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We consider the problem of dividing and allocating a perfectly divisible het-

erogeneous good where agents have a preference for location and quantity. We

assume that preferences are single-peaked in quantity, i.e., semi-single-peaked

which can be represented by continuous indifference curves (ICs). We show

existence of envy-free and Pareto efficient allocation rules, and characterize the

set of all such rules using the notion of a balanced IC. We define the balanced-

curve allocation (BCA) which uses the region between the two balanced ICs to

obtain feasible allocations. We show that an allocation rule is envy-free and

Pareto efficient if and only if it is in the set specified by the BCA rule. We

show that there is no strategy-proof, envy-free and Pareto efficient allocation

rule. We provide some insights into the problem when there are more than 2

agents.
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1 Introduction

There are many settings where a contiguous set or interval of a heterogeneous and per-

fectly divisible resource is to be allocated among multiple interested agents. Agents

may have preference for the location and the quantity of the interval depending on

where it is located. Some examples include allocating a piece of land for the con-

struction of a facility or a time interval which has to be allocated to an advertisement

firm. We propose a new restricted preference domain where the preference for quan-

tity is single-peaked. We characterize envy-free and Pareto efficient allocations in this

setting.

The idea of envy-freeness was introduced in Foley (1966) and further studied in Varian

(1973) and Thomson and Varian (1984). Envy-freeness is one of the central axioms

of fairness and economic equity in the allocation literature (Thomson and Varian

(1984)).1 The condition requires that for any given allocation problem, every agent

must prefer her own allocation to the allocation of any of the other agent. In spite

of the appeal of the axiom, characterizing envy-free allocations in such models is

extremely hard and no finite bounded algorithms exist (Stromquist (2008)). We

evade the problem of complexity and existence in such models by considering an

ordinal model where the preference for quantity is single-peaked.

We consider an allocation model where agents have preferences over intervals rep-

resented by the tuple (x, q) where x denotes the starting point or the ‘location’ of

the interval and q denotes the length or the quantity of the interval. Therefore, each

point (x, q) corresponds to an interval, [x, x+q], which is a closed connected subset of

the unit interval [0, 1]. We assume that agents have continuous preferences which are

represented by orderings.2 We assume that for any agent i and any given quantity

q′ ∈ [0, 1], an indifference curve function ICi,q′ represents the quantity ICi,q′(x) for

any location x such that the bundle (x, q = ICi,q′(x)) is indifferent to the allocation

(0, q′). Figure 1 shows the domain of preferences and illustrates an IC passing through

(x, ICi,q(x))). These ICs cut across the domain and intersect the two axes: one at

x = 0 and the other at x+ q = 1.

We assume that each agent has a ‘top’ IC which connects the set of most preferred

allocations. We define single-peakedness in quantity as follows: for each location x in

the domain of an ICi,q(x), the bundles further away from the any (x, q) on the top IC

1Varian (1973) defines an allocation to be fair if it is Pareto efficient and equitable (i.e. envy-
free), this is inspired by the idea that fairness of allocation may be contributed by agents judgement
of their allocation, others’ allocation and the comparison thereof.

2A binary relation R is called a preference ordering if it is (i) complete: xRy or yRx for all x, y
and (ii) transitive: xRy and yRz implies xRz for all x, y, z. A preference, ≻ on X is continuous
on X if and only if for any x ∈ X, the lower and upper contour sets, {y : x ≿ y} and {y : y ≿ x}
respectively, of x are closed.
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Figure 1: The set of alternatives X is the set of all the points in the triangle with
vertices {(0, 0), (0, 1), (1, 0)}

are worse. In other words, for any (x, q) on the top IC, since q is the most preferred

quantity at location x, for any q ≤ q′ < q′′ or q′′ < q′ ≤ q the bundle (x, q′) is strictly

better than the bundle (x, q′′). An implication of this assumption and transitivity

of preferences is that ICs ‘further away’ from the top IC connect bundles which are

strictly worse than the bundles on ICs which are closer to the top IC.

An implication of single-peakedness in quantity is that agents may not always want

more quantity. Semi-single-peaked preferences are natural to assume in the following

settings:

• Plot of land: an interval of land has to be allocated to each agent. Some agents

may prefer to have more (or less) quantity depending on the location due to

additional benefits (or cost) at those locations. The marginal gain from a bigger

piece of land may be less than the additional cost.

• Advertisement slots: agents need to have advertise their product in different

slots over the unit time interval. Agents may want slots at different times when

their ‘target’ audience is attentive. Smaller slots may not be sufficient and larger

slots may not be worth the additional cost.

Our model is two-dimensional in the sense that location and quantity are the two

dimensions where the latter depends on the first dimension. Our model, therefore,

can be seen as a generalization of the one-dimensional single-peaked allocation models

where we allow for agents to have preferences over location and quantity. However,

a crucial significant difference between our model and the standard notion of single-
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peakedness is that preferences over location are not single-peaked. Therefore, we

use the term semi-single peaked to denote these preferences. Table 1 provides a list

of essential differences between the preferences defined in our model: semi-single-

peakedness, classical monotonic preferences and single-peaked preferences.3

Single-peaked preferences Classical preferences Semi-single-peaked

Convex Convex Non-convex

Not monotone Monotone Not monotone

Satiation Non-satiation Satiation

Continuous Continuous Continuous

Allocations further away

from the peak are worse

More is always better Allocations further away

from the peak quantity at a

given location are worse

Table 1: Comparison of different preferences

In this paper we characterize envy-free and Pareto efficient allocations for two agents

and provide some insights for the case with more than two agents. Envy-freeness

requires that in any allocation of goods each agent should weakly prefer her own

allocation to any of the others’. When agents have identical preferences, envy-freeness

therefore requires agents to be given allocations on the same IC.

A preference profile that is frequently used in our paper is where both the agents

have identical preferences and prefer to have as much quantity as possible for any

given location, i.e., preferences are monotonic in quantity. This corresponds to the

case when the top IC consists of a single point (0, 1). Envy-freeness requires that

both agents must receive an allocation on the same IC. However, if they receive two

allocations (x, q) and (x′, q′), Pareto efficiency requires that q + q′ = 1. Moreover,

since intervals cannot intersect (except at an end-point) we must have x′+q′ = q+q′ =

1.4

We provide results for 2 agents. To provide our main result, we first show that when

preferences of the agents are such that their top ICs lie in a ‘high enough’ region,

both agents must receive allocations in the balanced curve region which is the region

between the two balanced ICs. An IC is balanced if it cuts the two axes x = 0 and

x+ q = 1 at the points (0, qfi ) and (qfi , 1− qfi ) respectively. In other words, if we were

to give an allocation to either agent on the same IC of some agent and also ensure

3The preference relation ≿ satisfies convexity if x ≿ y and α ∈ (0, 1) then αx+ (1− α)y ≿ y.
4An assumption on the slope of the ICs at (0, q) for any q ∈ (0, 1) ensures that agents receive

allocation on the two axes of the domain i.e. either at x = 0 or on the line x+ q = 1. The allocation
allows for intersection of the two allocated intervals at one end point. However, since a singleton
set is a set of measure zero, the representative utility functions would not distinguish between the
intervals, [x, x+ q] and [x, x+ q).
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that we give away the whole resource, it would have to be on the balanced IC of that

agent. We prove the existence of a balanced IC for any given set of preferences using

a fixed point argument. Moreover, the balanced IC is unique, which can be proved

using the following argument. If there is more than one balanced IC for a given set of

preferences, then those ICs would have to intersect. However, this would contradict

transitivity of preferences.

We describe the balanced curve algorithm (BCA) which provides the full set of envy-

free and Pareto efficient allocations. When agents have a ‘high enough’ top ICs, in

most cases, both agents receive allocations in the balanced IC region: the region of

allocations between the two balanced ICs. An agent receives allocations on the left

axis when her balanced IC cuts the balanced IC of the other agent from below on the

x = 0 axis. An assumption on the slope of ICs (slope greater than or equal to −1)

on the latter axis ensures that under the above condition, agents will always prefer

to receive allocations on the axis x = 0 rather than at some point in the interior

when the same quantity is available.5 Our first observation shows that when agents

have identical preferences and prefer higher quantity, then any envy-free and Pareto

efficient allocation must assign them allocations on their balanced IC (here both have

the same balanced IC since their preferences are same).

The BCA allocates bundles on the top ICs of the two agents whenever that is feasible.

