahkar [5]
to the case of multiple populations and a more general aggregate strategy level.

22Well–known dynamics that converge in potential games are the replicator dynamic, the Brown–von Neumann–
Nash dynamic, the pairwise comparison dynamic and the logit dynamic. See, for example, Cheung and Lahkar [5]
for a discussion of such convergence in potential games with a continuous set of strategies.

12



Thus, at the unique Nash equilibrium of F , every agent in population p plays α∗p ∈ S as defined in

(13).

Next, we characterize the Nash equilibrium of the Tullock contest F̂ with affirmative action as

defined in (3). In order to distinguish it form (12), we denote the quasi–potential function for F̂

as ĝ. Recalling that F̂ is characterized by φp(x) = k
r
γ
p xr, β(z) = V

z and cp(x) = kpx
γ , we use (11)

to write ĝ as

ĝ(α1, α2, · · · , αn) =

∫ ∑
p∈P mpk

r
γ
p α

r
p

xr
∑
pmpk

r
γ
p

V

z
dz −

∑
p∈P

mpkpα
γ
p

= V log

∑
p∈P

mpk
r
γ
p α

r
p

− V log

(
xr
∑
p

mpk
r
γ
p

)
−
∑
p∈P

mpkpα
γ
p . (14)

We now maximize ĝ to characterize the Nash equilibrium of F̂ . As in Proposition 4.2, we assume

that ĝ has an interior maximizer in
∏n
n=1[x, x̄]. We state the result in the following proposition.

The proof of the result is in Appendix A.2.1.

Proposition 4.3 Consider the Tullock contest with affirmative action F̂ as defined in (3). Assume

that r ∈ (0, 1] and γ ≥ 1, with the further restriction that if r = 1, then γ > 1. Further assume that

x is sufficiently small and x̄ is sufficiently large that (14) has an interior maximizer in
∏n
p=1[x, x̄].

Then, F̂ has a unique Nash equilibrium µ̂∗ =
(
m1δα̂∗1 ,m2δα̂∗2 , · · · ,mnδα̂∗n

)
such that for every p ∈ P,

α̂∗p = k
−1
γ
p

(
rV

γ

) 1
γ

. (15)

Thus, at the unique Nash equilibrium of F̂ , every agent in population p plays α̂∗p ∈ S as defined in

(15).

Finite player Tullock contests with more than two agents can be solved in closed form only

when the strategy impact and cost functions are symmetric or linear (Franke [15]).23 Propositions

4.2 and 4.3, however, show that the large population approach is tractable enough to yield closed

form solutions even under asymmetric and non–linear conditions. In fact, as our application to

the affirmative action contest shows, our technique is general enough to accommodate such non–

linearities or asymmetries in the impact and cost functions without any modification.24

23Results on existence and uniqueness of equilibrium are, however, possible even with such asymmetries or non–
linearities (for example, Perez-Castrillo and Verdier [39], Nti [36], Szidarovszky and Okuguchi [47], Cornes and Hartley
[10], Yamazaki [50]).

24In contrast, in finite player contests, the generalization from symmetric to asymmetric CSFs and cost functions is
not so straightforward. The finite player contest literature has, therefore, proceeded sequentially by first considering
symmetric CSFs and cost functions (Perez-Castrillo and Verdier [39], Nti [36]) and then introducing asymmetries in
the CSF (Szidarovszky and Okuguchi [47], Yamakazi [50]) and the cost functions (Cornes and Hartley [10]). Also see
Corchón [8] for a review of existence and uniqueness results in both the symmetric and asymmetric cases.
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Further, our approach need not be restricted to Tullock contests. Tullock contests belong to the

more general class of logit–CSF contests in which the strategy impact function take the form φp(x)

(Dixit [12]).25 Payoffs in such a large population contest will take the form Fx,p(µ) =
φp(x)
A(µ) V −cp(x),

where A(µ) =
∑

p

∫
S φp(x)µp(dx). As long as the impact functions φp and cost functions cp satisfy

Assumption 3.1, our equilibrium characterization method will apply.

5 Equal Treatment and Affirmative Action: Comparative Statics

We now consider the implications of equal treatment and affirmative action on aggregate welfare

and effort incentives. We measure individual welfare using equilibrium payoffs in the two contests

and aggregate welfare by using aggregate payoffs. It is also relevant to note that in both contests,

the fact that the shares of agents must add up to 1 implies that the aggregate payoff at any social

state µ must be identical. Thus, from (2) and (3), we obtain that the aggregate payoffs in the two

contests F and F̂ are

F̄ (µ) =
¯̂
F (µ) = V

∑
p∈P

∫
S

φp(x)

A(µ)
µp(dx)−

∑
p∈P

∫
S
kpx

γµp(dx) = V − C(µ), (16)

with φp(x) = xr in F , φp(x) = k
r
γ
p xr in F̂ , A(µ) as defined in (5) and aggregate cost C(µ) as defined

in (7). We now state the following proposition on equilibrium payoffs. The proof is in Appendix

A.3

Proposition 5.1 Consider the two contests F and F̂ as defined in (2) and (3) with their respective

Nash equilibrium µ∗ and µ̂∗ as characterized in Propositions 4.2 and 4.3. Recall that r < γ in both

contests.

1. At the Nash equilibrium µ∗ of the equal treatment contest F , every agent in population p ∈ P
obtains payoff

Fα∗p,p(µ
∗) =

(α∗p)
r

A(µ∗)
V − kp(α∗p)γ =

k
r

r−γ
p∑

q∈P mqk
r

r−γ
q

V

(
1− r

γ

)
, (17)

where α∗p ∈ S is as defined in (13) and A(µ∗) =
∑

p∈P
∫
S x

rµ∗p(dx) in F . Hence, aggregate

payoff at µ∗ in F is

F̄ (µ∗) = V − C(µ∗) = V

(
1− r

γ

)
. (18)

2. At the Nash equilibrium µ̂∗ of the affirmative action contest F̂ , every agent in population

25Dixit [12] defines a logit–CSF contest with N−players as one in which the CSF for player i playing strategy xi
is φi(xi)∑N

j=1 φj(xj)
. Thus, in a Tullock contest, φi(xi) = xri .
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p ∈ P obtains payoff

F̂α̂∗p,p(µ̂
∗) =

k
r
γ
p (α̂∗p)

r

A(µ̂∗)
V − kp(α̂∗p)γ = V

(
1− r

γ

)
, (19)

where α̂∗p ∈ S is as defined in (15) and A(µ̂∗) =
∑

p∈P
∫
S k

r
γ
p xrµ̂∗p(dx) in F̂ . Hence, aggregate

payoff at µ̂∗ in F̂ is
¯̂
F (µ̂∗) = V − C(µ̂∗) = V

(
1− r

γ

)
. (20)

We obtain two important conclusions from Proposition 5.1. First, as can be seen from (19),

affirmative action in our model ensures perfect equality in equilibrium. Agents of every type,

irrespective of their cost parameter kp, obtain the same equilibrium payoff. The intuition behind

this result is that at the Nash equilibrium under affirmative action, the cost of effort of every agent

is equal. Thus, cp(α̂
∗
p) = kp(α̂

∗
p)
γ = rV

γ , for all p ∈ P, as can be seen in (57). By the design of

our affirmative action policy, this implies that the CSF for every agent at the affirmative action

equilibrium is 1. The equilibrium payoff then follows from the definition of the affirmative action

contest (3). Equal treatment does not ensure equality. Instead, as is to be expected, the lower is

the cost parameter kp, the higher is equilibrium payoff, as is evident from (17).

