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Abstract

We consider individual decision-making where every alternative
appears with a frame (á la Salant and Rubinstein (2008)). The deci-
sion maker is subject to inattention due to framing effects that leads
to random choice. We characterize a frame-based stochastic choice
rule according to which the choice probability of an alternative (say,
x) is the probability with which attention is drawn by its frame and
not by the frames which are associated with the alternatives that beat
x according to a complete binary relation.
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1 Introduction

In any decision-making situation, individual choice is often observed to be
random. There are many papers which deal with random choice (e.g. Yildiz
(2016), Manzini and Mariotti (2014), Manzini and Mariotti (2015), Block
et al. (1959), Ahn et al. (2017)). In the literature, the randomness has been
attributed to variation in attention paid by the decision maker to different
alternatives (e.g. Manzini and Mariotti (2014), Block et al. (1959)). Limited
attention has been explained primarily as an inability or cognitive constraint
of the decision maker to consider all the items (or alternatives). However,
these papers do not model the source of the inattention. In our paper, we
model variability in attention by explicitly including the effects of various
frames with which the alternatives appear.

In our model, the decision maker chooses from a set of alternatives, where
every alternative appears with a frame. Our formulation of framing effect is
similar to that of Salant and Rubinstein (2008). A “product” in our model
is an alternative (x) with an associated frame (i). For instance, consider
a chocolate packaged in a ‘gift-box’, where chocolate is an alternative and
‘gift-box’ is a frame. The randomness in the decision maker’s attention could
depend on the nature and quality of the frames. Certain types of packaging
may be more attractive to the decision-maker. Thus, the probability with
which a product draws the decision-maker’s attention is a function of the
frame. This is consistent with theory and experimental evidence.1

In this paper, we characterize a stochastic choice rule called frame-based
stochastic choice rule which can be stated as follows: there exists a complete
binary relation over the set of alternatives and an attention function that
assigns a probability to every frame such that for any set of products G,
the choice probability of xi in G is the probability that attention is drawn
by frame i and not by frames attached to those alternatives in G that beat
x according to the binary relation. The binary relation and the attention
function in the rule are identifiable. We interpret the attention parameter
as the probability with which a particular frame draws the decision maker’s
attention. We illustrate the rule with an example:

Example: Suppose that there are two available shelves in a store: top
and bottom. Each shelf (frame) can accommodate either of the following two
brands of soft-drinks: a and b.

Suppose b is displayed in the top shelf and a is displayed in the bottom
shelf. Therefore, (b, top shelf) and (a, bottom shelf) are two products. Let

1For a broad survey of this literature see Kahneman and Tversky (2000) and related
works. For empirical evidence see (Sigman (2015)).
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G = {(a, bottom shelf), (b, top shelf)}. Suppose that the binary relation �
is such that a � b and δ is the attention parameter such that δ(top) = 0.8
and δ(bottom) = 0.2. The choice probabilities according to the frame-based
stochastic choice rule are as follows:

(i) Probability of choosing a is the probability that the bottom shelf draws
attention: P (a,G) = δ(bottom) = 0.2.

(ii) Probability of choosing b is the product of the probability that attention
is drawn by the top shelf and not by the bottom shelf as it contains a
(the alternative that beats b): P (b,G) = δ(top) × [1 − δ(bottom)] =
0.8(1− 0.2) = 0.64.

(iii) Probability of not choosing anything (say x∗) is the residual probability:
P (x∗, G) = 1− 0.2− 0.64 = 0.16.

Notice that even though a beats b, due to the lower attention drawn by
the frame in which a appears (bottom), b is chosen with a higher probability
than a.

We characterize frame-based stochastic choice rule using three axioms:
invariance of singletons, dominance and stochastic path independence.

Invariance of singletons states that the probability of an alternative when
no other alternative is present only depends on the frame attached to it.
Dominance has two parts. Informally, part (i) of dominance states that,
given a set of products G, if an alternative x dominates any other alternative
y from G in a pairwise comparison, then its choice probability is the same
as its choice probability when it appears alone, i.e., when the set of products
is just {xi}. Dominance (ii) states that for a given set of products G if x
dominates y in a pairwise comparison, when they appear in frame i and j
respectively, then x dominates y when they appear in any other set of frames
k and l respectively as well.