However, there are multiple cases where this is not possible. There are broadly three

cases: in the first case, both agents prefer to have as much quantity as possible. In

this case, both agents receive the balanced IC region explained above. The second

case is where one of the agents does not want ‘too much’ quantity, i.e., her top IC

lies somewhere below the balanced IC region. In this case, the set of Pareto efficient

and envy-free allocations include bundles on her top IC and all other bundles up to

the point where she is indifferent between the bundle given to the other agent on the

opposite axis. This ensures that there is no envy. Similarly, there are Pareto indif-

ferent allocations where agents get allocations on opposite axes. There are multiple

sub-cases where the top IC of an agent may intersect the either of the two axes in the

balanced IC region. In such cases, envy-free and Pareto efficient allocations may be

given up to the point of intersection with the top IC. This is due to the fact that it

is not Pareto efficient to give more quantity than the peak quantity to any agent at

a given location. The final case is where both agents do not want a ‘lot of’ quantity

and are given any of the feasible allocations on their top ICs on either axis.

Our main insight from the first result is that the class of envy-free and Pareto efficient

allocation rules is large and multi-valued. The algorithm is fairly simple to calculate

5Observation 2 shows that this assumption is necessary for existence of envy-free and Pareto
efficient allocations.
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in principle: one can ‘travel’ between the top ICs of both the agents, starting with

the allocations of one agent on the top IC on either side of the two axes and prevent

envy on the way. This also ensures Pareto efficiency since the allocations lie between

the region of the top ICs.

Given that the set of envy-free and Pareto efficient set of rules is large, a natural

question arises: are some of these rules strategy-proof, i.e., do they ensure truthful

revelation of preferences? We find that for 2 agents, there are no strategy-proof, envy-

free and Pareto efficient rules. In other words, there exist profiles where an agent can

beneficially deviate by misreporting her preferences. This is not surprising given the

richness of the domain and due to semi-single peakedness of preferences.

For more than three agents, we provide some arguments for the existence of a k-

balanced IC which ensures that any k agents can be given allocations on the same IC

without wastage (excess or deficit). We provide a necessary condition for an envy-free

and Pareto efficient allocation. We indicate the possibility of generalizing the BCA

allocation from 2 to any k number of agents.

There are many papers studying envy-free and group envy-free allocations in the Wal-

rasian equilibrium setting. However, all these models assume canonical preferences

which are convex and monotonic. The preferences in our model are not monotonic

with respect to quantity and hence, their results do not apply to our model. Thomson

(1994) studies resource monotonic and envy-free allocations in the single-peaked set-

ting where the only dimension is quantity, while Sprumont (1991) consider a similar

setting to characterize the uniform rule as the only strategy-proof, anonymous and

efficient allocation rule. Both these works characterize the uniform rule which do

not have a direct analogous version in our setting. The closest version of this rule

in our model would be the allocation where each agent gets an n-th fraction of the

quantity. However, the location of such intervals would be different and agents may

rank different pieces differently. Due to these reasons our model does not reduce to

the one-dimensional single-peaked model when location ‘does not matter’ (when the

ICs have zero slope everywhere).6

Thomson (1994) characterizes the uniform rule as the only rule that is Pareto efficient,

envy-free and depends on peak quantity. Our BCA allocation is similar only in spirit

to the uniform allocation due to reasons mentioned above. Sprumont (1991) studies

the division problem when there is a fixed quantity of a perfectly divisible good

to be allocated among agents and each agent has a single-peaked preference over the

quantity allocations. Our model can be seen as a generalization of the one-dimensional

single-peaked model where location and quantity both matter.

6Thomson (2011) and Thomson (2016) provide excellent surveys of the related literature on
envy-free allocations.
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Our approach in this paper is fairly general and the preferences in our model cannot

be represented by a single-variable valuation function over a one-dimensional space

as in the cake-cutting literature (Procaccia (2016)). This is due to the fact that

agents may have varying preferences over different quantities given a fixed location

of the interval. Therefore, for continuous valuation functions, a strict subset of the

interval which has the highest valuation will always have a strictly smaller valuation

if the valuation of the bigger interval is positive. Since we do not assume this prop-

erty, a single valuation function would not be able to characterize semi-single-peaked

preferences.7 The analogous cardinal version of our model would require a valuation

function fy(x) for every given location y in the unit interval. However, computing

envy-free allocations would be even more challenging.

Brams et al. (2013) and Brams et al. (1995) highlight the difficulties in finding a fair

allocation of the cake when the number of agents is large. The latter work provides

moving-knife algorithms to obtain envy-free allocations. Lindner and Rothe (2015)

notes that “...despite intense efforts over decades, up to this date no one has succeeded

in finding a finite bounded cake cutting protocol that guarantees envy-freeness for any

number of players...”. Similarly, Stromquist (2008) provides an impossibility result for

envy-free cake divisions by finite protocols. Many papers in the cake-cutting literature

consider normalized valuation functions to get positive results (see Chen et al. (2013),

Aumann and Dombb (2015) and Caragiannis et al. (2012)). The approach taken in our

paper is different, due to the ordinal nature of preferences. Moreover, the property of

single-peakedness in quantity allows us to obtain positive results in this setting.

Bogomolnaia and Moulin (2023) studies the divide-and-choose and moving knife rules

and provide conditions for minimum guarantees when preferences are represented by

continuous utility functions (but may not be monotone or convex). In our model,

when agents have monotonic preference over quantity, the BCA guarantees at least

the worst allocation in the balanced IC region. This property may also hold for more

than 3 agents. We hope that future work will provide further insights into this. Aziz

and Mackenzie (2016) provides envy-free and bounded algorithms for cake-cutting for

any number of agents. However, their procedure requires nnnnnn

queries. Therefore,

an additional advantage of our model is that the envy-free and Pareto efficient rules

are well-defined and fully characterized.

The paper is organized as follows. Section 2 discuss the model, preferences and the

assumptions which characterize semi-single peaked preferences. Section 3 describes

the axioms and Section 4 provides the results for 2 agents. Section 5 provides some

7More specifically if I = [a, b] ⊂ [0, 1] is the interval with the highest valuation, which is given

by V (I) =
´ b
a
f(x)dx for a continuous valuation function f(x), then for any interval I ′ ⊂ I, V (I ′) ≤

V (I). However, the preferences in our model allow for the set I ′ = [a′, b′] ⊂ I to be higher valued if
a′ ̸= a.
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observations for more than 2 agents and Section 6 provides the conclusion.

2 Model

A heterogeneous and perfectly divisible resource is distributed on an interval [0, 1]

and has to be divided among n agents. The set of agents is N = {1, 2, . . . , n}. The

interval has to be divided such that each agent receives a closed interval from [0, 1]

which must be disjoint except at a single point from the interval received by another

agent.8 Formally an allocation of agent i will be denoted by ai = (xi, qi) ≡ [xi, xi+qi]

where xi ∈ [0, 1] is the starting point of the interval and qi ∈ [0, 1 − xi] it’s length

(or the quantity). The unit interval can be seen as a time interval or land which has

to be fully distributed to the agents. An allocation, a = {(xi, qi)}i∈N , is said to be

feasible if (i) for any i ∈ N , qi > 0,
∑

i qi ≤ 1 and (ii) for any pair of distinct agents i

and j, xi + qi ≤ xj or xj + qj ≤ xi. Therefore, condition (i) ensures that the resource

is allocated amongst the n agents with each receiving a positive quantity while the

second condition ensures that the intervals do not intersect except at a single point,

which are sets of measure zero. Note that we allow for free disposal i.e. we do not

need to allocate the full resource to all the agents.

Another way to visualize the allocations is to arrange the agents who have received

allocations from left to right, i.e., let i∗ ∈ {1, ..., n} be such that x1∗ < x2∗ < ... < xn∗ .

Then it must be the case that x2∗ = x1∗ + q1∗ , x3∗ = x2∗ + q2∗ , ..., xn∗ = xn∗−1+ qn∗−1.

For example, for three agents, the feasible allocation: a = (a1, a2, a3) such that

a1 = (0, 1
2
), a2 = (1

2
, 3
10
) and a3 = ( 8

10
, 2
10
) indicates that agent 1 has been given

the interval [0, 1
2
], agent 2 has been given the interval [1

2
, 8
10
] and agent 3 has been

given the interval [ 8
10
, 1]. The set of all feasible allocations for n agents shall be

denoted by A.9 An allocation {(xi, qi)}i∈N is said to be a no wastage allocation if∑
i qi = 1.