The second important conclusion is that the aggregate equilibrium payoff in both contests is

identical, as is shown by (18) and (20). This does not immediately follow from (16) because the two

equilibria µ∗ and µ̂∗ are different. Instead, it requires some calculation to show, as we have done

in (55) and (58) respectively, that the aggregate cost of effort at both equilibria are equal. Thus,

C(µ∗) = C(µ̂∗) = rV
γ . The equilibrium values of aggregate payoff then follows from (16). Together,

these two conclusions encapsulate the welfare implications of affirmative action in our model. It

contributes towards equality while being as efficient (measured in terms of aggregate payoff) as the

equal treatment contest (2). It is worth observing that these strong conclusions about welfare arise

from the closed form solutions we have been able to derive for our Tullock contest models under a

wider variety of conditions; something that would not have been feasible in finite player models.

Our next objective is to assess the effect of affirmative action on effort incentives, which we do

in two ways. First, we consider whether affirmative action increases effort of certain types of agents

as compared to equal treatment. Second, we compare aggregate effort level in equilibrium under

the two contests. The comparison of equilibrium effort levels follows immediately from Propositions

4.2 and 4.3.

Corollary 5.2 Consider the Nash equilibrium effort levels α∗p and α̂∗p under the two contests F

and F̂ as established in Propositions 4.2 and 4.3 respectively. Define

k̄ =

 1∑
q∈P mqk

r
r−γ
q


γ−r
r

. (21)
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Then, α̂∗p > α∗p if and only if kp > k̄. Further, F̂α̂∗p,p(µ̂
∗) > Fα∗p,p(µ

∗) if and only if kp > k̄, where

Fα∗p,p(µ
∗) and F̂α̂∗p,p(µ̂

∗) are the equilibrium payoffs (17) and (19) respectively.

Proof. The relationship between α∗p and α̂∗p follows from (13) and (15). The relationship

between Fα∗p,p(µ
∗) and F̂α̂∗p,p(µ̂

∗) follows from (17) and (19). �

Corollary 5.2 shows that there exists a threshold (21) such that agents with cost parameter kp

above that threshold exert higher effort under affirmative action while agents with cost parameter

below the threshold exert lower effort. This conclusion is along expected lines as affirmative action

favors agents with a higher cost of effort. We do note, however, that this comparison is between

the two contests of equal treatment and affirmative action. Within each contest, low–cost agents

exert higher effort than high–cost agents in equilibrium, as is evident from (13) and (15). The same

conclusions hold with respect to equilibrium payoffs.

But does affirmative action also increase total effort? To consider this question, recall the Nash

equilibrium effort levels α∗p and α̂∗p in the two contests as characterized in (13) and (15) respectively.

Since these are the effort levels by every agent in population p and the mass of population p is mp,

the equilibrium aggregate effort levels in F and F̂ are
∑

pmpα
∗
p and

∑
pmpα̂

∗
p respectively. The

following proposition shows that affirmative action reduces aggregate effort in equilibrium. The

proof of the result is in Appendix A.3.

Proposition 5.3 Consider the two contests F and F̂ with their respective Nash equilibria µ∗p and

µ̂∗p as characterized in Propositions 4.2 and 4.3 respectively. Recall our assumptions that r ∈ (0, 1]

and γ ≥ 1 with the further condition that if r = 1, then γ > 1. Then,∑
p

mpα̂
∗
p <

∑
p

mpα
∗
p, (22)

where α∗p and α̂∗p are the equilibrium effort levels as characterized in (13) and (15) respectively.

Hence, equilibrium aggregate effort in the affirmative action contest F̂ is strictly less than that in

the equal treatment contest F .

The proof of this result involves some tedious algebra. But we can obtain the intuition behind

it from two of our previous results. Corollary 5.2 shows that affirmative action increases the effort

level of high cost agents while reducing that of low cost agents. On the other hand, we have

shown in the proof of Proposition 5.1 that C(µ∗) = C(µ̂∗) = rV
γ . Therefore, the aggregate cost

in equilibrium doesn’t go up under affirmative action even though it is high cost agents who exert

more effort. It is then reasonable to conclude that total effort goes down under affirmative action.

Thus, the broad consequences of affirmative action in our model are as follows. The effort of

agents who have been subjected to high levels of discrimination goes up without any adverse effect

on aggregate welfare.26 In fact, social equality improves. But aggregate effort goes down.

26We qualify this statement by noting that we identify aggregate welfare entirely with the aggregate payoff of
agents. We do not consider the welfare of the planner in such calculations. If the welfare of the planner is measured
by the aggregate effort of agents, then that welfare does go down under affirmative action.
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6 The Linear Case

We now drop Assumption 3.1(4) and consider Tullock contests (2) and (3) in which r = γ = 1.

Franke’s [15] analysis of affirmative action in finite player Tullock contests is restricted to this case

of r = γ = 1, except when the number of player is two in which case r ≤ 1. Therefore, the analysis

in this section will also allow us to compare our results with that of Franke [15].

Even with r = γ = 1, Proposition 3.3 continues to apply to the two contests F and F̂ .27 Thus,

both contests are potential games with concave potential functions f and f̂ defined by (9) and (10)

respectively.28 Hence, both F and F̂ , under this particular condition, have a convex set of Nash

equilibria that can be characterized by maximizing their respective potential functions. The reason

we had to leave out this case from our equilibrium characterization in Section 4.1 is that if both φp

and cp are linear, we cannot apply Lemma A.3 to show that the quasi–potential functions g and ĝ

defined by (12) and (14) respectively are strictly convex and, therefore, have a unique maximizer.

However, the arguments in Lemma A.3 still suffice to show that both g and ĝ are concave. This

allows us to apply alternative arguments to characterize their set of maximizers.29

For this purpose, we now order the populations such that k1 < k2 < · · · < kn. We also assume

that x is sufficiently close to zero and x̄ is sufficiently high so that we don’t have to deal with tedious

boundary issues. We first characterize Nash equilibria and payoffs of F using its quasi–potential

function g. The proof of the result is in Appendix A.4.

Proposition 6.1 Consider the Tullock contest F with equal treatment as defined in (2) with r =

γ = 1. Hence, φp(x) = x and cp(x) = kpx in F . Assume that k1 < k2 < · · · < kn. Then, F has a

convex set of Nash equilibria

NE(F ) =
{
µ∗ ∈ ∆ : a(µ∗1) = m1α

∗
1, µ
∗
p = mpδx for all p 6= 1

}
, (23)

where a(µ∗1) =
∫
S xµ

∗
1(dx) as defined in (4) and α∗1 = V−(1−m1)k1x

m1k1
as characterized in Lemma A.4.

Further, the payoff of every agent of every type at any µ∗ ∈ NE(F ) is 0. Therefore, the

aggregate payoff at any such Nash equilibrium is also 0.