The third axiom is similar to stochastic path independence in Yildiz (2016)
and i-independence axiom in Manzini and Mariotti (2014).

The literature on random choice rules is rich (E.g. Manzini and Mariotti
(2014), Ahn et al. (2017), Li and Tang (2017) and Fudenberg et al. (2015),
Caplin and Martin (2018).) The paper closest to ours is Manzini and Mariotti
(2014) which characterizes a stochastic choice rule with limited attention.
However, our paper differs from theirs in a significant way. In their paper,
the attention function only depends on the alternatives; in our model, the
attention depends on the frames. Therefore, they do not model the source
of the inattention.
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Another paper that deals with effect of frames on stochastic choice is
Caplin and Martin (2018). They model the welfare aspects of frame-based
individual decision making. In their paper, a planner uses framing as an
information structure to influence decision making. Caplin and Martin (2018)
extends this idea to stochastic choice as well; however it does not explicitly
model the randomness in attention attributed to framing.

Ahn et al. (2017) provides a characterization of Luce rule and Fudenberg
et al. (2015) provides a cardinal treatment of random choice with a perturbed
utility model. Li and Tang (2017) show that stochastic choice rules are
backwards-induction rationalizable. However, none of these papers model
the source of the inattention.

To the best of our knowledge this is the first paper to model framing effects
as the source of randomness in attention. The rule we characterize clearly
demonstrates the effects of frames in drawing a consumer’s attention to a
product. Our framework extends to settings where the frames are positions
in a list (Rubinstein and Salant (2006)) or ordered trees (Mukherjee (2014)).

The paper is organized as follows. Section 2 describes the model and
discusses the axioms. Section 3 provides the main result and some examples.
The proofs are presented in the Appendix.

2 Model

Let X be the set of all alternatives and F be the set of all frames. The pair
(x, i) is a product where alternative x ∈ X appears with the frame i ∈ F .
For simplicity we denote the product (x, i) by xi.

We say that an alternative x and a frame i are compatible if xi is a well-
defined product. For example, if x = soft drink and i = paper bag then
(x, i) = (soft drink, paper bag) is not a well-defined product since soft drink
cannot be packaged in a paper bag. All such combinations of alternatives
and frames which are incompatible are excluded from our domain. We as-
sume that every alternative in X is compatible with every frame in F . An
implication of this is the following. If (x, i) = (soft drink, tetra pack) and
(y, j) = (milk, glass bottle) are well defined products, then the products
(y, i) = (milk, tetra pack) and (x, j) = (soft drink, glass bottle) are also
well-defined.

Let Ā : X × F be the set of all such well-defined products. The decision
maker has an option not to choose any product in which case we assume that
a default product x∗ is chosen (e.g. exiting the browser window on an online
shop without buying anything). Denote A : Ā ∪ {x∗}.2

2It follows that every product in our domain consists of an alternative with a compatible
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For any G ⊆ Ā, let G∗ = G ∪ {x∗} be the set of products containing the
default alternative, x∗, and let G(X) ⊆ X and G(F ) ⊆ F be the set of alter-
natives and the set of frames attached to the alternatives in G, respectively.

A stochastic choice rule is a mapping P : A × 2Ā → [0, 1] such that∑
xi∈G∗ P (xi, G) = 1. Note that the probability with which the default al-

ternative is chosen is P (x∗, G) = 1−
∑

xi∈G;xi 6=x∗ P (xi, G) for any G ⊆ A.

Therefore, for any set of products G ⊆ A, P (xi, G) is the probability
of choosing the alternative x ∈ X with frame i ∈ F from the given set of
products G. When the set of products G is empty the decision maker chooses
the default product x∗. Therefore, P (x∗, φ) = 1. We define the following class
of stochastic choice rules.