The allocation of any agent can be visualised as a point in the right-angled isosceles

triangle with vertices at (0, 0), (0, 1) and (1, 0). For any x, q ∈ [0, 1] such that x+q < 1,

we denote a right-angled isosceles triangle with vertices at (x, 0), (x+ q, 0) and (x, q)

by T q
x .

Therefore, the set of alternatives can be denoted as X = {(x, q)| 0 ≤ x, 0 ≤ q, x+ q ≤
1} or X = T 1

0 . Next, we define the set of preferences in this domain through a

8This is a standard assumption in the fair division literature (Procaccia (2016), Thomson (2011)).
9Note that this set cannot be a cross-product of any set since one’s allocation depends on the

other.
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sequence of assumptions.

Semi-single-peaked preferences. We define a type of preference over X. These

are motivated by the interpretation of single-peaked preferences defined over a line

(see Sprumont (1991) for example). In this paper we will consider preferences which

will be single-peaked with respect to quantity for a given location x ∈ [0, 1]. Our first

assumption is a standard one.

Assumption 0: We assume that preference ≿i of each agent i ∈ N is complete,

transitive and continuous which can be represented by indifference curve functions,

ICi,q : [0, q̄] → [0, 1] for any q ∈ [0, 1] where ICi,q(q̄) = 1 − q̄. We will denote the

preferences by ≿ where ≻ denotes the asymmetric part of the relation and ∼ denotes

indifference.

We note that by Debreu et al. (1954) and Debreu (1959) these preferences can be

represented by continuous utility functions, u : T 1
0 → R. Assumption 0 requires that

ICs are mappings from locations to quantities within T 1
0 .

For every x ∈ [0, q̄], the value ICi,q(x) is the quantity such that the bundle (0, q) is

indifferent to the allocation (x, ICi,q(x)) i.e. (0, q) ∼i (x, ICi,q(x)) for all x ∈ [0, q̄].

The bundle (q̄, 1−q̄) can also be seen as the right-most bundle on ICi,q which intersects

the line x+ q = 1 at (q̄, 1− q̄).

Another interpretation of the function ICi,q(x) is that it indicates the quantity re-

quired at x for the bundles (x, ICi,q(x)) to be indifferent to each other. Next,

we impose some properties on the functional form of ICi,q for every i ∈ N and

q ∈ [0, 1].

Assumption 1: Existence of a top IC. We assume that for every agent i ∈ N there

is a top indifference function, ICi,qτi
: (0, q̄τi ) → [0, 1] for some qτi ∈ (0, 1] such that

(x, ICi,qτi
(x)) ≿i (x

′, q′) for all x ∈ [0, q̄τi ] and for all (x′, q′) ∈ T 1
0 . We shall denote

ICi,qτi
(x) by ICτ

i . Note that the top IC, as illustrated in Figure 2, starts at (0, qτi ) on

the x = 0 axis, and intersects the x+ q = 1 axis at the point (qτi , 1− qτi ).

We assume that all agents want non-zero quantities i.e. qτi ∈ (0, 1] for all i ∈ N .

We denote the set of top-ranked allocations as τ(≿i) ≡ {(x, q)|(x, q) ∼i (0, qτi )}.
Note that if qτ = 1 for some agent i ∈ N , then τ(≿i) = {(0, 1)} i.e. her top IC

is just the allocation (0, 1). Note that any agent i ∈ N , qτi and q̄τi are such that

(0, qτi ), (q̄
τ
i , 1 − q̄τi ) ∈ τ(≿i) which are the two allocations on ICi,qτi

which cut the

x = 0 axis and the x+ q = 1 line respectively.

Assumption 2: Lowest at zero quantity. We will assume that for any i ∈ N and

for all x, 0 < x ≤ 1, (0, 0) ∼i (x, 0) i.e. allocations of zero length are indifferent to

each other and that for all q > 0, (0, q) ≻i (0, 0), all allocations with positive quantity
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are better than no allocation.

Assumption 3: Single-peakedness in quantity. For any i ∈ N and all q′, q′′ such

that (i) qτi ≤ q′ < q′′ or (ii) q′′ < q′ ≤ qτi implies that (0, q′) ≻i (0, q
′′).

Transitivity of the preferences imply that the ICs do not intersect (Mas-Colell et al.

(1995)). Therefore, an implication of Assumption 3 and transitivity is that for all

x ∈ [0, 1] such that (x, q′) and (x, q′′) are in T 1
0 (i) qτi ≤ q′ < q′′ or (ii) q′′ < q′ ≤ qτi

implies that (x, q′) ≻i (x, q
′′).

As a result of transitivity and single-peakedness in quantity it will be useful to call an

ICi,q ‘closer’ to the top IC, ICi,qτi
than another ICi,q′ on the same side of the top IC

if for some a ∈ [0, 1], (a, q1) lies on ICi,qτi
, (a, q2) lies on ICi,q, (a, q3) lies on ICi,q′ and

either (i) q1 ≤ q2 < q3 or (ii) q3 < q2 ≤ q1. Moreover, transitivity also implies that for

any (x1, q1) on ICi,q and (x2, q2) on ICi,q′ it will be the case that (x1, q1) ≻i (x2, q2)

if ICi,q is ‘closer’ to the top IC than ICi,q′ in the manner described above.

Semi-single-peaked preference domain: The set of all semi-single-peaked preferences

satisfying Assumptions 0 to 3 over X = T 1
0 is said to be the semi-single-peaked pref-

erence domain. We denote such a domain as D. Therefore the relevant preference

profiles are such that P = (≿1,≿2, ...,≿n) ∈ Dn.

Figure 2: An example of semi-single-peaked preferences

A allocation rule is a function, f : Dn → A, that takes in a preference profile P ∈ Dn

and produces a feasible allocation f(P ) = (f1(P), f2(P), . . . , fn(P)) ∈ A, where

fi(P) ∈ T 1
0 is the allocation of agent i ∈ N . We now present the axioms.
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3 Axioms

The first axiom is the standard notion of efficiency: an allocation is Pareto efficient

if no agent can be made strictly better-off without making another agent strictly

worse-off.

Pareto Efficiency. An allocation rule, f : Dn → A, is Pareto efficient if for any pref-

erence profile P ∈ Dn there does not exist another feasible allocation {(xi, qi)}i∈N ∈ A
s.t. (xi, qi) ≿i fi(P) for all i ∈ N and (xj, qj) ≻j fj(P) for some j ∈ N .

In other words, an allocation is Pareto efficient if for any other allocation whenever

an agent is strictly better-off, there is another agent who is strictly worse-off.

Anonymity. An allocation rule, f : Dn → A, is anonymous if for every preference

profile P ∈ Dn, and for each permutation σ of N , and for all i ∈ N , fσ(i)(P) = fi(Pσ),

where Pσ = (≿σ(1), ...,≿σ(n)). In other words, if the preferences of agents are per-

muted, then the allocations should also be permuted in the same way. Another version

of anonymity, which is more appropriate in our setting is the following.

Anonymity*. An allocation rule, f : Dn → A, is anonymous*, if for every preference

profile P ∈ Dn, and for each permutation σ of N , for all i ∈ N ,

fσ(i)(P) ∼σ(i) fi(Pσ)

where Pσ = (≿σ(1), ...,≿σ(n)).

According to Anonymity*, an allocation rule is anonymous* if for every permutation

of a preference profile, the allocation rule ensures that individuals get an allocation

which is indifferent to the preference of the permuted agent. Our main axiom, is a

fairness condition, that of envy-freeness.

Envy-Free. An allocation rule, f : Dn → A, is said to be envy-free if for all P ∈ Dn,

for all i, j ∈ N , fi(P) ≿i fj(P).

An allocation rule is envy-free if every agent prefers her own allocation to any other

agent’s allocation. Our final axiom, strategy-proofness, is an inter-profile condi-

tion.

Strategy-proof. An allocation rule, f : Dn → A, is said to be strategy-proof if for

any i ∈ N and for any (≿i,≿−i) ∈ Dn,

fi(≿i,≿−i) ≿i fi(≿
′

i,≿−i) for all ≿′
i ∈ D.

An allocation is strategy-proof if it does not provide any incentive for individual
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agents to benefit strictly by misreporting their preference.

4 Results

In this section we present our results for 2 agents first. Our first result shows that

standard anonymity is not an ideal property in this domain and also applies for more

than 2 agents.

Proposition 1 There is no allocation rule that is anonymous.