We may relate Proposition 6.1 to the analysis in Franke [15]. When the number of players is

more than two in that paper, then the unique Nash equilibrium under equal treatment may involve

only a subset of the players exerting positive effort. In our case, there is a convex set of Nash

equilibria. But in any such equilibrium, all agents except the ones with the lowest cost parameter

exert the lowest possible effort x. In that sense, only those agents whose cost of effort is the lowest

participate actively in the contest. Their payoff, though, in equilibrium is zero as is the case with

everybody else.

27Recall that the potential game property in Proposition 3.3 does not depend upon Assumption 3.1. The concavity
of the potential function only requires that β(z) = V

z
be strictly declining (Assumption 3.1(1)).

28A concave potential function implies that the underlying potential game has a convex set of Nash equilibria,
which are maximizers of the potential function (Sandholm [40], Cheung and Lahkar [5]).

29As we will see in Lemma A.4, g does have a unique maximizer. But that does not follow from Lemma A.3.
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We now characterize Nash equilibria and payoffs in the affirmative action contest F̂ as defined

in (3). The proof of the result is in Appendix A.4.

Proposition 6.2 Consider the Tullock contest F̂ with affirmative action as defined in (3) with

r = γ = 1. Hence, φp(x) = cp(x) = kpx in F̂ . Then, F̂ has a convex set of Nash equilibria

NE(F̂ ) = {µ̂∗ ∈ ∆ : A(µ̂∗) = V } , (24)

where A(µ) =
∑

p∈P
∫
S φp(x)µp(dx) =

∑
p∈P

∫
S kpxµp(dx) in F̂ .

Further, the payoff of every agent of every type at any µ̂∗ ∈ NE(F̂ ) is 0. Therefore, the

aggregate payoff at any such Nash equilibrium is also 0.

As in Proposition 6.2, the affirmative action contest with linear parameters also has a convex set

of equilibria with zero payoff for all agents in any such equilibrium.30 Therefore, in a trivial sense,

there is no distinction between equal treatment and affirmative action on grounds of aggregate

payoff and equality when r = γ = 1.

Nevertheless, the policy maker may still favor the affirmative action policy (3) because it at

least creates the possibility of active participation beyond the group of agents in the lowest cost

group. This is because the set of Nash equilibria in F̂ differs from that of F significantly in one

respect. In any Nash equilibrium of F , as shown in Proposition 6.1, only agents of population

1, i.e. agents with the lowest cost parameter, participate actively in the contest in the sense of

playing x > x. However, in F̂ , there are Nash equilibria in which all agents participate actively.

All agents at such an equilibrium play a strategy x > x.31 This observation is also consistent with

Franke’s [15] finding that once affirmative action is introduced in finite player contests with more

than two players, all players participate in the unique Nash equilibrium of that contest. Of course,

in our case, due to the convexity of NE(F̂ ), there may also be equilibria in which all agents in

some population play x.

Thus, as in Section 5, affirmative action gives rise to equilibria where high cost agents participate

more. But what about aggregate effort? The following result shows that it goes down under

affirmative action. Thus, even when r = γ = 1, which is the one case left out in Proposition 5.3,

affirmative action is detrimental to aggregate effort. The proof of the result is in Appendix A.4.

Proposition 6.3 Consider the two contests F and F̂ defined by (2) and (3) respectively under the

condition r = γ = 1. Then, at every Nash equilibrium of F as characterized in (23), the total effort

in the society is V
k1

. Further, at any Nash equilibrium µ̂∗ of F̂ as characterized in (24), the aggregate

effort
∑

p

∫
S xµ̂

∗
p(dx) < V

k1
. Hence, affirmative action reduces aggregate effort as compared to equal

treatment.

30Note that if r = γ = 1, then V
(

1− r
γ

)
= 0. Hence, the zero equilibrium payoff conclusion is along expected

lines if we mechanically apply the equilibrium payoffs calculated in Proposition 5.1 to this particular case.
31For example, one such Nash equilibrium µ̂∗ would be where all agents in population p play strategy V

kp
. This

equilibrium would satisfy A(µ̂∗) = V as required by (24).

18



We can relate Proposition 6.3 to Proposition 3 in Franke [15]. There, it is shown affirmative

action may increase aggregate effort. In contrast, the above result shows that this is not possible

in a large population Tullock contest. Intuitively, this occurs because satisfying the condition in

that paper that determines whether affirmative action raises aggregate effort becomes increasingly

difficult as the number of agents increases. Hence, in the continuum limit, it should become

impossible to satisfy that condition, which means affirmative action cannot raise aggregate effort

in the large population case.32

To conclude, we find that in both the linear and non–linear cases, affirmative action induces

participation by disadvantaged agents even though aggregate effort goes down. But unlike in the

non–linear case, we do not find any effect of affirmative action on agents’ payoffs under linear

conditions.

7 Conclusion

We have considered affirmative action in large population Tullock contests. The standard Tullock

contest is a contest with equal treatment policy wherein agents who exert equal effort have an equal

contest success function (CSF). In contrast, under affirmative action policy, the standard contest

is modified so that agents who have an equal cost of effort have an equal CSF. The underlying

justification for this policy is the normative ideal that differences in costs have their roots in

historical discrimination which agents are not responsible for. Hence, social policy should aim to

redress the effects of such discrimination.

We model the two contests as generalized aggregative potential games. Using the method of

quasi–potential functions, we characterize the Nash equilibria of such contests under fairly general

conditions of asymmetries and non–linearities in the CSFs and cost functions. Our results show

that affirmative action increases effort by more disadvantaged agents. It promotes equality without

reducing aggregate payoff in a significant way. On the other hand, affirmative action reduces aggre-

gate effort in society. Therefore, our results suggest that affirmative action succeeds in promoting

diversity and equality in society without significantly sacrificing aggregate welfare. But it does

so at the cost of distorting effort incentives which reduces aggregate effort. In establishing these

results on affirmative action, the paper also contributes to the theory of large population contests

by introducing the potential game methodology to analyze such contests.

Our exercise raises certain interesting questions for further research. First, this paper has

primarily focused on large population Tullock contests. Is it possible to extend this approach to

32Condition (12) in Franke [15] decides whether affirmative action increases aggregate effort. We can translate
that condition to our large population context. Under equal treatment, only type 1 agents participate (Proposition
6.1). Hence, the arithmetic mean of the cost parameter of the participants is k1. Under affirmative action, there are
equilibria where all agents participate (Proposition 6.2). The harmonic mean of the cost parameters of all agents

in the society is
(∑

p

mp
kp

)−1

. The appropriate translation of Franke’s [15] condition (12) to our large population

context is that affirmative action will increase effort if k1(∑
p
mp
kp

)−1 > 1. But this condition cannot be satisfied because

k1 < kp, for all p > 1.
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large population versions of other canonical contest models like all–pay auctions and rank–order

tournaments? This would require further generalization of the theory of generalized aggregative

games. For example, it is well known that all–pay auctions, where the winner gets the prize with

probability one and all participants pay, is equivalent to a Tullock contest with r =∞. Hence, the

strategy impact function in such a contest would no longer be concave. This would require us to

relax some of the conditions in Assumption 3.1. Another interesting research question, alluded to in

the Introduction, is taking a mechanism design approach and designing the CSF in large population

contests so as to maximize aggregate effort. Yet another possible extension is to analyze other forms

of affirmative action, for example, extra prizes in the manner of Dahm and Esteve–Gonzáles [11],

in large population Tullock contests.