Definition 1 (Frame-based stochastic choice rule) A stochastic choice
rule P : A× 2Ā → [0, 1] is a frame-based stochastic choice rule if there exists
a function δ : F → (0, 1) and a complete binary relation3 � over X such that
for any x ∈ X, i ∈ F and G ⊆ A where xi ∈ G,

P (xi, G) = δi
∏

j∈G(F )|y�x,yj∈G\{xi}(1− δj)

where we denote δ(i) and δ(j) by δi and δj respectively for brevity. Here,
δi, which we call the attention parameter or the attention probability, is the
probability with which frame i draws the decision maker’s attention. Note
that it is independent of the alternative associated with the given frame.

According to the above rule, the choice probability of xi is the probability
that the frame i draws the decision maker’s attention and the frames associ-
ated with the alternatives that beat x according to � do not draw attention.
In the Appendix we provide conditions under which � is transitive.

We compare the above rule to the random consideration set (rcs) rule in
Manzini and Mariotti (2014):

Definition 2 (Random consideration set rule (rcs) (MM (2014)) A ran-
dom consideration set rule is a random choice rule p�,γ for which there exists a
pair (�, γ), where� is a strict total order on X and γ is a map γ : X → (0, 1),
such that,

p�,γ(a,A) = γ(a)
∑

b∈A:b�a(1− γ(b)) for all A ∈ D and a ∈ A.

where D is the relevant domain containing subsets of X. In the rcs rule,
randomness arises due to a two-stage decision making process in which the

frame.
3A binary relation � is complete over X if ∀x, y ∈ X, x � y or y � x.
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decision maker considers only those alternatives that attract attention. The
above rule is a choice rule from a set of alternatives. Therefore, there is no
concept of frames in their model. Consider the following example:

Example 3 Let G1 = {xi, yj, zk} and G2 = {xj, yk, zi}. The set of al-
ternatives in G1 and G2 are the same: {x, y, z}. Let y � x, x � z and
y � z. According to the rcs-rule, x will be chosen with the same probability
γ(x)(1−γ(y)) from both G1 and G2. However, according to the frame-based
stochastic choice rule, the probability of choosing xi from G1 may differ from
the probability of choosing xj from G2 since P (xi, G1) = δi(1 − δj) is not
necessarily equal to δj(1− δk) = P (xj, G2).

In Manzini and Mariotti (2014), the binary relation is strict. However,
we can define a weak order version of the rcs-rule as follows: p�,γ(a,A) =
γ(a)

∏
b∈A\{a}:b�a(1 − γ(b)) for all A ∈ D and a ∈ A. Suppose y � x, x � z

and y � z. Again, x will be chosen with the same probability from both
G1 and G2 according to the weaker version of the rcs-rule, but the choice
probabilities of xi may differ according to the frame-based stochastic choice
rule.

Further, the attention probability and the binary relation are both defined
over the set of alternatives in the rcs-rule while the attention probabilities
are independent of the alternatives in the frame-based stochastic choice rule.
Therefore, unlike the frame based stochastic choice rule, the role of frames in
attracting the decision maker’s attention cannot be explained by the rcs-rule.

The following axioms characterize the frame-based stochastic choice rule.

2.1 Axioms

Invariance of singletons (IS) For all x, y ∈ X and i ∈ F , P (xi, {xi}) =
P (yi, {yi}).

IS requires that the choice probabilities of any two products from single-
ton sets are equal when the two products have the same frame. This axiom
emphasizes that choice is stochastic due to the frame attached to an alter-
native. Notice that this axiom is an independence requirement on the choice
probability from singleton sets.

Dominance (DOM) Consider any x ∈ X and i ∈ F . We have the follow-
ing:

(i) for any G ⊆ Ā such that xi ∈ G, suppose that P (xi, {xi, yj}) >
P (yi, {yi, xj}) ∀ y ∈ X and for some j ∈ F , such that yj ∈ G. Then
P (xi, G) = P (xi, {xi});
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(ii) suppose that P (xi, {xi, yj}) > P (yi, {yi, xj}) for some y ∈ X and for
some j ∈ F . Then, P (xk, {xk, yl}) > P (yk, {yk, xl}) for all k, l ∈ F.