Proof. Let ≿1=≿2=≿ such that all ICs of ≿ have zero slope and τ(≿) = {(0, 1)}.
Pick the non-trivial permutation for n = 2, σ(1) = 2 and σ(2) = 1. Let P = (≿1,≿2),

which implies that Pσ = (≿2,≿1). Anonymity requires that fi(P) = fj(Pσ), where

i, j ∈ {1, 2} and i ̸= j. W.l.o.g. assume that a1 = f1(P) = (x1, q1) and a2 = f2(P) =

(x2, q2) and that a = (a1, a2) ∈ A. But note that f1(≿1,≿2) = f1(≿2,≿1) = f1(≿

,≿). Similarly, f2(≿1,≿2) = f2(≿2,≿1). Since a1 ̸= a2 whenever a = (a1, a2) ∈ A,

f1(≿1,≿2) = a1 ̸= f2(≿2,≿1) = a2. Therefore, anonymity is violated.

Next, we study envy-free and Pareto efficient allocation functions. It is easy to verify

that for any P = (≿1,≿2) ∈ Dn such that ≿1=≿2=≿ then f1(P) ∼i f2(P) for

i ∈ {1, 2} i.e. both the agents must be indifferent to each other’s allocation. If this

is not the case then f1(P) ≻1 f2(P) will imply that f1(P) ≻2 f2(P) due to identical

preferences. However, this is not envy-free. We provide an example of envy-free and

Pareto efficient allocation.

Example 1 Suppose P = (≿1,≿2) ∈ Dn such that ≿1=≿2=≿ and both prefer to have

the whole interval i.e. their top IC is τ(≿i) = {(0, 1)}. Pareto efficiency requires that

f(P) = (a1, a2) = ((x1, q1), (x2, q2)) such that q1 + q2 = 1. The above observations

imply that under identical preferences (x1, q1) ∼i (x2, q2) for each i ∈ {1, 2}. This

implies that these allocations need to be on the same IC of the agents which we call

balanced ICs. We define them formally.

Balanced IC: For any i ∈ N the balanced IC of agent i is an IC of the form ICf
i if

there exists a qfi ∈ (0, 1) such that (0, qfi ) ∼i (q
f
i , 1− qfi ). In other words, a balanced

IC of agent i consists of two allocations (0, qfi ) and (qfi , 1− qfi ) which lie on the same

IC. Our next proposition proves that there always exists a balanced IC for every agent

i ∈ N and that it is unique.

Proposition 2 For any i ∈ N with preference ≿i∈ D, there exists an IC, ICi,qfi
:

[0, qfi ] → [0, 1] for some qfi ∈ (0, 1) such that (0, qfi ) ∼i (q
f
i , 1 − qfi ). Moreover, qfi is

unique for every preference ≿i∈ D. We will denote ICi,qfi
by ICf

i .

Proof. We prove by contradiction. Suppose this is not the case. Then for each

q ∈ (0, 1), either (i) the ICi,q IC cuts the x+ q = 1 line above the point (q, 1− q) or
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(ii) the ICi,q IC cuts the x + q = 1 line below the point (q, 1 − q). Consider the IC

at q = 1
2
, ICi, 1

2
which is the IC passing through the points (0, 1

2
) and (γ, 1 − γ) for

some 0 < γ < 1. We provide arguments for different cases. Note that if γ = 1
2
, then

qfi = 1
2
and our claim is true.

Case (i): γ < 1
2
, then for some α ∈ (0, 1

2
), we will have ICi, 1

2
−α(

1
2
) = 1

2
. Now consider

ICs between ICi, 1
2
(x) and ICi, 1

2
−α(x) s.t. ICi, 1

2
−ε(

1
2
−δ1(ε)) =

1
2
+δ1(ε) for some func-

tion δ1 : [0, α] → [0, 1
2
− γ] such that,

(
0, 1

2
− ε

)
∼i

(
1
2
− δ1(ε),

1
2
+ δ1(ε)

)
for any ε ∈

[0, α]. Note the following properties of δ(ε): (i) δ1(0) =
1
2
−γ and (ii) δ1(α) = 0.

Since preferences are continuous on X = T 1
0 , δ1(ε) is a continuous and monotonic

function of ε. Define g1(ε) = δ1(ε) − ε. Note that g1(0) = 1
2
− γ > 0 and g1(α) =

−α < 0. Since g1(.) is a continuous function, we can apply the intermediate value

theorem which implies that there exist ε∗1 such that g1(ε
∗
1) = δ1(ε

∗
1)− ε∗1 = 0. This is

illustrated in Figure 3(a).

Figure 3: (a) and (b) : Proving existence of a balanced IC

Figure 4: (a) and (b) illustrate δ1(.) and δ2(.) resp.
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Therefore, δ1(ε
∗
1) = ε∗1 and this results in a contradiction since we assumed that

such points do not exist. Therefore, there exist qfi with ICi,qfi
(qfi ) = 1 − qfi for each

i ∈ {1, 2}.

Case (ii): 1
2
< γ, then for some α ∈ (0, 1

2
), we will have ICi, 1

2
+α(

1
2
) = 1

2
. Now

consider ICs between ICi, 1
2
(x) and ICi, 1

2
+α(x) s.t. ICi, 1

2
+ε(

1
2
+ δ2(ε)) =

1
2
− δ2(ε) for

some function δ2 : [0, α] → [0, γ − 1
2
] such that

(
0, 1

2
+ ε

)
∼i

(
1
2
+ δ2(ε),

1
2
− δ2(ε)

)
for any ε ∈ [0, α]. Note the following properties of δ2, (i) δ2(0) = γ − 1

2
and (ii)

δ2(α) = 0.

Define g2(ε) = δ2(ε)− ε. Note that g2(0) = γ − 1
2
> 0 and g2(α) = −α < 0. Since δ2

is a continuous function, we can apply the intermediate value theorem which implies

that there exist ε∗2 such that g2(ε
∗
2) = δ2(ε

∗
2)− ε∗2 = 0. Therefore, δ2(ε

∗
2) = ε∗2 and this

results in a contradiction since we assumed that such points do not exist. Therefore,

there exist qfi ∈ (0, 1) with ICi,qfi
(qfi ) = 1− qfi for each i ∈ {1, 2}.

For ease of exposition ICiqfi
(x) ≡ ICf

i (x).

We now show that for each individual i ∈ N , qfi is unique. Suppose for contradiction

that there are two balanced ICs: ICf
i and IC

′f
i and that w.l.o.g. qfi < q

′f
i which

implies 1 − q
′f
i < 1 − qfi . However, this further implies that ICf

i (x) and IC
′f
i (x)

intersect. This is a contradiction to transitivity of the preferences.

Proposition 2 proves the existence of a unique balanced IC for any given preference

≿i∈ D. This will be used frequently to describe the algorithm to find envy-free and

Pareto efficient algorithm. A term we will use is the balanced IC region which can be

defined as follows. Suppose qf1 < qf2 i.e. the balanced IC of agent 1 cuts the balanced

IC of agent 2 from below. Note that no balanced IC can lie completely below or

above another balanced IC. Any allocation (0, α) and (α, 1 − α) is said to be in the

balanced IC region if α ∈ (qf1 , q
f
2 ).

Observation 1 Suppose P = (≿1,≿2) such that ≿1=≿2=≿, and τ(≿i) = {0, 1} for

each i ∈ {1, 2}, then any envy-free and Pareto efficient allocation f1(P) and f2(P)

are both on the common balanced IC, ICf
i (x). In other words, f1(P) ∼1 f2(P) and

f1(P) ∼2 f2(P).

To see why the above claim is true, first note that both agents must receive allocations

on the same IC: if the two allocations are not on the same IC, then the agent on the

lower IC will envy the other. Suppose the allocation is not on the balanced IC for

both the agents IC1,qf1
= IC2,qf2

. Then, any allocation cannot be on an IC above

the balanced IC, since that would not be feasible. To see this, note that (0, qf1 ) and

(qf1 , 1 − qf1 ) are feasible. However, a higher ICi,q will be such that q > qf1 , which

means that 1− q̄ > 1− qf1 where q̄ is such that (q̄, 1− q̄) is on ICi,q and intersects the

line x + q = 1. But this implies that q + 1− q̄ > qf1 + 1− qf1 = 1. This implies that
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the allocation f1(P), f2(P) ∈ {(0, q), (q̄, 1− q̄)} for any f1(P) ̸= f2(P) (which are on

the same IC) is not feasible.