One issue we have not addressed in this paper is the informational requirement to coordinate

on the Nash equilibrium of the large population contest models or more generally, in generalized

aggregative potential games. Finite player contests have been analyzed in the classical framework

of both complete and incomplete information. The informational requirement in large population

models are, however, best assessed in the framework of evolutionary game theory. This is because

in such models, it is unrealistic to expect agents to immediately coordinate on a Nash equilibrium.

Instead, as per the evolutionary viewpoint, agents adjust their strategies myopically on the basis

of their current payoff. In general, this strategy adjustment process may or may not lead society to

a Nash equilibrium. But in potential games such as our contest models, it will converge to a Nash

equilibrium (Sandholm [40], Cheung and Lahkar [5]).

From this evolutionary perspective, the relevance of information arises in the context of what

an agent needs to know to revise strategies. Sandholm [41] addresses this question in detail. The

answer depends upon which evolutionary model we choose. For example, under the replicator

dynamic, which is the most well known evolutionary dynamic, the informational requirements are

fairly minimal. This dynamic is generated when an agent imitates some other member of his type

or population, either because the other agent is more successful or because the agent is dissatisfied

with his own payoff. All this model calls for is that an agent should be able to recognize another

agent of her own type. In applications like contests or affirmative action, this is a reasonable

assumption since we are envisaging each type as representing a particular social group with some

specific demographic characteristics. In particular, the key question that arises in classical complete

or incomplete information models—whether agents know the type of other agents or just the type

distribution—is irrelevant in the replicator dynamic. Agents do not need to know the type of any

agent outside their own population or even the type distribution. In other evolutionary dynamics,

the informational requirement may be more demanding. For example, the logit dynamic, which is

another well known model of evolution, depends upon a perturbed notion of best response where

agents choose the best response with probability nearly but not completely one. This would require

agents to compute the payoff of all their strategies. In generalized aggregative games such as (6),

this would require the agent to know β(A(µ)) which, in turn, may require the agent to know the

generalized aggregate strategy level A(µ). Depending upon context, this may be easy or difficult.
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But knowing it does not require the agent to know types or the type distribution. Therefore, even

under this dynamic, the core issue in the complete versus incomplete information debate about

knowledge of types or type distribution does not arise.

A Appendix

A.1 Appendix to Section 3

A.1.1 Fréchet Derivative

The definition of the Fréchet derivative is as follows (Zeidler [51], Chapter 4).

Definition A.1 Let X and Y are Banach spaces. We say that g : X → Y is Fréchet-differentiable

at x if there exists a continuous linear map T : X → Y such that g(x + ϑ) = g(x) + Tϑ + o(‖ϑ‖)
for all ϑ in some neighborhood of zero in X. If it exists, this T is called the Fréchet-derivative of

g at x, and is written as Dg(x).

To apply the Fréchet derivative in our context, we denote by M(S) the space of finite signed

measures on (S,B), where B is the Borel σ−algebra on S. We then impose the strong topology

on M(S). The strong topology is the topology induced by the variational norm on M(S). For

µ ∈ M(S), the variational norm is given by ‖µ‖ = supg |
∫
S gdµ| where g is a measurable function

g : S → R such that supx∈S |g(x)| ≤ 1. We define the variational norm on M =
∏n
p=1M(S) as

(Lahkar and Mukherjee [29])

‖ν‖ = max{‖ν1‖, ‖ν2‖, · · · , ‖νn‖} for ν = (ν1, ν2, · · · , νn) ∈ M . (25)

We seek to calculate Fréchet derivatives on the Banach space (M , ‖ · ‖), where ‖ · ‖ is the

variational norm on M as defined in (25). Consider a function f : M → R that is Fréchet

differentiable when M is endowed with the variational norm. The Fréchet derivative of f at µ ∈ M

is a continuous linear map

Df(µ) : M → R

that maps the direction ζ = (ζ1, · · · , ζn) ∈ M to rates of change in f when µ changes in the

direction ζ. We write this linear transformation as Df(µ)ζ.

Consider now a function f : M → R that is Fréchet differentiable when M is endowed with the

variational norm. We denote the Fréchet derivative of f at µ ∈ M in the direction ζ = (ζ1, · · · , ζn) ∈
M as Df(µ)ζ. Intuitively, Df(µ)ζ is the change in f when µ changes in the direction ζ.

Suppose now that there exists an element ∇f(µ) : S × P →Mb(S × P) such that

Df(µ)ζ =
∑
p∈P

∫
S
∇f(µ)(x, p)ζp(dx) = 〈∇f(µ), ζ〉, for all ζ = (ζ1, · · · , ζn) ∈ M , (26)
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where we use the “inner product” notation 〈·, ·〉 : Mb(S × P) × M → R to denote 〈g, ν〉 =∑n
p=1

∫
S g(x, p)νp(dx), for g ∈ Mb(S × P) and ν ∈ M . We then call ∇f(µ) the gradient of the

function f .

A.1.2 Proofs in Section 3

Proof of Proposition 3.3: We first extend the domain of the generalized aggregate strat-

egy function A(·) defined in (5) from ∆ to M (and, therefore, the domain of the a(·) defined

in (4) from M+
mp(S) to M(S)). We also extend the domain of the benefit function β from[∑

pmpφp(x),
∑

pmpφp(x̄)
]

to R such that this extension is bounded and differentiable on R.33

Consider f as defined as in (8) with appropriate extensions of A(·), C(·) and β(·). We show

that for all µ ∈ ∆ and all (x, p) ∈ S × P,

∇f(µ)(x, p) = Fx,p(µ) = φp(x)β(A(µ))− cp(x), (27)

where A(µ) is as defined in (5).

Let ζ = (ζ1, ζ2, · · · , ζn) ∈ M , where ζp represents a direction of change in µp. Then,

Df(µ)ζ = β(A(µ))DA(µ)ζ −DC(µ)ζ, (28)

where C(µ) is as defined in (7). Note that

A(µ+ ζ) =
∑
p∈P

a(µp + ζp) =
∑
p∈P

∫
S
φp(x̃)(µp + ζp)(dx̃) = A(µ) +

∑
p∈P

∫
S
φp(x̃)ζp(d˜̃x).

Therefore,

DA(µ)ζ =
∑
p∈P

∫
S
φp(x̃)ζp(dx̃). (29)

Further,

C(µ+ ζ) =
∑
p∈P

∫
S
cp(x)(µp + ζp)(dx)

=
∑
p∈P

∫
S
cp(x)µp(dx) +

∑
p∈P

∫
S
cp(x)ζp(dx)

= C(µ) +
∑
p∈P

∫
S
cp(x)ζp(dx).

Hence,

DC(µ)ζ =
∑
p∈P

∫
S
cp(x)ζp(dx). (30)

33This extension is required because we have extended the domain of A(·) from ∆ to M . Hence, β(A(µ)) may
take any value in R, including negative ones.