We say that x dominates y when xi is chosen with a higher probabil-
ity from {xi, yj} than yi from {xj, yi}, for any i, j ∈ F . Note that this is
antecedent of DOM (i) and (ii).4

DOM (i) requires that if for some xi ∈ G ⊆ Ā, x ‘dominates’ y in the
above sense for all y such that yj ∈ G, then the choice probability of xi from G
is the same as the probability with which xi is chosen from the singleton {xi}.
This axiom is an independence requirement similar in spirit to the classical
independence of irrelevant alternatives axiom in the context of frames: if an
alternative x ‘dominates’ all the other alternatives in a given set, its choice
probability from that set is independent of the presence of the dominated
alternatives.

DOM (ii) requires that if an alternative x dominates y when x is assigned
frame i and y is assigned frame j, then x dominates y when x and y are
assigned any two frames k, l ∈ F . This axiom rules out situations in which
x dominates y for a pair of frames {i, j}, and y dominates x for another pair
of frames {k, l}.

Stochastic Path Independence (SPI) For any x, y ∈ X and i, j ∈ F
such that xi, yj ∈ G for any G ⊆ Ā, if P (xi, {xi, yj}) ≤ P (yi, {yi, xj}), then,

P (xi, G)

P (xi, G \ {yj})
= 1− P (yj, {yj}).

We introduce the notion of ‘impact’ in order to explain the above axiom.
Suppose y dominates x in the manner described above. For a given set of
products G, following Manzini and Mariotti (2014), we define the impact

of removing yj from G on xi as the ratio
P (xi,G\{yj})
P (xi,G)

. SPI states that if y
dominates x, then the impact of removing yj from G on xi is the probability
of not choosing yj from the singleton set {yj}. This axiom is the stochastic
version of the path-independence condition of Plott (1973) and similar to the
axiom of the same name in Yildiz (2016) and Manzini and Mariotti (2014).

3 The Result

Theorem 4 A stochastic choice rule P is a frame-based stochastic choice
rule if and only if it satisfies IS, DOM and SPI.

4 Note that DOM (ii) implies that the ‘dominance’ relation is unique for any distinct
x, y ∈ X.
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Theorem 4 characterizes the class of frame-based stochastic choice rules.
For any two alternatives, the binary relation shows which alternative beats
the other. According to the rule, randomness in choice data arises due to the
attention probabilities of the frames with which the alternatives appear.

The formal proof is provided in the Appendix. Here, we provide a sketch:
using ‘dominance’ we define a weak binary relation � over the set of al-
ternatives. DOM (ii) ensures that � is complete. We derive the choice
probability of xi from a set of products G as follows: we partition G into
subsets such that x beats all the alternatives in one subset, and all the al-
ternatives beat x in the other subset. SPI allows us to express P (xi, G) as
P (xi, G \ {yj})(1 − P (yj, {yj}) for each y � x. We iteratively remove all
such yj from G. Notice that x beats all the alternatives that remain in the
set of products (except itself) according to �. DOM(i) renders these prod-
ucts irrelevant. The attention parameter is identified as the probability with
which a product is chosen from a set that contains no other products. IS
ensures that the attention parameter does not depend on the alternatives,
but is simply a function of the frame.

There are several environments where the frames and the attention prob-
abilities have a nice structure. We provide some examples in the next sub-
section.

3.1 Frames and attention parameter: some examples

The set of frames often exhibits interesting structures. For instance, pack-
aging quality for an item can vary from a basic quality to premium - here
frames can be ordered on a continuum. We give examples of some envi-
ronments where frames can be ordered and the attention probabilities for
different frames depend on the order.

(i) Ordered frame-based stochastic choice rules: suppose that the frames
are ordered according to popularity or quality. Let this ordering be
denoted by <, where i < j implies that frame i is less popular than
frame j. It is natural to assume that δi ≤ δj if i < j, i.e. a more popular
frame is likely to draw attention with higher probability. According
to the frame-based stochastic choice rule, when an alternative is in a
frame that is more popular than the other frames it will have a higher
probability of being chosen by the decision maker, given the binary
relation.
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(ii) Primacy and recency: alternatives appear in a sequence of frames where
i < j implies that frame i is observed before frame j; this is the po-
sitioning of the frames. For example, a menu in a restaurant or items
placed on a shelf in a shop. There can be many possible relationships
between this sequence and the attention parameter. For example, if
i < j ⇒ δi ≥ δj, then this signifies ‘primacy effect’ where an alterna-
tive has a higher chance of being chosen by the decision maker when
it appears at the beginning of the list or menu (Rubinstein and Salant
(2006)).