If the allocation of the agents lie on an IC below the balanced IC, then this is not

Pareto efficient, since both would prefer receiving either of the two allocations (0, qf1 )

or (qf1 , 1 − qf1 ) on the balanced IC since it is on an IC closer to their top IC. They

would both be strictly better-off since their top allocation is (0, 1) ∈ X. Therefore,

any no-envy and Pareto efficient allocation has to be on the balanced IC when the

peak is at (0, 1) and both agents have the same preference. We will use a more general

version of this observation in the proof of our main theorem.

Observation 2 There exists a preference profile P ∈ D2 for which there do not exist

any allocation rule, f : D2 → A, that is Pareto efficient and envy-free.

Figure 5: When preferences are “too steep”

We provide an example to prove the above observation. Consider a preference profile

P where both agents have the same preference ≿1=≿2=≿ and d
dx
(ICi,q(x))|x=0 < −1

for all q ∈ (0, 1) i.e. for every ICi,q there exists points x in the interior of the set

T q
0 = {x ∈ T 1

0 s.t. x+ q < 1}. In other words, some points on the ICi,q belong to the

interior of the triangle T q
0 for every q ∈ (0, 1). By the above observation, a feasible

envy-free and Pareto efficient allocation must be on the same IC. Here if any agent

is allocated (0, qf ), then she will take a subset of the interval, where the relevant

IC through the allocation point is tangent. Therefore, the only possible allocation

in this case, is where at the tangency point (x1, q1), the right cut-point of the IC

through this point must be balanced, i.e., (x1, q1) ∼i (x2, 1−q2) for some q2 such that

1 − q2 > 1 − qf . However, this is not possible since q1 + 1 − q2 > qf + 1 − qf = 1

implies that the allocation f1(P) = (x1, q1) and f2(P) = (x2, q2) (or the allocation

where the two agents get the permutation of this) is not feasible. In order to rule

out such preference profiles, we impose another restriction preferences D to obtain a

subset of the domain.
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Assumption 4: For all q ∈ (0, 1), d
dx
(ICi,q(0)) ≥ −1.

The reduced domain, D1: Let the set of preferences which satisfy Assumptions

1-3 be denoted as D1. Note that D1 ⊆ D. We now highlight the importance of

balanced ICs and the region between them by considering the case where preferences

are monotonic i.e. the most preferred bundle for both agents is the full unit interval,

i.e., τ(≻i) = {(0, 1)} for i ∈ {1, 2}.

Proposition 3 Suppose P = (≿1,≿2) ∈ D2
1 where τ(≿i) = {(0, 1)} for i ∈ {1, 2}.

Then the following allocation rule f : D2
1 → A is Pareto efficient and envy-free:

(i) If qf1 = qf2 , then fi(P) = (0, qf1 ) and fj(P) = (qf1 , 1−qf1 ), where i ̸= j, i, j ∈ {1, 2}.
(ii) If qfi < qfj , then fi(P) = (0, α) and fj(P) = (α, 1− α) for all α ∈ [qfi , q

f
j ].

Proof. (i) If qf1 = qf2 = qf then either f(P) = ((0, qf ), (qf , 1 − qf )) or f(P) =

((qf , 1−qf ), (0, qf )) is envy-free as both get allocations on same IC and Pareto efficient

as whole resource is allocated.

(ii) We provide arguments for the case when qf1 < qf2 . Similar arguments can be used

to prove the other case. Note that if qfi ̸= qfj then ICi,qfi
and ICj,qfj

can only intersect

once i.e. qfi < qfj ⇒ 1− qfi > 1− qfj .

Figure 6: Illustrative balanced IC region

We define the following sets to argue that the provided allocations are envy-free

and Pareto efficient: R1 = {(0, α)|α ∈ [0, qf1 )}, R2 = {(0, α)|α ∈ (qf2 , 1]}, R3 =

{(α, 1 − α)|α ∈ (qf1 , 1]} and R4 = {(α, 1 − α)|α ∈ [0, qf2 )}. We will first show that

no Pareto efficient and envy-free allocation of the form {(0, α), (α, 1− α)} can be in

regions R1, R2, R3 and R4.

Consider any (0, α) ∈ R1, then the corresponding (α, 1 − α) will be in R3. Here,
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both the agents will prefer (α, 1 − α) since their peak bundle is (0, 1). Therefore,

giving the latter to any agent will not be envy-free. Similarly, for any (0, α) ∈ R2,

the corresponding (α, 1−α) will be in R4. Both the agents will prefer (0, α) so giving

the latter will again lead to envy.

For any (0, α) s.t. α ∈ [qf1 , q
f
2 ], corresponding (α, 1 − α) will be on x + q = 1

line between (qf1 , 1 − qf1 ) and (qf2 , 1 − qf2 ). We will have (0, α) ≻1 (α, 1 − α) and

(α, 1−α) ≻2 (0, α). Therefore, for any such allocation, neither of the two agents will

envy the other’s allocation. Moreover, this is Pareto efficient since there full interval

is given away.

When both the agents have top ICs above region between the two balanced ICs and

the domain of preferences is D1, any Pareto efficient allocation has to be a no-wastage

allocation. In other words, any Pareto efficient allocation will assign allocations on

the left and right axis respectively to the agents.

It is easy to verify the above observation. Once an allocation (0, q) is given to an

agent, the remaining feasible region is T 1−q
q . Since preferences are monotonic, for the

other agent, the highest IC will intersect at (q, 1 − q) . Similarly, if an agent gets

an allocation (q, 1 − q) on the right axis, then the remaining feasible region is given

by T q
0 . Given assumption 4 above, when more quantity is preferred, the highest IC

of the other agent in T q
0 will intersect at (0, q). We will say that two allocations

((x1, q1), (x2, q2)) and ((x′
1, q

′
1), (x

′
2, q

′
2)) are Pareto indifferent to each other if both

are Pareto efficient and (x1, q1) ≿1 (x
′
1, q

′
1) and (x′

2, q
′
2) ≿2 (x2, q2).

We now describe the algorithm which will characterize the full set of Pareto efficient

and envy-free allocation for any given preference profile P ∈ D2.

Definition 1 (Balanced-curve allocation(BCA) rule) An allocation rule f : D2
1 →

A is the BCA rule if for every P ∈ D2
1 it produces an allocation according to the al-

gorithm provided below.

The balanced-cure allocation (BCA) rule as described below gives a set of possible

allocations for each preference profile P ∈ D2
1 based on the inequalities the individual

preferences follow. Consider any preference profile P = (≿1,≿2) ∈ D2
1. We will

use the fact that there is a unique balanced IC for each agent denoted by ICf
i for

i ∈ {1, 2}.10

We say that ICi,q ≤ ICi,q when for all x, ICi,q(x) ≤ ICi,q(x). This is due to the fact

that ICs do not intersect and equality holds when the ICs coincide.

Observation 3 For any i ∈ {1, 2},

(i) (a) If ICτ
i = ICf

i then qτi = qfi = qτi .

10Unless the preferences are identical in which case they have the same balanced IC.
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(b) If ICτ
i < ICf

i then qτi < qfi < qτi .

(c) If ICf
i < ICτ

i then qτi < qfi < qτi .

(ii) If 1− qτj ≤ 1− qτi ⇔ qτi ≤ qτj , then an allocation {(xi, qi)}2i=1 where xi < xj, we

can give agent i, (xi, qi) = (0, qτi ), there is enough remaining for agent j to be

allocated on it’s top IC on the right of agent i.

We give a broad classification of the cases. There are three cases. Case 1 describes

a profile when both agents can be allocated on their top ICs i.e. qτ1 ≤ qτ2 or qτ2 ≤ qτ1

or both. If only qτ1 ≤ qτ2 but not qτ2 ≤ qτ1, then (0, qτ1 ) and (qτ1 , 1 − qτ1 ) is a Pareto

efficiency and envy-free allocation. However, there may be other Pareto efficient and

envy-free allocations in this case. However, all such allocations will have the property

that x1 < x2, i.e., agent 1 is given an allocation on the left of that of agent 2. These

allocations will be denoted as LR allocations, where L denotes ‘left’ for agent 1, and

R denotes ‘right’ for agent 2.

Similarly, if qτ2 ≤ qτ1 but not qτ1 ≤ qτ2 then x2 < x1 are the only Pareto efficient and

envy-free allocations. These allocations will be denoted as RL allocations. But if

both qτ1 ≤ qτ2 and qτ2 ≤ qτ1 then either configuration will result in allocations that are

Pareto efficient and envy-free.