22



Inserting (29) and (30) into (28) and using (26), we obtain

∑
p∈P

∫
S
∇f(µ)(x, p)ζp(dx) = β(A(µ))

∑
p∈P

∫
S
φp(x̃)ζp(dx̃)−

∑
p∈P

∫
S
cp(x̃)ζp(dx̃)

This equation holds for all ζ ∈ M . In particular, it holds for ζ such that ζp = δx and ζk = 0 for all

k 6= p. With this ζ, we obtain

∇f(µ)(x, p) = φp(x)β(A(µ))− cp(x),

which gives us (27). This establishes the result.

To establish concavity of f , let µ, ν ∈ ∆, µ 6= ν, be two social states. We need to show that∫ A(λµ+(1−λ)ν)

∑
pmpφp(x)

β(z)dz − C(λµ+ (1− λ)ν)

≥ λ
∫ A(µ)

∑
pmpφp(x)

β(z)dz + (1− λ)

∫ A(ν)

∑
pmpφp(x)

β(z)dz − λC(µ)− (1− λ)C(ν). (31)

Fix λ ∈ (0, 1). Clearly,

∑
p∈P

∫
S
cp(x)(λµp + (1− λ)νp)(dx) = λ

∑
p∈P

∫
S
cp(x)µp(dx) + (1− λ)

∑
p∈P

∫
S
cp(x)νp(dx).

Hence,

C(λµ+ (1− λ)ν) = λC(µ) + (1− λ)C(ν). (32)

Since β is strictly decreasing on
[∑

p∈P mpφp(x),
∑

p∈P mpφp(x̄)
]
,
∫ α∑

pmpφp(x)
β(z)dz is strictly

concave for all α ∈
[∑

p∈P mpφp(x),
∑

p∈P mpφp(x̄)
]
. Moreover, since µ, ν ∈ ∆, A(λµ+ (1−λ)ν) ∈[∑

p∈P mpφp(x),
∑

p∈P mpφp(x̄)
]

for all λ ∈ [0, 1]. Combining these facts with the linearity of A(·),
we obtain ∫ A(λµ+(1−λ)ν)

∑
pmpφp(x)

β(z)dz =

∫ λA(µ)+(1−λ)A(ν)

∑
pmpφp(x)

β(z)dz

≥ λ
∫ A(µ)

∑
pmpφp(x)

β(z)dz + (1− λ)

∫ A(ν)

∑
pmpφp(x)

β(z)dz, (33)

with ≥ holding with equality only if µ, ν such that A(µ) = A(ν).

Combining (32) and (33), we obtain (31). This establishes that f is concave but not strictly

concave on ∆, strict concavity failing because there are µ 6= ν such that A(µ) = A(ν). The

convexity of the set of Nash equilibria of F then follows from Corollary 2 in Cheung and Lahkar

[5]. �
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A.2 Appendix to Section 4

First, we establish Lemmas A.2 and A.3 required for the proof of Theorem 4.1.

Lemma A.2 Consider the generalized aggregative potential game F defined by (6) with potential

function f defined by (8) and quasi–potential function g defined by (11). Let µ ∈ ∆ and denote
a(µp)
mp

= φp(αp), for some αp ∈ [x, x̄], for all p ∈ P, where a(µp) is as defined in (4). Let Assumption

3.1 hold.

1. Suppose µp is monomorphic for all p. Then, f(µ) = g(α1, · · · , αn).

2. Suppose there exists at least one p such that µp is polymorphic. Then, g(α1, α2, · · · , αn) >

f(µ).

Proof. Consider the potential function f defined by (8) and the quasi–potential function

g defined by (11). Note that since
a(µp)
mp

= φp(αp), A(µ) =
∑

p∈P a(µp) =
∑

p∈P mpφp(αp).

Therefore, any difference between f and g can only arise due to the difference between C(µ)

and
∑

p∈P mpcp(αp).

1. Let µ be monomorphic for every p. In that case, the fact that
a(µp)
mp

= φp(αp) implies µp =

mpδαp for all p. This implies
∫
S cp(x)µp(dx) = mpcp(αp) so that C(µ) =

∑
p∈P

∫
S cp(x)µp(dx) =∑

p∈P mpcp(αp). Hence, f(µ) = g(α1, · · · , αn).

2. Let µp be polymorphic for some p ∈ P, with
a(µp)
mp

= φp(αp). For any population q, φq is

concave. Moreover, it is given that
a(µq)
mq

= φq(αq). Hence,

φq

(∫
S
x
µq
mq

(dx)

)
≥
∫
S
φq(x)

µq
mq

(dx) =
a(µq)

mq
= φ(αq), (34)

with the weak inequality holding with equality if µq = mqδαq or φq is linear. Along with (34),

the fact that φq is strictly increasing implies∫
S
x
µq
mq

(dx) ≥ αq, (35)

with strict inequality only if µq is polymorphic and φq is strictly concave.

Further, the cost function cq is convex and strictly increasing (part 3 of Assumption 3.1).

Hence, ∫
S
cq(x)

µq
mq

(dx) ≥ cq
(∫
S
x
µq
mq

(dx)

)
≥ cq(αq) (36)

⇒
∫
S
cq(x)µq(dx) ≥ mqcq(αq), (37)

with the second weak inequality in (36) following from (35). From (37), it follows that

C(µ) >
∑

qmqcq(αq) if (37) holds with strict inequality for at least one p ∈ P. We show that
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this is the case if µp is polymorphic and satisfies
a(µp)
mp

= φp(αp). We divide the proof into

two cases.

(a) Suppose φp is strictly concave. In that case, the fact that µp is polymorphic implies (35)

holds with strict inequality. Hence, so does the second inequality of (36) and, therefore,

(37).

(b) Suppose φp is linear. In that case, (35) and, therefore, second weak inequality of (36)

holds with equality. But if φp is linear, then, by part 4 of Assumption 3.1, cp is strictly

convex. Hence, the first inequality of (36) holds strictly. Therefore, so does (37).

In both cases, C(µ) >
∑

qmqcq(αq). Therefore, g(α1, α2, · · · , αn) > f(µ). �

Lemma A.3 Let Assumption 3.1 hold. Then, the quasi–potential function g :
∏n
p=1[x, x̄] → R

defined in (11) is a strictly concave function. Hence, it has a unique maximizer α∗ = (α∗1, · · · , α∗n) ∈∏n
p=1[x, x̄].

Proof. Consider the quasi–potential function (11). Take two points (α̂1, · · · , α̂n) 6= (α̃1, · · · , α̃n) ∈
[x, x̄]. Denote

∑
pmpφp(x) = φ. We need to show that for all λ ∈ (0, 1),

∫ ∑
qmqφq(λα̂q+(1−λ)α̃q)

φ
β(z)dz −

∑
q∈P

mqcq(λα̂q + (1− λ)α̃q)

>λ

∫ ∑
qmqφq(α̂q)

φ
β(z)dz −

∑
q∈P

mqcq(α̂q)

+ (1− λ)

∫ ∑
qmqφq(α̃q)

φ
β(z)dz −

∑
q∈P

mqcq(α̃q

 .