Alternatively, if i < j ⇒ δi ≤ δj, this is the ‘recency effect’ (Rubinstein
and Salant (2006)) where the decision maker chooses an alternative
with higher probability when it appears at the end of the list.

The frame-based stochastic choice rule recognizes that the frame attached
to an alternative may influence the probability with which it is chosen. The
stochastic parameter and the binary relation over the alternatives is identi-
fied5.

4 Conclusion

We model choice behavior in the setting of imperfect attention. In our model,
the source of imperfect attention are the frames attached to the alternatives.
We characterize frame-based stochastic choice rule, in which the frames draw
the decision maker’s attention irrespective of the alternatives in the frame.
The attention probabilities and the underlying binary relation are identifi-
able.

5 Appendix

5.1 Proofs of theorems

Proof of Theorem 4. Necessity: Let P be a frame based stochastic choice
rule and � be the associated complete binary relation over X.

IS: By definition δi ∈ (0, 1) for all i ∈ F . Therefore, P (xi, {xi}) = δi =
P (yi, {yi}), ∀ x, y ∈ X. Hence, IS is necessary.

DOM(i): Suppose that P (xi, {xi, yj}) > P (yi, {xj, yi}), ∀ yj ∈ G \ {xi},
G ⊆ Ā. There are three possible cases:

5See proof of Theorem 4.
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(i) x � y : P (xi, {xi, yj}) = δi and P (yi, {xj, yi}) = δi(1− δj);

(ii) y � x : P (xi, {xi, yj}) = δi(1− δj) and P (yi, {xj, yi}) = δi;

(iii) x ∼ y : P (xi, {xi, yj}) = δi(1− δj) and P (yi, {xj, yi}) = δi(1− δj).

Since, P (xi, {xi, yj}) > P (yi, {xj, yi}), only (i) is feasible (since 0 < δi, δj <
1). Thus x � y, ∀ y ∈ G(X). It follows from the rule that P (xi, G) = δi =
P (xi, {xi}).

DOM(ii): Suppose that P (xi, {xi, yj}) > P (yi, {xj, yi}) for some y ∈ X, j ∈
F . Following the same argument as above (proof of necessity of DOM(i)),
we can show that x � y. Thus for any k, l ∈ F , P (xk, {xk, yl}) = δk and
P (yk, {xl, yk}) = δk(1 − δl). Hence P (xk, {xk, yl}) > P (yk, {xl, yk}), since
0 < δk, δl < 1.

SPI: Take any x, y ∈ X, and i, j ∈ F such that xi, yj ∈ G for some
G ⊆ Ā. Again, either x � y or y � x. By similar arguments as above,
P (xi, {xi, yj}) ≤ P (yi, {xj, yi}) only if y � x. Then,

P (xi, G)

P (xi, G \ {yj})
=

δi
∏

wr∈G\{xi}|w�x(1− δr)
δi
∏

wr∈G\{xi},w 6=y|w�x(1− δr)
= 1− δj = 1− P (yj, {yj}).

If x � y, then as argued previously, the antecedent of SPI will not hold.
Therefore, it is satisfied vacuously. We now prove sufficiency.

Sufficiency: Suppose that P satisfies IS, DOM and SPI.

We define the binary relation � over X as follows: for any x, y ∈ X,
x � y ⇐⇒ P (xi, {xi, yj}) ≥ P (yi, {yi, xj}) for all i, j ∈ F . Moreover,

(i) x � y ⇐⇒ (x � y) and ¬(y � x);

(ii) x ∼ y ⇐⇒ (x � y) and (y � x).

We show that � is complete. Without loss of generality (WLOG), we have
the following two cases for any x, y ∈ X:

(i) Suppose P (xi, {xi, yj}) > P (yi, {xj, yi}) for some i, j ∈ F . By DOM(ii),
P (xk, {xk, yl}) > P (yk, {xl, yk}) ∀ k, l ∈ F . By definition of �, x � y.