Cases 2 and 3 pertain to those profiles where one of the agents will not receive

allocations on their top ICs. This implies that qτ2 < qτ1 and qτ1 < qτ2 . Note that this

implies that at least one agent has their top IC above the balanced IC i.e. for some

i ∈ 1, 2, ICτ
i (x) < ICf

i (x) ∀x. If both agents have their top IC below their balanced

curve i.e, qτ1 ≤ qf1 ≤ qτ1 and qτ2 ≤ qf2 ≤ qτ2 but qτ1 < qτ2 , will imply that qτ1 ≤ qτ2.

Similarly for qτ2 < qτ1 implies that in qτ2 ≤ qτ1.

Case 2: The top IC of one agent is above its balanced IC and for the other the top

IC is below its balanced IC. Case 3: The top ICs of both agents are above their

respective balanced ICs. This results in allocations in the balanced band. Cases 3(i)

and 3(ii) are when there exists allocations disjoint from allocations in the balanced

band, 3(i) is case when top ICs intersect, while in 3(ii) they do not intersect. We now

provide the details.

We note that the cases are mutually exclusive and exhaustive, since the inequalities

are always of the form qτi ≤ qfi (or qfi < qτi ), q
τ
i ≤ qτj (or q

τ
j < qτi ), q

τ
i ≤ qτj (or q

τ
j < qτi )

and qτi ≤ qτj (or qτj < qτi ).

Case 1: qτ1 ≤ qτ2 or qτ2 ≤ qτ1 or both. Here, both the agents get an allocation on

their top IC. There are three sub-cases. Case 1(i): qτ1 ≤ qτ2 and qτ2 ≤ qτ1. In this

case, both LR and RL type allocations are possible. LR: If qτ1 = qτ2 then f1(P ) =

(0, qτ1 ), and f2(P ) = (qτ2, 1 − qτ2), otherwise, define x̃ such that x̃ + ICτ
1 (x̃) = qτ2.
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f1(P) = (x1, IC
τ
1 (x1)) where x1 ∈ [0, x̃] and f2(P) = (x2, IC

τ
2 (x2)) where x2 ∈

[x1 + ICτ
1 (x1), q

τ
2].

RL: If qτ2 = qτ1 then f2(P ) = (0, qτ2 ) and f1(P ) = (qτ1, 1 − qτ1), otherwise, define

x̃ such that x̃ + ICτ
2 (x̃) = qτ1. Let f2(P) = (x2, IC

τ
2 (x2)) where x2 ∈ [0, x̃] and

f1(P) = (x1, IC
τ
1 (x1)) where x1 ∈ [x2 + ICτ

2 (x2), q
τ
1].

Case 1(ii): Suppose qτ1 ≤ qτ2 and qτ1 < qτ2 . Here only LR allocations are possible and

these allocations are the same as in LR for case 1(i) above. RL allocations are not

Pareto efficient since both agents cannot be provided on the top in an RL allocations.

Moreover, any such envy-free RL allocation can be Pareto improved by giving the

agents an LR allocation as described above.

Case 1(iii): Suppose qτ2 < qτ1 and qτ2 ≤ qτ1. Here, there are only RL allocations, which

are the same as in RL allocations for case 1(i) above. Any envy-free LR allocations will

not be Pareto efficient since neither agent will get an allocation on her top IC.

Cases 2 and 3 consider the case where qτ2 < qτ1 and qτ1 < qτ2 . In this case, there are

no envy-free and Pareto efficient allocations where both the agents get an allocation

on the top IC simultaneously. Pareto efficiency that a no-wastage allocations will be

envy-free when both the agents cannot be allocated simultaneously on their top IC,

i.e., when 1−qτ1 < 1−qτ2 and 1−qτ2 < 1−qτ1. If agent i is allocated on the left of agent

j ̸= i then all allocations will be of the form fi(P) = (0, a) and fj(P) = (a, 1 − a)

where a ∈ [qτj , q
τ
i ]. If a < qτj , then some resource can be transferred from agent j to i

as agent j has more than required to get allocation on her top IC. Similarly if qτi < a,

some resource can be transferred from agent i to j as agent i has more than required

to get allocation on top IC.

Case 2: Suppose ICτ
i ≤ ICf

i for some i ∈ {1, 2} and ICf
j < ICτ

j , for j ̸= i, and

qτi ≤ qfi ≤ qτi and qτj < qfj < qτj . The inequalities imply that qτj < qτi ≤ qτi < qτj . The

following allocations are allocated under the BCA:
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Figure 7: qτj < qτi ≤ qτi < qτj

(a) Left-allocation to agent i and right-allocation to agent j: fi(P) = (0, a) and

fj(P) = (a, 1−a) where a ∈ [α, β] such that β = min{qfj , qτi } and α = min{b ∈ [qτj , β) :

(0, a) ≿i (a, 1 − a)}. (b) Left-allocation to agent j and right-allocation to agent i:

fi(P) = (a, 1− a) and fj(P) = (0, a) where a ∈ [α, β] such that α = max{qfj , qτi } and

β = max{b ∈ (α, qτj ] : (a, 1− a) ≿i (0, a)}.

Case 3: The top IC of both agents is above the balanced IC of the corresponding

agent, i.e., ICf
i < ICτ

i for both agents i ∈ {1, 2}, and qτ1 < qf1 < qτ1 and qτ2 < qf2 <

qτ2 .

In this case there are always some allocations in the balanced band.

Case 3(i): If qfi = qfj = qf , then allocated fi(P) = (0, qf ) and fj(P) = (qf , 1− qf ) or

fj(P) = (0, qf ) and fi(P) = (qf , 1−qf ). If qf1 < qf2 , then in balanced region allocation

of agent 1 has to be on the left and similarly if qf2 < qf1 then agent 2’s allocation has

to be on the left. We specify these allocations below.

a) If qf1 = qf2 = qf , then f1(P) = (0, qf ) and f2(P) = (qf , 1 − qf ) or f2(P) = (0, qf )

and f1(P) = (qf , 1− qf ).

b) If qfi < qfj then allocate, fi(P) = (0, a) and fj(P) = (a, 1 − a) where a ∈
[max{qτj , q

f
i }, min{qτi , q

f
j }].

Apart from the allocations in the balanced band there can be allocations outside it,

if the following hold.

Case 3(ii): both agents top ICs cross, i ̸= j , qτi ≤ qτj (≡ 1 − qτj ≤ 1 − qτi ) and

qτi ≤ qτj and (max{qfi , q
f
j } < qτi or qτj < min{qfi , q

f
j }). Above inequalities imply

qτi ≤ qτj < qτi ≤ qτj . Apart from above allocations we have the following additional

allocations,
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Figure 8: qτi ≤ qτj < qτi ≤ qτj

(a) If max{qfi , q
f
j } < qτi , fi(P) = (a, 1 − a) and fj(P) = (0, a) where a ∈ (qτi , q

τ
j ] s.t.

(a, 1− a) ≿i (0, a).

(b) If qτj < min{qfi , q
f
j }), a ∈ [qτi , q

τ
j ) s.t. (0, a) ≿j (a, 1− a).

Case 3(iii): Both agents top ICs do not cross, i ̸= j, qτi ≤ qτj (≡ 1 − qτj ≤ 1 − qτi )

and qτj < qτi and (max{qfi , q
f
j } < qτj or qτj < min{qfi , q

f
j }). Above inequalities imply

qτi ≤ qτj < qτj < qτi .

Figure 9: qτi ≤ qτj < qτj < qτi

(a) If max{qfi , q
f
j } < qτj , BCA provides the following allocations: fi(P) = (0, a) and

fj(P) = (a, 1− a) where a ∈ (qτj , q
τ
i ] s.t. (a, 1− a) ≿j (0, a).

(b) If qτj < min{qfi , q
f
j }, then the BCA gives the following allocations: fi(P) =

(a, 1− a) and fj(P) = (0, a) where a ∈ [qτi , q
τ
j ) such that (0, a) ≿j (a, 1− a).
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Remark 1 Note that the BCA rule is not single-valued and for a given profile, the

BCA provides a (non-empty) multi-valued set of allocations. The following theorem

states that BCA allocations described above are the only Pareto efficient and envy-free

allocations.

Theorem 1 An allocation rule f : D2 → A is Pareto efficient and envy-free if and

only if it is the BCA.