(38)

We first note that since β is a strictly decreasing function,
∫ y
φ β(z)dz is a strictly concave

function, for y ∈ R. Hence,∫ ∑
qmqφq(λα̂q+(1−λ)α̃q)

φ
β(z)dz ≥

∫ λ
∑
qmqφq(α̂q)+(1−λ)

∑
qmqφq(α̃q)

φ
β(z)dz (39)

≥ λ
∫ ∑

qmqφq(α̂q)

φ
β(z)dz + (1− λ)

∫ ∑
qmqφq(α̃q)

φ
β(z)dz, (40)

where the weak inequality in (39) arises due to the concavity of φq, for all q ∈ P, and the weak

inequality in (40) arises due to the strict concavity of
∫ y
φ β(z)dz, with the equality holding only if∑

qmqφq(α̂q) =
∑

qmqφq(α̃q).

Further, due to the convexity of cq, for all q ∈ P, we have

cq(λα̂q + (1− λ)α̃q) ≤ λcq(α̂q) + (1− λ)cq(α̃q). (41)
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Hence, ∑
q∈P

mqcq(λα̂q + (1− λ)α̃q) ≤ λ
∑
q∈P

mqcq(α̂q) + (1− λ)
∑
q∈P

mqcq(α̃q). (42)

We now divide the proof into three cases. First, we consider the case where for at least one

p ∈ P, φp is strictly concave. Further, for at least one p ∈ P such that φp is strictly concave,

α̂p 6= α̃p. Note that this case covers the possibility that φq is strictly concave, for all q ∈ P. Then,

for such p for which α̂p 6= α̃p, φp(λα̂p + (1 − λ)α̃p) > λφp(α̂p) + (1 − λ)φp(α̃p). In that case, (39)

holds with strict inequality. Then, (39)–(42) imply (38).

Second, for all q ∈ P such that φq is strictly concave, α̂q = α̃q. In that case, there must exist

at least one p ∈ P such that φp is linear and α̂p 6= α̃p. Further, by Assumption 3.1(4), cp is strictly

convex for such p. Then, (41) holds with strict inequality for such p. Hence, so does (42). Then,

(39)–(42) imply (38).

Third, φq is linear for all q. Therefore, by Assumption 3.1(4), cq is strictly convex for all q ∈ P
and there must exist at least one p ∈ P such that α̂p 6= α̃p. Thus, (41) and (42) hold with strict

inequality so that (39)–(42) imply (38).

These three cases exhaust all possibilities. Thus, the quasi–potential function (11) is strictly

concave. The existence of a unique maximizer then follows. �

Using Lemmas A.2 and A.3, we now establish Theorem 4.1.

Proof of Theorem 4.1: Consider the potential function on ∆ as defined in (8) and the quasi–

potential function g as defined in (11).

First, note that µ∗ = (m1δα∗1 , · · · ,mnδα∗n), where (α∗1, · · · , α∗n) ∈
∏n
p=1[x, x̄] is as characterized

in Lemma A.3. Hence, µ∗p is monomorphic for all p ∈ P and
a(µ∗p)

mp
= φp(α

∗
p). Therefore, by part 1

of Lemma A.2, f(µ∗) = g(α∗1, · · · , α∗n).

Now consider µ 6= µ∗ such that µp is monomorphic for every p. Hence, µ = (m1δα1 , · · · ,mnδαn)

for some (α1, · · · , αn) ∈
∏n
p=1[x, x̄], with αp 6= α∗p for at least one p ∈ P. Note that in this case,

a(µp)
mp

= φ(αp), αp ∈ [x, x̄]. Therefore, by Lemma A.2(1), f(µ) = g(α1, · · · , αn).

Since µ 6= µ∗ and µp is monomorphic for all p, it must be that αp 6= α∗p for at least one

population p so that (α1, · · · , αn) 6= (α∗1, · · · , α∗n). Hence, by the definition of α∗, g(α∗1, · · · , α∗n) >

g(α1, · · · , αn). Therefore, we obtain

f(µ∗) = g(α∗1, · · · , α∗n) > g(α1, · · · , αn) = f(µ), (43)

for any µ 6= µ∗ such that µp is monomorphic for every p ∈ P.

Next, consider µ such that µp is polymorphic for at least one p ∈ P. For any p ∈ P, define

αp ∈ [x, x̄] such that
a(µp)
mp

= φ(αp). Then,

f(µ∗) = g(α∗1, · · · , α∗n) ≥ g(α1, · · · , αn) > f(µ), (44)
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where the weak inequality holds if (α∗1, · · · , α∗n) = (α1, · · · , αn) and the strict inequality follows

from Lemma A.2(2).

Combining (43) and (44), we conclude f(µ∗) > f(µ) for every µ ∈ ∆ \ {µ∗}. Hence, µ∗ is the

unique maximizer of f in ∆. Since f is concave on ∆ (Lemma ??), it follows that µ∗ is the unique

Nash equilibrium of F . �

A.2.1 Appendix to Section 4.1

Proof of Proposition 4.2: Given the assumption that (12) has an interior maximizer, the FOC

for α∗p is

V rαr−1p∑
qmqαrq

= kpγα
γ−1
p . (45)

Using (45), we obtain

α∗q =

(
kp
kq

) 1
γ−1

α∗p, for q 6= p. (46)

Inserting (46) into (45) and simplifying gives us (13). The result follows from Corollary 3.4 and

Theorem 4.1.

For equilibrium payoff, note that since φp(x) = xr in (2), A(µ∗) =
∑

p

∫
S x

rµ∗p(dx) follows from

(5). Hence, the generalized aggregate strategy at the Nash equilibrium µ∗ = (m1δα∗1 , · · · ,mnδα∗n)

of F (see Proposition 4.2), where α∗p is given by (13), is

A(µ∗) =
∑
p∈P

mp(α
∗
p)
r =

(
rV

γ

) r
γ

∑
p∈P

mpk
r

r−γ
p

1− r
γ

. (47)

Therefore, the CSF at µ∗ for a type p agent is
(α∗p)

r

A(µ∗) =
k

r
r−γ
p∑

q∈P mqk
r

r−γ
q

. The equilibrium cost of effort

is

cp(α
∗
p) = kp(α

∗
p)
γ =

rV

γ

k
r

r−γ
p∑

q∈P k
r

r−γ
q

. (48)

The equilibrium payoff Fα∗p,p(µ
∗
p) then follows from the definition of F in (2). �

Proof of Proposition 4.3: Given the assumption that (14) has an interior maximizer, the FOC

for α̂∗p is

V rk
r
γ
p αr−1p∑

qmqk
r
γ
q αrq

= kpγα
γ−1
p . (49)

Using (45), we obtain

α̂∗q =

(
kp
kq

) 1
γ

α̂∗p, for q 6= p. (50)

27



Inserting (50) into (49) and simplifying gives us (15). The result follows from Corollary 3.4 and

Theorem 4.1.