(ii) Suppose P (xi, {xi, yj}) = P (yi, {xj, yi}) for some i, j ∈ F . We can
show that P (xk, {xk, yl}) = P (yk, {yk, xl}) for all k, l ∈ F as fol-
lows: suppose P (xk, {xk, yl}) 6= P (yk, {yk, xl}) for some k, l ∈ F ,
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k 6= i or l 6= j. WLOG let P (xk, {xk, yl}) > P (yk, {xl, yk}). By
DOM (ii), P (xm, {xm, yn}) > P (ym, {xn, ym}) ∀ m,n ∈ F. This im-
plies that P (xi, {xi, yj}) > P (yi, {xj, yi}). This is a contradiction.
Therefore, if P (xi, {xi, yj}) = P (yi, {xj, yi}) for some i, j ∈ F , then
P (xk, {xk, yl}) = P (yk, {xl, yk}) for all k, l ∈ F . By definition, x ∼ y.
Therefore � is complete. Reflexivity of � follows from part (ii) above
for any x, y ∈ X such that x = y.

Now, consider any xi ∈ G,G ⊆ Ā. We partition G as follows: G =
G1∪G2∪{xi} where G1 = {wr ∈ G \ {xi}|P (xi, {xi, wr}) ≤ P (wi, {xr, wi})}
and G2 = {wr ∈ G \ {xi, }|P (xi, {xi, wr}) > P (wi, {xr, wi})}.

By definition of � and DOM (ii):

w � x, ∀ wr ∈ G1 and x � w, ∀ wr ∈ G2.

Pick an arbitrary yj ∈ G1. By SPI,

P (xi, G)

P (xi, G \ {yj})
= 1− P (yj, {yj}).

This in turn implies that

P (xi, G) = P (xi, G \ {yj})(1− P (yj, {yj})). (1)

We pick another arbitrary product ql ∈ G1 \ {yj}. By a similar argument as
the one used above for yj,

P (xi, G \ {yj}) = (1− P (ql, {ql}))P (xi, G \ {yj, ql}) (2)

The equations 1 and 2 imply,

P (xi, G) = (1− P (yj, {yj}))(1− P (ql, {ql}))P (xi, G \ {yj, ql}).

By the repeated application of the above steps for every yj ∈ G1,

P (xi, G) = P (xi, G \G1)
∏
yj∈G1

(1− P (yj, {yj}))

,

P (xi, G) = P (xi, G2 ∪ {xi})
∏
yj∈G1

(1− P (yj, {yj})). (3)

Now considerG2∪{xi}. By construction ofG2, for all wr ∈ G2, P (xi, {xi, wr}}) >
P (wi, {wi, xr}).
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Therefore, by DOM(i),

P (xi, G2 ∪ {xi}) = P (xi, {xi}). (4)

From (3) and (4) we get: P (xi, G) = P (xi, {xi})
∏

yj∈G1
(1−P (yj, {yj})). By

IS we know that for any i ∈ F , P (xi, {xi}) = P (yi, {yi}) for all x, y ∈ X.
Define δ : F → (0, 1) as follows:

P (xi, {xi}) = δi for any i ∈ F and for any x ∈ X.

Therefore, P (xi, {xi}) = P (yi, {yi}) = δi for i ∈ F , for any x, y ∈ X.

Using the definition of the binary relation � and by the construction of
G1, P (xi, G) = P (xi, {xi})

∏
yj∈G\{xi}|y�x(1− P (yj, {yj})).

Using the definition of δ in P (xi, G), we get

P (xi, G) = δi
∏

j∈G(F )|y�x,yj∈G\{xi}

(1− δj).

Note that the proof remains unchanged when either G1 or G2 or both are
empty6.

�

5.2 Independence of axioms

Axioms characterizing the frame-based stochastic choice rule: We
show that the axioms IS, DOM and SPI are independent of each other:

• IS: Define α : X → (0.5, 1). � is a complete binary relation over X
such that for all xi ∈ G,G ⊆ Ā,

P (xi, G) = α(x)
∏

y∈G(X):y�x;yj 6=xi(1− α(y)).