We have shown in Proposition 3 that if preferences are monotonic i.e. if both agents

prefer the whole interval to any other allocation, then Pareto efficient and envy-free

allocations must be in the region between the respective balanced ICs of the two

agents where the agent whose balanced IC cuts the other’s balanced IC from below

gets allocations on the left axis and the other gets the remaining on the right axis.

We write this formally below.

Due to assumption 4, an agent is either provided an allocation on the right, i.e.,

allocation of the type (a, 1 − a), or on the left, i.e., an allocation of the type (0, a)

when both prefer to have the maximum quantity (Observation 3). In all the other

cases, if an agent (on the right axis) needs less than the quantity provided in the

balanced IC region, she is given up to her top IC and quantity is decreased from her

top IC to the infimum (or supremum) of the location of the allocations which that

agent prefers to the allocations given to the other agent. This prevents envy while

maintaining Pareto efficiency. The proof of Theorem 1 for separate cases using the

BCA described earlier.

Proof. We use a Lemma to prove our result. The Lemma states that for any top IC

which connects (0, qτi ), there exists a q′ such that the bundle on the right axis, (0, q′)

is indifferent to (0, q).

Lemma 1 If for any i ∈ N , qτi ∈ (0, 1), for all q ∈ (qτi , 1] there exists q′ ∈ (0, qτi )

such that (0, q) ∼i (0, q
′)

Proof. By assumption 2 we know that (0, 1) ≻i (0, 0). By single-peakedness in

quantity (assumption 3) and assumption 2: for any q ∈ (qτi , 1), (0, q
τ
i ) ≻i (0, q) ≻i

(0, 1) ≻i (0, 0). By continuity of preferences (assumption 1) there will be q1, q
′ ∈

(0, qτi ) and 0 < q1 < q′ < qτi < q < 1 such that (0, q1) ∼i (0, 1) and (0, q′) ∼i (0, q).

Cases. We prove in separate cases, that each of the allocations prescribed by the

BCA in the definition of the rule are the only Pareto efficient and envy-free allocations.

For sake of simplicity, we do not reiterate the conditions under different cases and the

allocations, we simply provide the proofs of why such allocations are the only Pareto

indifferent and envy-free allocations.
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Case 1. Case 1(i): LR allocation: These allocations are Pareto efficient and envy-free

as both agents get allocation on their top ICs. Giving f1(P) = (0, qτ1 ), leaves more

than enough for agent 2 on its top IC, since 1− qτ2 ≤ 1− qτ1 .

RL allocation: These allocations are Pareto efficient and envy-free as both agents

get allocation on their top ICs. Giving f2(P) = (0, qτ2 ), leaves more than enough for

agent 1 on its top IC, since 1− qτ1 ≤ 1− qτ2 .

Case 1(ii): Here, only LR allocations are Pareto efficient and envy-free. Since 1−qτ2 <

1− qτ1, in a RL allocation, both agents can not get an allocation on their top IC and

hence it is not Pareto indifferent to the LR allocation.

Case 1(iii): Here, only RL allocations are Pareto efficient and envy-free. Because in

LR 1− qτ1 < 1− qτ2 both agents can not get allocation on their top IC and hence it is

not PI to RL. No other set of allocations can be Pareto efficient and envy-free since

in all the allocations above, both the agents get an allocation on their respective top

IC.

Case 2. Left-allocation to Agent i, Right-allocation to Agent j: Since agent i gets

(0, a), when a < qτi , the quantity given to i must be at the minimum level where she

does not envy agent j as allocations are on opposite side of ICτ
i . This implies that

a ∈ [α, β] such that β = min{qfj , qτi } and α = min{b ∈ [qτj , β) : (0, a) ≻i (a, 1 − a)}.
If a < α, then agent i will envy agent j, and if a > β, then either (i) qτi > qfj : in this

case, agent j will envy agent 1 since the latter’s allocation will be closer to the top

IC of agent j than her own allocation, or (ii) qτi ≤ qfj : in this case, agent i gets more

than her top quantity and this cannot be Pareto efficient.

Left-allocation to agent j, and right-allocation to agent i: Here agent i gets an allo-

cation (a, 1−a), while agent j gets (0, a), where a ∈ [α, β] such that α = max{qfj , qτi }
and β = max{b ∈ (α, qτj ] : (a, 1 − a) ≻i (0, a)}. Here, if a < α, then if (i) qfj > qτi ,

then agent j will envy i if a < qfj , and if (ii) qfj ≤ qτi , then a < qτi will not be Pareto

optimal since we would be giving a quantity of 1− a to agent i, which more than she

needs to be on her top IC. Similarly, if a > β, then agent i will envy agent j since

(0, a) ≻i (a, 1− a).

Case 3: Case 3(i): If qfi = qfj = qf , then both the agents are allocated on the

“common” end points of balanced ICs. Therefore, there is no envy, and since the

whole resource is allocated, it is Pareto efficient. Any other allocation will cause

envy, by similar arguments as in Proposition 3.

Allocations in the balanced region when qfi ̸= qfj : If qfi < qfj , in the LR allocation,

a < qfi will imply that agent i will envy agent j and a < qτj will not be Pareto

efficient as agent j will have more than required for allocation on top IC. Hence,

max{qτj , q
f
i } ≤ a. If qfj < a, then agent j will envy agent i and if qτi < a the allocation
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will not be Pareto efficient as agent i will have more than required for allocation on

top IC. Hence, a ≤ min{qτi , q
f
j }.

If qfj < qfi : in the RL allocation, if a < qfj , then agent j will envy i and if a < qτi ,

then the allocation is not Pareto efficient as agent i will have more than required for

allocation on top IC. Hence, max{qτi , q
f
j } ≤ a. If qfi < a, then agent i will envy agent

j and if qτj < a the allocation will not be Pareto efficient as agent i will have more

than required for allocation on top IC. Hence, a ≤ min{qτj , q
f
i }.

Case 3(ii): If a = qτj , then agent j will envy agent i as agent i has allocation on ICτ
j

but for a < qτj , the allocation of i and j are on opposite sides of ICτ
j . Therefore,

a > qτj given that agent j does not envy agent i. Agent i will not envy j as it’s

allocation is above ICf
i while j’s allocation is below ICf

i . If a = qτi , then agent i will

envy agent j as agent j has allocation on ICτ
i . If qτi < a, the allocation of i and j

are on opposite sides of ICτ
i . Therefore, only allocations where agent i does not envy

agent j are allowed. Agent j will not envy as it’s allocation is above ICf
j while i’s

allocation is below ICf
j .

Case 3(iii): Left-allocation to agent i and right-allocation to agent j: If qτj = a, then

agent j will envy agent i as agent i has an allocation on ICτ
j but for qτj < a, the

allocation of i and j are on opposite sides of ICτ
j . Therefore, a > qτj . Agent i will

not envy as it’s allocation is above ICf
i while j’s allocation is below ICf

i . By similar

arguments as above, we must have a ∈ (qτj , q
τ
i ]. Left-allocation to agent j and right-

allocation to agent i. When fi(P) = (a, 1 − a) and fj(P) = (0, a): If qτj = a, then

agent j will envy agent i as agent i has allocation on ICτ
j . If a < qτj , the allocation of

i and j are on opposite sides of ICτ
j , hence only allocations where agent j does not

envy agent i are allowed. Agent i will not envy as it’s allocation is above ICf
i while

j’s allocation is below ICf
i .

Theorem 1 provides a characterization of envy-free and Pareto efficient allocations.

However, the class of rules under BCA are not single-valued and We now show that

adding strategy-proofness to the above axioms gives us an impossibility.

Theorem 2 There is no allocation rule f : D2
1 → A that is strategy-proof, envy-free

and Pareto efficient.

Proof. Suppose f : D2
1 → A is strategy-proof, envy-free and Pareto efficient. Con-

sider the following three types of preferences where the peak allocation is {(0, 1)}
and all the ICs are linear. Type 1: ≿i, characterized by ICs with slope 0 i.e.
d
dx
(ICi,q(x)) = 0 for all q ∈ [0, 1) and x ∈ (0, 1), Type 2: ≿

′
i, characterized by

ICs with positive slope (except for IC
′
i,0), i.e., d

dx
(ICi,q(x)) > 0 for all q ∈ (0, 1)

and x ∈ (0, 1) and Type 3: ≿
′′
i , with all ICs of negative slope (except for IC

′′
i,0) i.e.,

d
dx
(ICi,q(x)) < 0 for all q ∈ (0, 1) and x ∈ (0, 1). The actual value of the slope does
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not matter as long as it is positive (or negative) in the corresponding regions. Let qf ,

q′f and q′′f be the respective quantities of the balanced ICs at x = 0.