For equilibrium payoff, note that φp(x) = k
r
γ
p xr in F̂ . Hence, A(µ̂∗) =

∑
p∈P

∫
S k

r
γ
p xrµ̂∗p(dx)

in F̂ follows from (5). Therefore, the generalized aggregate strategy at the Nash equilibrium

µ̂∗ = (m1δα̂∗1 , · · · ,mnδα̂∗n) of F̂ (see Proposition 4.3), where α̂∗p is given by (15), is

A(µ̂∗) =
∑
p

mpk
r
γ
p k

−r
γ
p

(
rV

γ

) r
γ

=

(
rV

γ

) r
γ

(51)

Hence, the CSF at µ∗ for a type p agent is
k
r
γ
p (α̂∗p)

r

A(µ̂∗) = 1. The equilibrium cost of effort is

cp(α̂
∗
p) = kp(α̂

∗
p)
γ =

rV

γ
. (52)

The equilibrium payoff F̂α̂∗p,p(µ̂
∗
p) then follows from the definition of F̂ in (3). �

A.3 Appendix to Section 5

Proof of Proposition 5.1:

1. Since φp(x) = xr in F , A(µ∗) =
∑

p

∫
S x

rµ∗p(dx) follows from (5). Hence, the generalized

aggregate strategy at the Nash equilibrium µ∗ = (m1δα∗1 , · · · ,mnδα∗n) of F (see Proposition

4.2), where α∗p is given by (13), is

A(µ∗) =
∑
p∈P

mp(α
∗
p)
r =

(
rV

γ

) r
γ

∑
p∈P

mpk
r

r−γ
p

1− r
γ

. (53)

Therefore, the CSF at µ∗ for a type p agent is
(α∗p)

r

A(µ∗) =
k

r
r−γ
p∑

q∈P mqk
r

r−γ
q

. The equilibrium cost of

effort is

cp(α
∗
p) = kp(α

∗
p)
γ =

rV

γ

k
r

r−γ
p∑

q∈P k
r

r−γ
q

. (54)

The equilibrium payoff Fα∗p,p(µ
∗
p) then follows from the definition of F in (2).

For aggregate payoff, we apply (16) to µ∗. From (54), we obtain

C(µ∗) =
∑
p

mpcp(α
∗
p) =

rV

γ
. (55)

Hence, aggregate payoff at µ∗ is

F̄ (µ∗) = V − C(µ∗) = V − rV

γ
= V

(
1− r

γ

)
.
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2. Similar to part 1, φp(x) = k
r
γ
p xr in F̂ . Hence, A(µ̂∗) =

∑
p∈P

∫
S k

r
γ
p xrµ̂∗p(dx) in F̂ fol-

lows from (5). Therefore, the generalized aggregate strategy at the Nash equilibrium µ̂∗ =

(m1δα̂∗1 , · · · ,mnδα̂∗n) of F̂ (see Proposition 4.3), where α̂∗p is given by (15), is

A(µ̂∗) =
∑
p

mpk
r
γ
p k

−r
γ
p

(
rV

γ

) r
γ

=

(
rV

γ

) r
γ

(56)

Hence, the CSF at µ∗ for a type p agent is
k
r
γ
p (α̂∗p)

r

A(µ̂∗) = 1. The equilibrium cost of effort is

cp(α̂
∗
p) = kp(α̂

∗
p)
γ =

rV

γ
. (57)

The equilibrium payoff F̂α̂∗p,p(µ̂
∗
p) then follows from the definition of F̂ in (3)

For aggregate payoff, we apply (16) to µ̂∗. From (57), we obtain

C(µ̂∗) =
∑
p

mpcp(α̂
∗
p) =

rV

γ
. (58)

Hence, aggregate payoff at µ̂∗ is

F̄ (µ̂∗) = V − C(µ̂∗) = V − rV

γ
= V

(
1− r

γ

)
. �

Proof of Proposition 5.3: Using (13) and (15), we have

∑
p

mpα
∗
p =

(
rV

γ

) 1
γ

∑
p∈P mpk

1
r−γ
p(∑

q∈P mqk
r

r−γ
q

) 1
γ

,

∑
p

mpα̂
∗
p =

(
rV

γ

) 1
γ

∑
p∈P

mp

k
1
γ
p

 .

Hence, the result will be proven if we can show that

∑
p∈P mpk

1
r−γ
p(∑

q∈P mqk
r

r−γ
q

) 1
γ

>

∑
p∈P

mp

k
1
γ
p

 . (59)

Note that if r = 0, the two sides of (59) are equal. Hence, to establish this inequality, it suffices to

show that the LHS of (59) is strictly increasing in r.

For this purpose, we assume, without loss of generality, that k1 < k2 < · · · < kn. Through some
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tedious algebra, we then calculate

∂

∂r


∑

p∈P mpk
1

r−γ
p(∑

q∈P mqk
r

r−γ
q

) 1
γ



=

(∑
pmpk

r
r−γ
p

)−1
γ ∑

p

∑
q>p

(
mpmq(log kq − log kp)k

r
r−γ
p k

r
r−γ
q

)(
k

1−r
r−γ
p − k

1−r
r−γ
q

)
(γ − r)2

∑
pmpk

r
r−γ
p

> 0,

given our assumptions that kp < kq if p < q and r < γ. Thus, (59) holds for all r ∈ (0, 1] and γ ≥ 1

with the additional restriction that both r and γ are not equal to 1. �

A.4 Appendix to Section 6

The proof of Proposition 6.1 requires us to first characterize the maximizer of the quasi–potential

function g. We state the result in the following lemma.

Lemma A.4 Consider the quasi–potential function g defined by (12) with r = γ = 1. Assume that

k1 < k2 < · · · < kn. Then, g has a unique maximizer α∗ = (α∗1, · · · , α∗n) such that α∗1 = V−(1−m1)k1x
m1k1

and α∗p = x for all p 6= 1.

Proof. Since x is sufficiently low and x̄ is sufficiently high, the FOC for maximizing (12) is

satisfied with equality for p = 1. With r = γ = 1, this FOC is

V∑
qmqα∗q

= k1. (60)

But because k1 < k2 < · · · < kn, (60) implies that the FOC for all p 6= 1 must be

V∑
qmqα∗q

< kp. (61)

From (61), we conclude that α∗p = x, for all p 6= 1. Using this in (60), we obtain

V

mpα∗p +
∑

q 6=pmqα∗q
=

V

mpα∗p + (1−m1)x
= k1 ⇒ α∗1 =

V − (1−m1)k1x

m1k1
. �

Proof of Proposition 6.1: Consider the potential function f defined in (9) and the quasi–

potential function g defined in (12) with α = γ = 1. Recall from (5) that A(µ) =
∑

p a(µp).

Further, because γ = 1,
∑

p

∫
S kpxµp(dx) =

∑
p kpa(µp) in (9). It, therefore, follows from (9) and

(12) that if µ = (µ1, · · · , µn) ∈ ∆ and (α1, · · · , αn) ∈
∏
p[x, x̄] are such that

a(µp)
mp

= αp for every

p ∈ P, then f(µ) = g(α1, · · · , αn).
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Consider µ∗ ∈ NE(F ) as defined in (23). By the definition of NE(F ),
a(µ∗1)
m1

= α∗1 and
a(µ∗p)

mp
= x

for every p 6= 1. Hence, by the preceding argument,

f(µ∗) = g(α∗1, · · · , α∗n) (62)

where, as characterized in Lemma A.4, α∗1 = V−(1−m1)k1x
m1k1

and α∗n = x for every p 6= 1.