The above rule is similar to the stochastic choice rule characterized in
Manzini and Mariotti (2014). It satisfies DOM (i), DOM (ii) and SPI
but does not satisfy IS.

6 If G1 = φ then G = G2 ∪ {xi} and P (xi, G) = P (xi, G2 ∪ {xi}). Using DOM (i)
and setting P (xi, {xi}) = δi, we get P (xi, G) = P (xi, {xi}) = δi. If G2 is empty, then
P (xi, G) = P (xi, G1 ∪ {xi}). By the repeated application of SPI for all yj ∈ G1, we get
P (xi, G) = P (xi, {xi})

∏
yj∈G1

(1−P (yj , {yj})). Setting P (xi, {xi}) = δi, P (yj , {yj}) = δj
as above and using the definition of �, P (xi, G) = δi

∏
j∈G(F )|y�x;yj∈G\{xi}(1− δj).

12



• DOM (i): Let δ : F → (0.5, 1) and � be a complete binary relation
over X. For all xi ∈ G, G ⊆ Ā consider the following stochastic choice
rule:

P (xi, G) = δi
∏

j∈G(F )|yj∈G\{xi},x�y δj
∏

k∈G(F )|yk∈G\{xi},y�x(1− δk)

The above rule satisfies IS, SPI and DOM (ii) but does not satisfy
DOM (i).

• DOM (ii): Let δ : F → (0, 1) and � be a complete binary relation over
X. Let D ⊂ A such that for any zk,mr ∈ D, z 6= m and k 6= r. For
all xi ∈ G, G ⊆ D and some i∗ ∈ F consider the following stochastic
choice rule:

P (xi, G) =

{
δi
∏

j∈G(F ):x�y,yj∈G\{xi}(1− δj) when i = i∗

δi
∏

j∈G(F ):y�x,yj∈G\{xi}(1− δj) otherwise

This rule satisfies IS, DOM (i) and SPI but does not satisfy DOM (ii).

• Let δ : F → (0, 1) and � be a complete binary relation over X. For all
xi ∈ G, G ⊆ Ā consider the following stochastic choice rule:

P (xi, G) = δi
∏

j∈G(F ):yj∈G\{xi},y�x δj

The above rule satisfies IS and DOM (i) and DOM (ii) but does not
satisfy SPI.

5.3 The binary relation and transitivity

In our model, the binary relation � defined over X is not required to be
transitive. Imposing the following axiom makes it transitive.

Transitivity (TR): For any x, y, z ∈ X and for any i, j ∈ F , if P (xi, {xi, yj}) ≥
P (yi, {xj, yi}) and P (yi, {yi, zj}) ≥ P (zi, {yj, zi}) then

P (xi, {xi, zj}) ≥ P (zi, {xj, zi}).

TR rules out cycles in the choice probabilities in binary sets when the
frames are interchanged.
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Definition 5 A stochastic choice rule P : A×2Ā → [0, 1] is a P ∗ rule if there
exists a function δ : F → (0, 1) and a complete, transitive binary relation �
over X such that for any x ∈ X, any i ∈ F and G ⊆ Ā where xi ∈ G,

P (xi, G) = δi
∏

j∈G(F ):y�x,yj∈G\{xi}(1− δj)

Corollary 6 A stochastic choice rule P is a P ∗ rule if and only if it satisfies
IS, DOM, SPI and TR.

Proof. We show the necessity of TR. The rest of the proof is similar to the
proof of theorem 4.

Necessity: Let P be a P ∗ rule and � be a complete, transitive binary
relation over X. Let x � y for some x, y ∈ X. By the definition of the
rule, P (xi, {xi, yj}) = δi and P (yi, {xj, yi}) = δi(1 − δj). Since δ ∈ (0, 1),
P (xi, {xi, yj}) ≥ P (yi, {xj, yi}). Suppose y � z for some z ∈ X.Since � is
transitive, x � y and y � z implies x � z. Given δ ∈ (0, 1), P (xi, {xi, zj}) =
δi ≥ δi(1− δj) = P (zi, {zi, xj}). Therefore TR is necessary.
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