Figure 10: Construction of preferences for Theorem 2

We define the sets, L1 = {(0, q)|q′f ≤ q ≤ 1
2
}, L2 = {(0, q)|1

2
≤ q ≤ q′′f}, R1 =

{(q, 1 − q)|1
2
≤ q ≤ q′f} and R2 = {(q, 1 − q)|q′′f ≤ q ≤ 1

2
}. To prove our claim we

construct profiles that consist of preferences from the set {≿i,≿′
i,≿

′′
i }.

Let P1 = {≿1,≿2}. Since f is envy-free and Pareto efficient, f1(P
1) = a = (0, 1

2
) and

f2(P
1) = b = (1

2
, 1
2
). Let P2 = {≿′

1,≿2}. According to Lemma 3, agent 1 has to be

allocated in L1 and agent 2 in R1, to prevent envy. To prevent agent 1 from deviating

from P2 to P1 via ≿1, we have f1(P
2) = a and f2(P

2) = b. Note that q
′f
1 = q

′f
2 = q

′f

and q
′′f
1 = q

′′f
2 = q

′′f .

Suppose P3 = {≿′
1,≿

′
2}. Since both have identical preferences, envy-freeness requires

that allocations be on either ends of the corresponding balanced IC i.e. (0, q′f ) and

(q′f , 1 − q′f ). To prevent agent 2 from deviating from profile P2 to profile P3 via

≿
′
2, by strategy-proofness f2(P

3) = a′. Note, a′ ≻′
2 b and b′ ≻2 b ≻2 a′. By Pareto

efficiency, f1(P
3) = b′.

LetP4 = {≿1,≿
′
2}. Here, according to Lemma 3, agent 2 has to be allocated in L1 and

agent 1 in R1. To prevent agent 1 from deviating from P4 to P3 via ≿
′
1, f1(P

4) = b′.

By Pareto efficiency, f2(P
4) = a′. Suppose profile P5 = {≿′′

1 ,≿
′
2}. By Lemma 3,

agent 2 has to be allocated in L1 ∪ L2 and agent 1 in R1 ∪ R2. To prevent agent

1 from deviating from P5 to P4 via ≿
′
1, by strategy-proofness and Pareto efficiency,

f1(P
5) = b′ and f2(P

5) = a′.

Finally, let P6 = {≿′′
1 ,≿2}. According to Proposition 3 and envy-freeness, agent 2

must be allocated in L2 and agent 1 in R2. But this will result in agent 2 deviating at

P5 to P6 via ≿2 where her allocation will be strictly better since f(P6) = (0, α) ≻′
2 a

′

for any α ∈ [1
2
, q

′′

f ]. This is a contradiction to the fact that f is strategy-proof.
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5 More than 2 agents

We first provide an algorithm to obtain an envy-free and Pareto efficient allocations for

3 agents when all the agents have preference for greater quantity i.e. τ(≿i) = {(0, 1)}
for each i ∈ N ≡ {1, 2, 3} and for linear preferences. A preference ≿i∈ D1 is linear

if it is represented by ICs which satisfy d
dx
(ICi,q(x)) = aq for some aq ∈ R for any

given q ∈ (0, 1) for all x ∈ (0, qτi ). Let this domain of preference be denoted by

D2 ⊂ D1 ⊂ D. An allocation rule for k ≥ 3 agents is a mapping f : Dk
2 → A.

A k-balanced IC for an agent i ∈ N = {1, 2, 3} is an IC, ICf
i such that there exist

three allocations (0, qi1), (xi2, qi2) and (xi3, qi3) where 0 = xi1 < xi2 < xi3, xi2 =

xi1 + qi1, xi3 = xi2 + qi2 and qi1 + qi2 + qi3 = 1. The existence of a k-balanced IC

can be proved using similar arguments as the ones used in Proposition 2. We provide

only a sketch of the proof. For any preference ≿i∈ D1 and any given IC, ICi,q which

represents it, we can construct a left-over or wastage function δ(x(q)) as done for 2

agents earlier where x is the length of the portion left-over (surplus or deficit) after

the first k−1 allocations a1, ..., ak−1 all lie on the ICi,q. More specifically, if q1, .., qk−1

are the quantities in the allocations ai = (xi, qi) for i ∈ {1, ..., k−1} then the wastage

is given by x(q) = 1−
∑k−1

i=1 qi.
11

Clearly, an implication of our Assumptions 1-4 in Section 2 is that as q approaches

zero, we can find q ∈ (0, 1) and an ICi,q such that δ(x(q)) > 0 (since the slope

of ICs approach zero). Similarly, we can always find another q′ ∈ (0, 1) such that

δ(x(q′)) < 0. By continuity of preferences, δ(x(q)) is a continuous function of x(.)

and x(q) is a continuous function of q. Therefore, by the intermediate value theorem,

there exists a q̂ ∈ (0, 1) such that δ(x(q̂)) = 0.

Balanced curve algorithm for 3 agents (BCA-3) Suppose the 3 pieces balanced

ICs are IC1,qf1
, IC2,qf2

and IC3,qf3
have the slopes aqf1

> aqf2
> aqf3

respectively. Let

a1 = (x21, q21), a2 = (x22, q22) and a3 = (x23, q23) be the three allocations that lie on

agent 2’s balanced IC, IC2,qf2
. Then the following allocation f1(P) = a1, f2(P) = a2

and f3(P) = a3 is envy-free and Pareto efficient for any profile P ∈ D3
2 i.e. for linear

and monotone preferences.

11For very high ICs it may be the case that strictly fewer than k − 1 allocations can be allocated

on the given IC. In such cases, we can define δ(x(q)) = 1−
∑k(q)

i=1 where k(q) ∈ {1, ..., k − 1} is the
maximum number of allocations that can be given on ICi,q which are fewer or equal to k − 1.
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Figure 11: Balanced IC for k pieces

A similar algorithm can be constructed for 4 agents. We provide a property that

must be satisfied for any envy-free and Pareto efficient allocation when preferences

are linear and monotonic.

Proposition 4 For any profile P ∈ Dn
2 with n ≥ 2, suppose the allocation {ai}ni=1 =

{xi, qi}ni=1 is envy-free and Pareto efficient. For simplicity assume that x1 < x2 <

... < xn and let the slope of an agent i’s IC through her own allocation ai be aqi. Then

it must be the case that aq1 ≥ aq2 ≥ .... ≥ aqn.

Proof. Suppose for contradiction that agent 1’s IC’s slope aq1 is not the largest value

through her own allocation (0, q1). By envy-freeness, all the other allocations must

lie below agent 1’s IC through (0, q1). But if agent k ̸= 1 has a greater slope than

her allocation (xk, qk) which lies below the IC of agent 1 through her own allocation,

then agent k will prefer to have the allocation (0, q1) since her IC through the latter’s

allocation will be higher than the IC through her own allocation. This is a contradic-

tion to the fact the allocation is envy-free. Similar arguments show that agent 2’s IC

through her own allocation must have a greater slope than all the succeeding agents’

ICs through their respective allocations.

The above proposition provides a necessary condition for envy-free and Pareto efficient

when preferences are monotonic in quantity and linear for more than 2 agents. It

states that the slopes of the ICs of agents when their allocations are placed from left

to right must also be decreasing in the same direction. A violation of this would result

in envy, since one of the ICs of an agent would pass through the allocation of another

agent and lie completely above the IC of that agent through her own allocation. The
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above propositions provide insights into the more general problem of fair allocation

with more than 2 agents.

6 Conclusion

We consider an allocation model where agents have a preference for location and

quantity and the preference for quantity is single-peaked. We characterize the set

of envy-free and Pareto efficient allocations. We show that there do not exist any

strategy-proof, envy-free and Pareto efficient allocation rules. We provide observa-

tions for more than 2 agents which can be used to extend the BCA. The existence

of the balanced IC for k portions may also prove beneficial for obtaining a complete

characterization of envy-free rules for more than 2 agents.

For future research, other preference restrictions on the unit interval can be explored.

However, the existence of a balanced IC might be crucial in such cases as well since the

agents must be allocated on the same IC when they have identical preferences. Other

extensions include a model where agents are allowed to trade between themselves,

given a set of endowments.
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