Next, for every µ ∈ ∆, we can find (α1, · · · , αn) ∈
∏
p[x, x̄] such that

a(µp)
mp

= αp for every p ∈ P.

This is because a(µp) ∈ [mpx,mpx̄] for every p ∈ P.

Hence, if we now consider µ /∈ NE(F ), then there exists such an element (α1, · · · , αn) ∈
∏
p[x, x̄]

such that, by the earlier argument, f(µ) = g(α1, · · · , αn). Moreover, because µ /∈ NE(F ), it must

be that (α1, · · · , αn) 6= (α∗1, · · · , α∗n). But because by Lemma A.4, (α∗1, · · · , α∗n) is the unique

maximizer of g, it must then be that g(α1, · · · , αn) < g(α∗1, · · · , α∗n). Combining this argument

with (62), we conclude

f(µ) = g(α1, · · · , αn) < g(α∗1, · · · , α∗n) = f(µ∗).

Therefore, NE(F ) is the set of maximizers of f . Hence, due to the concavity of f , it must also be

the set of Nash equilibria of F . Due to the linearity of a(·), NE(F ) is clearly a convex set.

We now calculate equilibrium payoffs. If µ∗ ∈ NE(F ), then by (23),

A(µ∗) =
∑
p

a(µ∗p) = m1
V − (1−m1)k1x

m1k1
+
∑
p6=1

mpx =
V − (1−m1)k1x

k1
+ (1−m1)x =

V

k1
. (63)

Note that µ∗1 is possibly polymorphic. If an agent in population 1 plays x ∈ S at µ∗, then by (2),

his payoff is x
A(µ∗)V − k1x = 0 by (63). All agents other than in population 1 play x. Their payoff

is x
A(µ∗)V − k1x = 0 by (63).

Hence, at every Nash equilibrium in NE(F ), all agents have payoff 0. The aggregate payoff at

any such Nash equilibrium must also be 0. �

The proof of Proposition 6.2 requires us to characterize the set of maximizers of the quasi–

potential function ĝ. We state the result in the following lemma.

Lemma A.5 If r = γ = 1, then the quasi–potential function ĝ defined in (14) has a convex set of

maximizers

M(ĝ) =

{a1, · · · , αn} ∈ ∏
p∈P

[x, x̄] :
∑
p∈P

mpkpαp = V

 . (64)

Proof. If r = γ = 1, then the FOC for maximizing (14) is V∑
p∈P mpkpαp

= 1. This establishes

the result. �

Proof of Proposition 6.2: Consider the potential function f̂ defined in (10) and the quasi–

potential function ĝ defined in (14) with r = γ = 1. Clearly if µ and (α1, · · · , αn) are such that

A(µ) =
∑

pmpkpαp, then f̂(µ) = ĝ(α1, · · · , αn).
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Note that in F̂ , a(µp) =
∫
S kpxµp(dx). This follows from (4) and the fact that φp(x) = kpx.

Since a(µp) ∈ [mpkpx,mpkpx̄], it follows that for any µp, there exists a unique αp ∈ [x, x̄] such that

a(µp) = kpαp. Therefore, for any µ = (µ1, · · · , µp), we can find a unique (α1, · · · , αn) ∈
∏
p[x, x̄]

such that A(µ) =
∑

p a(µp) =
∑

pmpkpαp.

Let µ̂∗ ∈ NE(F̂ ) as defined in (24). Hence, A(µ̂∗) = V . Further, by the argument in the

preceding paragraph, there exists (α̂∗1, · · · , α̂∗n) ∈
∏
p[x, x̄] such that A(µ̂∗) =

∑
pmpkpα̂

∗
p. Hence,

f̂(µ̂∗) = g(α̂∗1, · · · , α̂∗n). (65)

Moreover, because A(µ̂∗) = V ,
∑

pmpkpα̂
∗
p = V . Hence, (α̂∗1, · · · , α̂∗n) ∈M(ĝ) as defined in (64).

Now consider µ /∈ NE(F̂ ). So A(µ) 6= V . There exists (α1, · · · , αn) ∈
∏
p[x, x̄] such that

A(µ) =
∑

pmpkpαp. Hence, f̂(µ) = ĝ(α1, · · · , αn). Moreover, as A(µ) 6= V ,
∑

pmpkpαp 6= V so

that ĝ(α1, · · · , αn) /∈M(ĝ). It then follows from (65) and Lemma A.5 that

f̂(µ) = ĝ(α1, · · · , αn) < g(α̂∗1, · · · , α̂∗n) = f̂(µ̂∗).

Hence, NE(F̂ ) as defined in (24) is the set of maximizers of f̂ . The concavity of f̂ then implies

that NE(F̂ ) is also the set of Nash equilibria of F̂ . Clearly, NE(F̂ ) is a convex set.

We now calculate equilibrium payoffs at a Nash equilibrium µ̂∗. From (3), and due to r = γ = 1,

Fx,p(µ̂
∗) =

kpx
A(µ̂∗)V − kpx = 0 because by (24), A(µ̂∗) = V . Since all agents in all populations have

zero payoff, aggregate payoff at a Nash equilibrium µ̂∗ is also 0. �

Proof of Proposition 6.3: In the equal treatment contest, the set of Nash equilibria is given

by (23). We calculate aggregate effort at any such Nash equilibrium. Since r = 1, the aggregate

strategy level A(µ) is equivalent to aggregate effort in this case. Hence, from (23), the aggregate

effort at any Nash equilibrium µ∗ ∈ NE(F ) is

A(µ∗) = a(µ∗1) +
∑
p>1

a(µ∗p). (66)

From (23), we know that at any µ∗ ∈ NE(F ), a(µ∗1) = m1
V−(1−m1)k1x

m1k1
= V−(1−m1)k1x

k1
and, for

p > 1, a(µ∗p) =
∫
S xµ

∗
p(dx) = mpx. Hence, using (66), we obtain

A(µ∗) = a(µ∗1) +
∑
p>1

a(µ∗p).

=
V − (1−m1)k1x

k1
+
∑
p>1

mpx

=
V − (1−m1)k1x

k1
+ (1−m1)x

=
V

k1
. (67)

Under affirmative action, the set of Nash equilibria is characterized by (24). Note that in this
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case, A(µ) =
∑

p

∫
S kpxµp(dx) is not aggregate effort. Instead, aggregate effort is

∑
p

∫
S xµp(dx).

To calculate aggregate effort, note from (24) that at any Nash equilibrium µ̂∗,

A(µ̂∗) =
∑
p

kp

∫
S
xµ̂∗p(dx) = V. (68)

But
∑

p kp
∫
S xµ̂

∗
p(dx) > k1

∑
p

∫
S xµ̂

∗
p(dx) as k1 < · · · < kn. Hence, from (68), we obtain

k1
∑
p

∫
S
xµ̂∗p(dx) < V

⇒
∑
p

∫
S
xµ̂∗p(dx) <

V

k1
. (69)

But
∑

p

∫
S xµ̂

∗
p(dx) is aggregate effort under affirmative action at µ̂∗. Hence, comparing (67) and

(69), we conclude that aggregate effort at any equilibrium under affirmative action is lower than

equilibrium aggregate effort under equal treatment. �
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